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ABSTRACT

This paper presents a novel 3D segmentation framework for
structures with spatially varying boundary properties, such as
the hippocampus (HC). The proposed method is based on Ac-
tive Contour Models (ACMs) built on top of the multi-atlas
concept. We propose the incorporation of an Adaptive Gradi-
ent Distibution on the Boundary map (AGDB) into the ACM
framework. AGDB, by being adapted to the evolving contour,
constantly redefines, at a voxel level and at each contour evo-
lution, the degree of contribution of the image information
and the prior information to the energy minimization. The
proposed segmentation scheme was tested for HC segmenta-
tion using the publicly available IBSR database.

Index Terms— Hippocampus segmentation, brain MRI,
gradient based reliability maps, local blending of ACM en-
ergy terms

1. INTRODUCTION

Neurodegenarative disorders cause morphological deforma-
tion in various brain structures. Morphological analysis and
shape comparisons of brain structures from healthy and dis-
eased subjects can help to detect such deformations, thus lead-
ing to possible biomarker identification. The latter is useful
in improving diagnosis especially for diseases for which there
are only a few diagnostic tools available. Accurate and reli-
able automatic segmentation of medial temporal lobe struc-
tures, such as the hippocampus (HC), is considered a key re-
quirement for the assessment, treatment and follow-up of dis-
orders, for which HC have been found to be influenced [11].
However, it requires overcoming the inherent difficulties of
medical imaging, which result in weak or missing boundaries
between neighboring structures, such as the challenging case
of the borders between HC and the neighboring amygdala
(AG), where the imaging resolution is not sufficient to depict
it, as Figure 1 shows.

Atlas based segmentation, and especially multi-atlas, is
the most appreciated and commonly used concept for per-
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Fig. 1. A sagittal slice, highlighting the HC-AG complex.
Purple and cyan 3D reconstructions of HC and AG, respec-
tively, are overlayed on the zoomed HC-AG region.

forming multiple structures’ segmentation. Many approaches
exist in the literature ([18], [13], [14], [8], [15], [3], [2], etc.),
which primarily differ on the utilized registration technique,
on the fusion strategy of the multiple atlases, and on the se-
lection of the most appropriate atlases. The efficiency of the
multi-atlas concept has also been demonstrated in [5], where
four different types of segmentation techniques were com-
pared. A recent enhancement of the label propagation con-
cept, on an effort to avoid the inherent computational cost
of the non-rigid registrations, is offered by [10], [9], [21]
through patch-based approaches for fusing the label images.
Attempts have been made to further improve the performance
of the multi-atlas concept by offering post-processing steps,
which include fusing the multi-atlas concept with intensity
classification and nearest neighbor connectivity [22], with in-
tensity modelling [18, 17], or with multi-scale algorithms that
use graph representation [1].

Active Contour Models offer another alternative for the
task of segmentation. ACMs primarily facilitate (i) edge-
based methods, such as the popular Geometric Active Con-
tour model (GAC) [6], which utilizes an edge-stop function
to drive the evolution towards edges, and (ii) region-based
methods, which use intensities’ statistical information, and
are more robust on detecting weak edges [7]. However, hy-
brid approaches, which combine both edge-based and region-
based terms into the segmentation framework, tend to be more
powerful [27] as they benefit from the properties of both edge-
based and region-based terms. ACMs have been further im-
proved for medical image segmentation through the addition



of prior knowledge. A work toward this is the one of Leventon
et al. in [16] who combined the GAC model with statistical
information about the shapes undergoing segmentation. Yang
et al. [24], extended Leventon’s idea and included a notion
of neighborhood prior along with the shape prior, to segment
multiple neighboring structures, and incorporated it into the
model described in [7]. Recent advances on the ACM method
include selective local or global segmentation [28], spatially-
varying regularization weights [20], non-linear shape models
produced using manifold learning techniques [12], etc.

In this work, we are proposing the incorporation of multi-
atlas based prior knowledge on an ACM framework for the
task of hippocampus segmentation. The ACM is simultane-
ously evolved on the target image, an image demonstrating
the regions of grey matter tissue, and the spatial distribution
map, extracted by the multi-atlas methodology. The energy
minimization criterion thus encloses image terms (i.e. how
well the contour fits the image) and the prior term (i.e. the
likelihood of the enclosed voxels belonging to the hippocam-
pus). More importantly, this method differs from previous
relevant attempts, by blending the image terms in a local and
adaptive way, within each contour evolution iteration. Previ-
ous solutions incorporated their prior term in a global way, ne-
glecting the anatomically varying boundary properties of the
structures. In an effort to tackle this shortcoming, we initially
proposed balancing image and prior information through a
static local weighting map, based on Gradient Distribution
on the hippocampus’ Boundary (GDB) [25], which was later
extended in [26] to become Adaptive (AGDB), based on the
evolving contour. This idea was inspired by the fact that a
static map could not serve in full extend the variability of the
hippocampus’ shape. This concept was successfully evalu-
ated on the central sagittal slices of hippocampus. We hereby
carefully take into consideration the varying boundary proper-
ties of HC, by introducing two more energy terms, and verify
the usefullness of this concept on the full 3D HC segmenta-
tion on the well known IBSR dataset.

2. PROPOSED METHOD

In a nutshell, the proposed method is an ACM method on top
of the multi-atlas concept. The ACM optimization includes
four energy terms. The first three are image terms, while the
fourth term is the prior term. The image terms are divided to
edge-based and region-based. The role of the edge-based, is
to guide segmentation towards apparent boundaries, while the
role of the region terms is to take lead on regions with weak
boundaries. There are two region terms, one based on the ini-
tial image information that takes into consideration regional
intensity statistics, only around the HC region, and a second
that is based on a smoothed image depicting the grey matter
tissue, which in turn takes into account whole brain statis-
tics. The prior term is based on the Spatial Distribution Map
(SDM), derived by the multi-atlas methodology, and is used

to constraint the evolution on the HG regions with missing
borders (i.e. between HC and AG).

AGDB’s role is the blending at a voxel level of the three
image terms with the prior term in order to accommodate the
spatially varying properties of HC’s evolving boundary and
to aid the evolution process according to the dominant prop-
erty at that voxel, i.e. image or prior information. This means
that AGDB is a weighting map that has equal dimensions
with the image and refers to the evolving contour at time step
t (AGDBt). AGDB up-weights the image terms in parts
of the evolving contour that demonstrate sufficient image in-
formation (either strong or weak boundaries). Vice versa,
AGDB passes gradually the control of the contour evolution
to the prior term in case of insufficient image information by
up-weighting the contribution of the prior term. It is initially
defined by the density of the gradient values around and on
the mean hippocampal shape extracted from a training set.
Subsequently, the constructed AGDB is being adapted to the
evolving contour by being transformed to the space of the lat-
ter, imitating even more the human segmentation way.

2.1. Energy formulation of the model

According to the level set method [19], an evolving curve C
in the image domain Ω ∈ R3 can be represented implicitly
as the zero level set of a Lipschitz function φ : R3 → Ω ,
C = {v ∈ Ω | φ(v) = 0}, where v ∈ Ω, v = (x, y, z) are
the coordinates of a voxel and the embedding function φ is a
signed distance function.

Using AGDB to blend the image terms and the prior term,
the energy functional to be minimized in order to drive the
evolution of C is defined by:

E = EI(AGDB) + EPr(1−AGDB)

where 1 denotes a matrix of ones, EI stands for the image
terms and EPr indicates the prior term. EI refers to the sum
of three image terms:

(i)EI1, the edge-based term defined using [6], augmented
by a local weighting map M , of same size as the target image
I:

EI1(M) =

∫
Ω
M(v)g(v)|∇φ(v)|dv

where g is an edge stopping function [6].
(ii) EI2, the region-based term formulated as in [7]:

EI2(M) = λI1

∫
Ω1

M(v)|I(v)−cI1|2dv+λI2
∫

Ω2

M(v)|I(v)−cI2|2dv

where cI1, cI2 are the average intensities of I in the region in-
side Ω1 and outside Ω2 the evolving curve, respectively, and
λI1, λI2 are balancing factors between the properties of the two
regions.

(iii) EI3, the region-based term taking into account the
tissue type information, extracted by FAST1:

EI3(M) = λG1

∫
Ω1

M(v)|G(v)−cG1 |2dv+λG2
∫

Ω2

M(v)|G(v)−cG2 |2dv

1http://www.fmrib.ox.ac.uk/fsl/



where G is a smoothed version of a binary image indicating
the regions of I where the gray matter is distributed.

To formulate the prior term (EPr), the training set is non-
rigidly registered to the target image, using the symmetric
normalization methodology (SyN) [4] provided by the ANTs
toolkit. The spatial distribution map (L) is then defined by the
use of a weighted fusion scheme, where the weights indicate
the normalized cross-correlation between each training image
and the target image. Given L, the prior term is also created
using the [7] approach, since L is an image with smooth tran-
sitions:
EPr(M) = λL1

∫
Ω1

M(v)|L(v)−cL1 |2dv+λL2
∫

Ω2

M(v)|L(v)−cL2 |2dv

Combining the above equations and using the level set
framework, the evolution equation becomes:
ϑφ

ϑt
=AGDBt ◦

[
ϑφI1

ϑt
+
ϑφI2

ϑt
+
ϑφI3

ϑt

]
+ (1−AGDBt) ◦

ϑφPr

ϑt

=AGDBt ◦
[
g|∇(φ)|div(

∇φ
|∇φ|

) +∇g · ∇φ
]
+

+ δε(φ)

[
µ div

(
∇φ
|∇φ|

)
− ν−

−AGDBt ◦
(
λI1(I − cI1)2 − λI2(I − cI2)2

)
−

−AGDBt ◦
(
λG1 (G− cG1 )2 − λG2 (G− cG2 )2

)
−

− (1−AGDBt) ◦
(
λL1 (L− cL1 )2 − λL2 (L− cL2 )2

)]
where µdiv

(
∇φ
|∇φ|

)
is a regularization term that controls the

degree of smoothness; ν controls the propagation speed; α
is the balloon force that controls the contour’s contraction or
expansion; δε(φ) is the dirac function and ◦ operation denotes
the Hadamard product.

2.2. Building AGDB

An initial AGDB (AGDBinit) must be calculated to con-
struct the local weighting map AGDBt that refers to an
evolving contour φt at each iteration t. In this respect, a
four-step procedure is followed. Firstly, the corresponding
level set function Φi is constructed for every registered train-
ing image Bi, i = 1, . . . , N . Averaging them, the mean
level set is defined by Φ = 1

N

∑
Φi. Secondly, the canny

edge detector is applied for every Bi, producing Ci. The
advantage of using canny is that it detects both strong and
weak edges, thus accommodates all image terms (i.e. strong
edges for edge-based and weak edges for region-based terms
respectively). Thirdly, the intersection between the zero level
set of Φi, i = 1, ..., N and the dilated version of image Ci is
defined, resulting in Di. Lastly, AGDBinit is produced with
the application of the same fusion scheme on Di, as the one
used to calculate L.

Following the construction of AGDBinit, AGDBt is
subsequently defined by mapping AGDBinit to the space of
the evolving contour φt. This way the weighting map is more
able to accommodate the varying image properties around the

evolving boundary. Φ and the evolving contour φt are there-
fore first transformed into binary masks M1,M2. M1 is then
non-rigidly registered to M2. The resulting transformation is
applied on AGDBinit to transfer it to the space of φt, thus
producing AGDBt.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method was evaluated using the IBSR dataset,
provided by the center for Morphometric Analysis at the Mas-
sachusetts General Hospital2, which contains T1-weighted
image volumes from 18 subjects and their corresponding
manual segmentations.

A leave-one-out procedure was undertaken for all sub-
jects. Figure 2 offers segmentation results of three subjects,
along with 3D reconstructions of the estimated volumes,
where one can see the high amount of agreement between the
extracted volumes and the ground truth.

To further assess the performance of the AGDB-based
method, the segmentation results were also compared against
previously published results on the same dataset, of various
methods. The mean Dice coefficient was used as it was avail-
able for all methods in their original manuscripts. The re-
sult of a straightforward multi-atlas fusion scheme based on
the ANTs registration is also calculated. The resulting evi-
dence is provided in Table 1, which demonstrate the enhanced
accuracy of the proposed method, yielding the higher Dice
value compared to all other methods. As it can be seen, the
proposed AGDB-based ACM scheme on top of the ANTs
multi-atlas, offers an increase in accuracy of the exact same
amount for the task of HC segmentation, with the one of
[18], where intensity modelling through expectation maxi-
mization was used on top of their multi-atlas implementation.
However, as the registration techniques increase their perfor-
mance, the potential space for further increase narrows, as it
reaches the upper limit of inter-rater variability. Further, the
results verify the similar behaviour of the ANTs-based multi-
atlas with the patch-based method of Rousseau et al., as can
be seen in [21]. Please note that the efforts of Rousseau et al.
are primarily on increasing the execution performance, rather
than the segmentation accuracy. Thus, replacing the non-
rigid registration steps of our method with the patch-based
approach proposed by [21] will potentially lead to same ac-
curacy improvement with reduced computational cost.

Concluding, the proposed AGDB-based HC segmenta-
tion framework, takes carefully into account and models ap-
propriatelly the spatially varying boundary properties of HC.
The constant adaptation of AGDB to the evolving contour
mimics the human understanding of region properties. Fur-
thermore, using the multi-atlas concept to build the spatial
distribution map L and the AGDBinit, subject-specific in-
formation is incorporated into the segmentation framework.

2http://www.cma.mgh.harvard.edu/ibsr/



Fig. 2. Segmentation results on a sagittal and an axial slice and the corresponding 3D reconstructions for subjects 6, 9, 14. Pink
on the 2D slices shows the manual segmentation, whilst blue the AGDB result. For the 3D reconstructions, cyan indicates True
Positive voxels, blue the False Positives, and pink the False Negatives.

Method HC Method Description

AGDB 0.84 AGDB-based ACM on top of multi-atlas

ANTs [4] 0.83 Multi-atlas based on the ANTs toolkit

Method in [21] 0.83 Patch-based labelling

Method in [18] 0.81 Multi-atlas & Expectation Maximization

Method in [22] 0.81 Multi-atlas & accuracy weighted vote

Method in [15] 0.76 Registration & supervised atlas correction

Method in [3] 0.75 Multi-atlas & multiple combination strategies

Method in [23] 0.75 FreeSurfer

Method in [1] 0.69 Multiscale segm. with probabilistic atlas

Table 1. Mean Dice similarity coefficient for evaluating the
performance of the proposed method against other segmenta-
tion approaches tested in IBSR dataset.

On the widely used IBSR dataset, it yielded the best results
when compared with other state-of-the-art methods, proving
the proposed concept’s efficacy and accuracy.
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