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Abstract—Segmentation techniques based on Active Conto
Models have been strongly benefited from the use of priorin&ion
during their evolution. Shape prior information is capturrom
a training set and is introduced in the optimization procedto
restrict the evolution into allowable shapes. In this wae evo-
lution converges onto regions even with weak boundariethofigh
significant effort has been devoted on different ways of wapg
and analyzing prior information, very little thought hashelevoted
on the way of combining image information with prior infortican.
This paper focuses on a more natural way of incorporating the
prior information in the level set framework. For proof ofno@pt Fig. 1. MRI of a brain with highlighted the hippocampus andygoala
the method is applied on hippocampus segmentation in T1-MfRuctures.
images. Hippocampus segmentation is a very challengirlg thee
to the multivariate surrounding region and the missing loiauy

with the d”Eighgog”g ‘f"m.ygdfﬂa’ I‘q"’hose intensities are idamThZ various methods and techniques have been proposed which are

proposed method, mimics the human segmentation way and t . .

shows enhancements in the segmentation accuracy. PPH%unly based on deformable models. ActlveT _Contour Mod_els
(ACM) have been proved to be the most efficient formulation

tation, hippocampus segmentation, hippocampus-amyguédaing for such segmentations. ACMs try to deform a contour, by

boundary, weak boundary segmentation, region based seafioen following information extra_cted from the given image, undg
prior information’ local We|ght|ng scheme in level Sets’aﬁ;pj some pre'deﬂned constraints. The nature Of the constraints

distribution of labels, gradient distribution on boundary differentiate the methods to two types: the gradient-edged
methods [2] and the region-based methods [4]. Though a
hybrid model that combines them has also been proposed
[18], the second type still seems to offer more solutions in
EGMENTATION of anatomical structures from medicathe medical image domain, since it utilizes regional stiati
images, such as MRI and CT, has found numerous ggformation of the intensities to control the contour. Thus
plications. Current image-based diagnosis, therapy atiali, s much less sensitive to noise and performs robustly in the
surgical planning and navigation highly depend on the segase of weak and smooth edges, in contrast with the edge-
mentation procedure. Medical expert's time though, is boflased models that utilize gradient stopping functions,ctvhi
limited and valuable to perform manual segmentations, Whigy definition can not handle those cases. Due to these highly
also lack reproducibility. The need for automatic segmigmma attractive properties, a lot of variations of the originegjion-
in medical images and its challenging nature, are the majased model have been proposed in the literature. In [8]
reasons that attract researchers on the topic. a new variational level set formulation has been proposed
The main challenges of the topic arise from the fact thgiat does not require re-initialization. [17] is a quite @Bt
neighboring structures share the same intensity chaistatsr formulation with selective local-global behaviour in thegs
and weak boundaries. This exactly is the case with thgentation. Those models though, solely depend on current
hippocampus and amygdala complex (Fig. 1). Evidences thaformation, i.e. the image at hand. However, in medicalgma
alterations of hippocampus and amygdala could serve as p@alysis prior information is critical for understandingda
tential biomarkers for mental diseases [13] [5], have iase&l segmentation of anatomical structures, since their shagres
the interest for automated methods that would accuratedymmon characteristics over the population.
robustly and reproducibly segment those structures. Significant effort has been devoted on ways for capturing
Due to the importance of the problem and the variety @fnd analyzing shape prior information. The most common
other applications, extensive study has been carried odit &pproach is to perform a statistical analysis over the niista
o , _ _maps of known shapes through PCA to produce a shape vari-
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[7], where the shape prior was attracting the evolutionaahe intensities inside and outside the contour adjust the image
deformation iteration, on a shape that would be acceptableupdate term in order to separate the structure of interest fr
the shape prior. Since then a lot of other techniques have bélee background. The model used in this work is the well know
proposed that try to bias the segmentation towards learn@dan-Vese framework [4], which can be seen as a special case
shapes [15], [3], [1]. of the Mumford-Shah [12] problem:

Yang et. al in [16], moved a step further and introduced Let Q2 denote a bounded open subsetf, with ¥ its
along with the shape prior, the neighborhood prior knowéedgboundary, and”(s) : [0,1] — R* is a parameterized curve
in an effort to take advantage during the evolution informan . The curveC can be also implicitly represented via
tion from neighboring structures. The prior knowledge was Lipschitz functiong by C = {(z,y)|¢(z,y) = 0}. C
embedded into the region-based framework, by adding thartitions$) into the insideC setQ); in which ¢(z,y) > 0,
prior energy term into the optimization formulation. Theywaand the outside” set(, in which ¢(z,y) < 0. For a given
though, that the two energy terms are merged, does not takege ! in domain§2 the Chan-Vese model is formulated by
full advantage of the prior knowledge, as they are mergeainimizing the following energy functional:
through a global weighting scheme. The hippocampus bound-

ary suffers from missing boundaries mainly in the bordetb wi Eov =X [ |I(z,y) — c1|*dedy+

amygdala. In most of the rest boundary, evident, if not gron o

gradients do exist. Why is then the prior energy term affecti +o [I(z,y) — co*dady, (z,y9)eQ (1)
the contour evolution in regions with high gradients? And/wh 22

is the image term affecting the contour evolution in the leosd Where c; and ¢, are the average intensities 6f and €,
with amygdala, though there is no practical evidence thiat trﬁslg,[%%t“gl}" By minimizing equation (1); andc, are cal-
term would converge on the actual boundary? '

Jo 1(z,y) - H(¢)dady

Knowing, through experience, the expecting gradient \&lue ca(p) = 2)
on the perimeter of the structure of interest is an excellay Jo He(¢)dwdy
to balance locally between the two energy terms. Capturing (¢) = Jo I(@,y) - (1 = He(¢))dwdy 3
this information, forms a novel, energy blending schemat th Jo(1 = He(¢))dzdy

locally defines the expected importance of each energy tefjhere H,(¢) is the Heaviside function. Furthermore, aug-
The proposed local weighting matrix defines the extent toenting the energy term in equation (1) with regularization
which one should trust the image’s gray-scale information &rms of length and area energy terms, results to a smoother
the prior knowledge at a voxel level. solution. By minimizing it, the corresponding variatiorevel

The proposed method utilizes region-based segmentatlsoer% formulation is obtained:

algorithms using active contours based on the level set dis@% =5.(¢) {u div (%) —v—=M( —c1)® + X2 (] —¢2)?
tribution model. A prior information model is introducetiat Ve 4)

is formulated from a labelled training set, which captur&ghere;, 1 > 0 control the smoothness and the evolution speed
the spatial distribution of the hippocampus labels. Thévact respectively, whilex;, A» > 0 control the image data driven
contours evolve according to the image information and thgyce inside and outsidée’ respectivelys, denotes the Dirac
prior knowledge in a single framework. Those two drivingynction. This model has been widely used in applications
forces are combined through a novel local weighting matriyat require segmentation on weak boundary objects. Haweve
the Gradient Distribution on Hippocampus Boundary (GDHByhen background intensities are of similar value to that of
map, i.e. a local weighting matrix which acts as an expekhe object to be segmented, and their regions are separated
enced balancer between the image and the prior informatiQgn vague boundaries (e.g. hippocampus and amygdala), the
In contrast to global multiplicative weighting factors, ih  contour can leak and start expanding on the background. Due
act globally on the whole term, GDHB contains statisticgh, the nature of the problem, the segmentation model by
information about the magnitude of the image gradient on thgelf is not adequate to separate the hippocampal voxats fr

boundary of hippocampus, and thus can act on each bound@g rest of the brain structures. Figure 2(a) shows how this

voxel independently. . model fails to capture the hippocampus boundaries and how
In the following sections we give the necessary backgrougflalienging the problem is.

on region-based segmentation with shape prior, and thor-
oughly explain our contributions in full exploitation ofipr B, Variational Shape Prior Modeling through PCA
knowledge. Experimental results will prove the validitytbe 7o overcome this situation, Leventon et.al [7] proposed the
proposed method by comparison with the existing shape prisse of a probabilistic shape prior model, captured from a
based segmentation technique. training population through a PCA analysis. This approach
was also followed by Yang et. al [16]. The difference between
those two methods was that in [7] gradient based geodesic
Il. LEVEL SETS WITH VARIATIONAL SHAPE PRIOR active contours (GAC) model was used, while in [16] the
. . aforementioned Chan-Vese framework. Following the anglys
A. Region Based Segmentation in [16], after incorporating the shape prior model in thergye
The model, that is used for the image term of the segmentarm, the evolution equation becomes:
tion process, is based on intensity statistical infornmatibthe A ) )
inner and outer regions of the evolving contour. The averagg; — °(?) {”d“’ <|V¢|) —v=A{l —a) - -e)]| -
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Fig. 2. (a) Segmentation outcome of the Chan-Vese modelcgatbur) that (d) (e) Q)
leaks from the hippocampus-amygdala boundary (blue cositamn a central
slice of the hippocampus. (b) Segmentation outcome wheiatiearal shape Fig. 3. lllustration of the GDHB map generation. (a) Outtinef the
prior is introduced. hippocampus and amygdala, (b) the gradient values on thedaoy of
hippocampus, (d)-(e)-(f) thresholding outcomes with adggg threshold
values and (c) the final averaged GDHB map revealing how mieh t
T _ evolving contour should trust the image information and houch the prior
—w - g{UkX, Ui [G(¢ — 9)]|} (5) information on every voxel.

where A = A\; = X\ andw are the two “global” weighting
factors that balance between the image data term and #feBuilding Gradient Distribution on Hippocampus Bound-
shape prior termG(+) is an operator that generates the vect@ries

representation of a matrix by column scanning gd the  GpHB derives from image gradient analysis on the training
inverse operator ofG. Uy, ¥, and ¢ are the k-principal  get More specifically, in each image, we isolate the hippeca
component basis functions matri_x,_the singular valuesimaty, ,c's boundary and calculate the magnitude of the image gra-
and the mean shape of the training set produced by PCfient on it. Practically, low gradient magnitude values be t
respectively. perimeter of the structure of interest are associated wigh h
The results using this shape prior model are promising, gfobability of contour leakage during the evolution praces
can be seen in figure 2(b), but still leave enough space 9k the other hand, higher values decrease the probability to
more contributions. leak from those specific boundary pixels.
A thresholding operation is performed on the gradient
values, which also tries to connect neighboring pixels with
[Il. PROPOSEDMODEL similar gradient value and direction. Binarization sepesa
the boundary to its strong and weak gradient parts. This
Incorporating prior knowledge in the segmentation procgrocedure is depicted in figure 3 for various thresholds. A
dure proved a very reasonable and successful choice. Howaygyp is produced that shows on which parts, of this particular
the trade off among the two energy terms, i.e. the imag@undary, image information should drive the segmentation
data term and the shape prior term, is not straightforwacd agnd on which the prior term should take over. In an effort
highly depends on the specific structure under investigatiqp build something more generic, this information is propa-
Still, in all previous works, this balance is modelled thgbu gated to the surrounding region, by applying morphological
global weighting factors, which is not the way a human ratgjerations; a long and narrow structuring element, aligned
would perform the procedure. The human expert would trugjr each pixel on the boundary’s normal direction, performs
the image information for the regions of the hippocampugiation. Hence, the values of this map represent the tikeld
boundary that border with the white matter, but would use higat an evolving contour will face regions with either sion
experience to trace the weak borders with amygdala. Thigg,weak borders, while it evolves towards the boundary. The
in order to model this procedure, one has to blend the tvghove process is repeated for each of the training images. Th
energy terms in a local fashion. This means to learn whereggyduced individual GDHB maps, are averaged and the final
trust the image information, and where to neglect it and ugghHB map with values if0, 1], is produced (Fig 3(c)) that
prior information instead. This way prior knowledge is tincontains generalized gradient distribution informatidnttee
exploited to its full extend. hippocampus boundary.
However, a variational shape prior model could not be
applied on a locally defined weighting scheme, since such a
term tries to find the boundary with the most likely shapd Modeling Prior Information
describing it by a set of global coefficients (i.e. the PCA In order to satisfy the constraint that the prior informatio
projection coefficients). Thus, the prior information thatl  should be defined locally to be applicable to the GDHB frame-
get included in the segmentation process, should also Werk, a voxel-based statistical model is defined. Adopthm t
locally defined. The following sections describe how thealocvoxel-based context of atlas based segmentation, where an
weighting scheme, called GDHB, and the prior informatioatlas image assigns a labklto each voxelv, a statistical
term are formed and incorporated in the region based segedel of spatial class label distribution is produced, dher
mentation framework. training set. Each labelled imagg,,, n = 1,...,N is a



binary image, withL,,(v) = 1 for voxels v that belong to
the hippocampus and otherwise. In order to construct the
empirical spatial distribution of labels, thg labelled images
are rigidly registered based on the hippocampus and their
labels’ sum is averaged over the population, producing anag
L (see figure 4) which gives the empirical probability for ever @) (b)

voxel p(l,) € [0,1] to belong to hippocampus, based on itﬁig. 4. lllustration of the Spatial Distribution of Hippawgal labels, as a
coordinates. This image models the spatial distributiothef gray scale image and as a surface.

labels, and has higher values at voxels along the expected

shape of hippocampus and lower values at distant voxelseof th

mean shape. When a test image is registered on the training IV. EXPERIMENTAL RESULTS

images, it assigns to each pixel, based on its location, tBgaluation Dataset

probability to belong to the desired structure.

The proposed methodology has been tested18nT1

C. Incorporating Prior Information into the Segmentation Weighted MP-RAGE MR images, randomly chosen from the
Process OASIS database [10]. All subjects in the OASIS database

Proper incorporation of the prior knowledge in the level s&€ healthy and right handed, of both sexes. The MR images
evolution framework is obviously of critical importancend Were acquired on a 1.5-T Vision scanner. For every subject,
choice of modeling the prior knowledge with the labels’ dist 3-4 different MRIs were captured and the first of these was
bution has a huge advantage, since it can be straightfolyvargkgistered on the atlas space of Talairach and Tournoux [14]

]‘ﬂsed as ﬁ S‘?Cg?]d i”\F/JUt im_?ge on the regional geg.ﬂ?”ta?é remaining scans were registered on the first one and
ramework of Chan-Vese. Thus, averaging probabilities : o : |
voxels that belong inside and outside of the evolving conto eraged. After resampling the result is a single, higrt

This leads to an energy minimization problem which forceégotropic image withimm voxel thickness. A professional
the contour to evolve between regions that are more likelgdiologist manually traced the hippocampus volume onghos
than others representing lower probabilities. 13 images, in order to build the training set. Apart of the
Bom — \L(z,y) — d|Pdody+ QASIS prc_e—processing, the__‘ selected MR images were further
PR=T1 o wY 1 dwey rigidly registered on the hippocampus center of mass. Level
set functions were used to formulate the problem and signed
+vz | |L(z,y) = do|*dwdy, (z,y)€Q  (6) distance maps in order to represent the hippocampal stasctu

Q2 . .. . .
where d; and dy are now the probabilities of the regionsEaCh of the curves in the training dataset is embedded in the

inside and outsid€’ and are calculated similarly witty and proposed mod_el as the zero level set of a higher dimensional
: level set function.

ce. v1 and vy correspond ta\; and .. Keepingv; and v,

coefficients equal, forces the prior information to be etyual

balanced between high likely voxels (red region in Figureomparisons

4) and marginal voxels (light blue-yellow). Adjusting and The proposed algorithm was evaluated in the context of the

vy balances the weight between highly probable areas aedve-one-out procedure. For every excluded test imagewa n

marginal areas. _ hippocampus spatial distribution map and GDHB map was
Combining the two energy terms through GDHB gives thgenerated. For comparison purposes, results of the cothbine

total energy to be optimized: framework of Chan-Vese and variational shape prior have bee

E=GDHB-Ecv +(1—-GDHB)- Err (7)  calculated, which will be abbreviated as SP in the following
whose update equation becomes: text.
9 To initialize the algorithm, we took advantage of the cap-
¢ _s aiv (Y@ X : .
ot <(¢) | pdiv Vel )~ tured prior knowledge. The seeding region was selected as

the set of voxels with very high probability to belong to
the hippocampus. The hippocampus spatial distribution map
directly gives this information. For the SP method we folsalv
the seeding technique of [16], where it was argued that the
SP methodology is quite invariant to its initialization. rék
Due to the nature of the labels’ spatial distribution maséeeds inside the body of hippocampus (in the head, in the
and the values of the GDHB, this model always converges tail and in the central area of the hippocampus) was used for
a boundary that is indeed near the hippocampus. The leakagtalization. However, to avoid any possible unfairness
phenomenon is totally diminished, since in the regions asfay the following experiments the same seeding region with the
the hippocampus, GDHB guides the segmentation solely baggdposed method was used as a second alternative for the SP
on the prior information, and on those regions, the labgda-s method.
tial distribution mask points that there is zero likelihabdse The advantages of using the hippocampus spatial distribu-
regions to belong to hippocampus. This leakage preventitign map to provide the initialization, is that it is autoricat
behaviour can not be guaranteed with the variational shaged offers a large and very reliable seeding region along the
prior models. complete body of the hippocampus. This is advantageous,

~GDHB - (M(I— ) = Ma(l — c2)’)

—~(1-GDHB) - (vl(L —d1)? +va(L — d2)2)] ®)
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since larger area of initialization leads to more accurate c 04

culation of the average irjtensities andc, and consequently 02— 555 e

to lower number of iterations to fully segment an object from e o (3-seeds)
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The following results refer to segmentations performed on a ©

central sagittal slice of each MRI. Performance and acgurac

of the two comparing methods is evaluated through seveFéﬂ-ﬁﬁ- ComQa;iSOZS(gfsed |On F}ricision vs F;e%all diagrﬁmfléDi%ed
. . . P coefficient. In (a) an results of the two methods are eoted with dashe

pOpUIar.memCS' i.e. the H_aUSdorff d'St‘?ane [9] In flgura)S_( lines to show the improvement the proposed method achieved.

the undirected averaged distance [16] in figure 5(b), pictis

vs recall [11] in figures 6(a),(b) and thE, measure (Fig.

6(c)) which is a proportional combination of precisionatc
measures with a weighting factérto balance between the ;
importance of precision vs recalh = 1 assigns equal -
weight, andF; equals the Dice coefficient which measure L
set agreement. In terms of false positive, false negative
true positive countsF; equals:

Fl = 2-TP

(FP+TP)+ (TP + FN)’ Feo,1] (9

a b
A value of F; = 0 indicates no overlap between the actu
and estimated volume, while a value &f = 1 indicates
perfect agreement. In figures 6(a) and (b) the results of t
proposed and SP method were connected for each im
which shows the tendency of the proposed method to cli
towards the upper-right corner, which obviously corregfson
to higher F; values. Table | shows averaged results for ea
(d)

of the evaluation metrics on the whole dataset, the bold ones ©
being the best in each case.

Fig. 7. Segmentation results of the proposed method on the ifbages
with indexes 11, 5, 1 and 4 respectively. The thin black conttepicts the
ground truth, while the red one is the outcome of the propesethod. Note

the difference in segmentation quality between the prapasethod in (b)
| || i Precision Recall Haussdorf Average di|st and the SP method in 2(b) which are on the same MR image #5.

TABLE |
AVERAGED COMPARISONRESULTS

GDHB 088 085 002 251 0,66
sP 079 069 094 563 1.46
SP (3-ceeds)) 0.76 068 089 582 153 | MR images with satisfying results, especially when initied!

with the three seeds. Moreover, through experimentation, i

As can be seen, the evaluation metrics report the supgriofecame evident that the proposed method does not require fine
of the proposed method. The only exception is image #7 whé#ing of the parameters, contrary with the SP case, where it
the Hausdorff and the undirected averaged distance repags hard to find a set of parameters that satisfy the whole
slightly better results, in terms of actual and estimatednole set. Furthermore, the results also show the contribution of
ary distances, but the other metrics report similar perforoe. the hippocampus spatial distribution map in the initidiiza
In every testing case, the use of GDHB map, diminishggocedure, since this utilization yields overall bettecuaecy
leakage and constraints the contour in the bounded area thad lower distance errors.
describes. Shape prior methodology is not able to segmekent alThe segmentation procedure lasts no more than 10 seconds



for our experiments, in a quad-core PC, 2.8 GHz with 3.5 GB4] J. Talairach, P Tournoux, “Co-planar strereotaxicsitbf the human
of RAM. brain: An approach to medical cerebral imaging”, New Yorkii€ime,
1988.
[15] B. Vemuri and Y. Chen, “Joint image registration and raegtation”,
V. CONCLUSION Geometric level set methods in Imaging, Vision and Grapsgsinger,
- . . pp. 251-269, 2003.

process; the regional intensity based Chan-Vese model andtation with Level Set Based 3D Deformable Models”, IEEE Eaon
a prior knowledge term. Previous works that incorporatefng7 Medical Imaging, vol. 23(8), 2004,

. . . .. 1 K. Zhang, L. Zhang, H. Song, and W. Zhou, “Active con®uwith
prior knowledge into their models have succeeded efficient sejective local or global segmentation: A new formulation devel set

segmentations. However, the way that these two terms aremethod’, Image Vision Computing, 28(4): 668-676, 2010.

; ; ; Al ; 8] Y. Zhang, B.J. Matuszewski, L.K. Shark, C.J. Moore, ‘dital image
combined is based on global weight multiplicative facmr& segmentation using new hybrid level set method”, IEEE IrdnfCon

which act globally on both terms, which contradicts with the gjomedical Visualization, 2008.
nature of the hippocampus boundary. Our work proposes the

use of the GDHB map in order to estimate locally, how much

the image data are to be trusted or not. GDHB acts as a

multiplicative weighting map to both terms, which mimics,

even more, the way human experts perform the procedure.

Early results verify this argument.
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