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Abstract

Omnidirectional vision is becoming increasingly rele-
vant as more efficient 360o image acquisition is now possi-
ble. However, the lack of annotated 360o datasets has hin-
dered the application of deep learning techniques on spher-
ical content. This is further exaggerated on tasks where
ground truth acquisition is difficult, such as monocular sur-
face estimation. While recent research approaches on the
2D domain overcome this challenge by relying on generat-
ing normals from depth cues using RGB-D sensors, this is
very difficult to apply on the spherical domain. In this work,
we address the unavailability of sufficient 360o ground truth
normal data, by leveraging existing 3D datasets and remod-
elling them via rendering. We present a dataset of 360o

images of indoor spaces with their corresponding ground
truth surface normal, and train a deep convolutional neu-
ral network (CNN) on the task of monocular 360o surface
estimation. We achieve this by minimizing a novel angu-
lar loss function defined on the hyper-sphere using sim-
ple quaternion algebra. We put an effort to appropriately
compare with other state of the art methods trained on pla-
nar datasets and finally, present the practical applicability
of our trained model on a spherical image re-lighting task
using completely unseen data by qualitatively showing the
promising generalization ability of our dataset and model.

1. Introduction

Understanding 3D geometry from a single image is one

of the most challenging and actively studied problems in

computer vision. With the advent of efficient deep learn-

ing frameworks, many methods emerged that present state

of the art results in tasks such as depth estimation [29, 19],

surface normal prediction [16, 55] or a joint combination of

both [13]. 3D visual perception can trace the path for a num-

Figure 1: Qualitative results on samples of the realistic and

unseen Sun360 [56] that contains indoors scene panoramas.

Our model infers valid surface estimates, even on these

challenging scenes, even though trained on a mix of syn-

thetic and real - but different distribution (i.e. saturation,

lighting, content) - scenes.

ber of applications, like autonomous driving [59, 57], robot

navigation [62], 3D reconstruction [4] or even the fusion

of two heterogeneous media, such as traditional 2D images

with 3D objects for Augmented Reality (AR) applications

[37].

Typical end-to-end deep learning pipelines usually re-

quire a large amount of ground truth annotated data. While

this is partially addressed for datasets captured by tradi-
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Figure 2: Samples of our generated dataset, with the color

images next to their corresponding ground truth surface nor-

mal map. Bellow, the two color-spheres map pixel color to

normal vector orientation. We consider a left-hand coordi-

nate system, with the z and y axes representing the camera’s

look-up and up vectors respectively. Left: a bottom-view of

the color-sphere, where the center-color represents the pos-

itive y-axis (y+). Right: a top-view of the color-sphere,

where the center-color represents the negative y-axis (y-).

The main coordinate axes x+, x-, z+, z-, have the same col-

ors in both the color-spheres.

tional techniques following the typical pinhole camera pro-

jection model using depth sensors [47] or laser scanners

[44], the same cannot be said for 360o content 1, which is

still considered a novel research domain with limited work

done regarding 3D perception.

Nowadays, with good quality and efficient commercial

based 360o spherical cameras and rigs, omnidirectional

content is becoming increasingly popular and more easily

1The terms 360o, omnidirectional, spherical, equirectangular are

equivalently used in this document.

produced. This expanded the usage of spherical sensors in

a number of fields, such as Virtual Reality (VR) [32, 14],

indoor navigation [34], or even real-estate.

In this work we train a deep CNN on the task of single

image 360o surface normal estimation. We address the lack

of sufficient training data by generating a novel dataset of

360o indoors scenes with their corresponding ground truth

surface annotations by rendering existing 3D datasets. The

dataset is publicly available to enable further research in

360o visual perception 2.

Inspired by the simplicity and numerical stability of

quaternions when representing rotations, we train a deep

CNN to predict 360o surface normal maps, by utilizing

a novel loss function defined on the hyper-sphere using

quaternions to express angular differences. Our experi-

mental results (Table 1) show additional performance boost

compared to models trained with losses commonly used in

similar regression tasks.

Additionally, we compare with other state of the art

normal estimation methods trained on planar images by

inferring their predictions on equirectangular as well as

cubemap projections of our dataset’s images. Finally, we

present promising qualitative results of our network applied

on completely unseen challenging samples of the Sun360

dataset [56], and further present the feasibility of our model

for a 360o image-relighting application.

2. Related Work
Since the goal of this work is to learn surface normal

from a single 360o image, and to the best of our knowl-

edge, similar work does not exist, we first present learning-

based methods for the 360o domain, followed by similar

work done on planar 2D datasets.

2.1. Learning on 360o images

The 360o field of view of spherical images benefits many

applications, such as autonomous driving [45], robotics [41]

or VR [21]. Typically, omnidirectional images are modeled

as a sphere, and its pixel coordinates map to the longitudinal

and latitudinal spherical coordinates. Despite their advan-

tages, omnidirectional content suffers from distortion, espe-

cially near the sphere’s poles, making it very difficult to pro-

cess them with typical CNN architectures. Nowadays, the

most usual ways to apply neural network pipelines on spher-

ical input are either employing standard CNN architectures

and run their predictions directly on the projected (typicaly

equirectangular [49]) image, or projecting the image to the

faces of a cube (cubemap) and then back-projecting them

to equirectangular. However, there are a number of efforts

that model the distortion of spherical images in the neural

network’s architectural processing pipeline.

2vcl3d.github.io/HyperSphereSurfaceRegression
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To address spherical image distortion, many techiques

utilized the gnomonic projection [49] to either model

equirectangular distortion in the representation of the in-

put data, or to guide convolution kernels’ sampling pat-

tern in order to learn distortion invariant features. In [23]

a graph-learning approach for omnidirectional image clas-

sification is presented. The graph representing the image is

constructed using the gnomonic projection and a method for

designing convolutional kernels to have similar responses

for the same patterns in the image regardless of the posi-

tion and lens distortion is proposed. In a similar manner, a

distortion aware convolution kernel sampling pattern is pre-

sented in [52], which models the distortion in spherical im-

ages. The convolution kernels sample equirectangular im-

ages w.r.t. the gnomonic projection, and thus can be used

with models trained on regular 2D images. SphereNet [10],

a framework for learning spherical image representations

uses the same kernel sampling pattern, further boosting its

computational performance by additionally sampling uni-

formly on the sphere using the method described in [43].

Other efforts, try to model equirectangular image dis-

tortion with more typical neural network architectures like

[51], where the authors focus on learning to transfer trained

2D models to the spherical domain, by adjusting their net-

work’s kernel sizes w.r.t. to the latitudinal angle and enforc-

ing consistency between the predictions of the 2D projected

views and those in the 360o image.

Additionally, there is limited work addressing 3D per-

ception problems on the omnidirectional domain, such as

[53], in which the authors follow the steps of [61], to learn

depth and camera motion from 360o videos, using two net-

works; one for inferring depth and the other for predicting

the camera pose. They train their networks on cubemap pro-

jections of 360o video sequences rendered from the SunCG

[50] dataset. Moreover, in [63], the authors use an end-

to-end approach to learn 360o depth from equirectangular

indoors scenes. They present a dataset generated via ren-

dering existing 3D datasets and two neural network archi-

tectures, one more typical and the other constructed with

rectangular filters and dilated convolutions [58] to account

for the distortion in the spherical domain.

Finally, in [15] the authors focus on the task of learn-

ing a 3D room layout from a single 360o image, using the

edges that are formed from wall-ceiling-floor intersections

and their end-points, i.e. their corners, as their ground truth

data. They achieve this by introducing equirectangular con-

volution kernels and a neural network trained on a subset

of the Sun360 [56] annotated with ground truth edge and

corner data.

2.2. Surface normal estimation from a single image

The use of standard feedforward CNNs to predict a sur-

face normal from a single RGB image has been employed

by many recent works. Eigen and Fergus [13] propose a

deep learning model for per-pixel regression using a se-

quence of three scales to generate features and refine pre-

dictions in a coarse to fine approach. Their network can be

adapted to predict depth, surface normal or semantic seg-

mentation by making small modifications to the architec-

ture.

In a more recent work [60], the authors introduce a syn-

thetic dataset of indoors scenes, generated via physically-

based rendering, with ground truth normal annotations, seg-

mentation and object boundary masks. They pre-train a

UNet [42] - VGG16 [48] hybrid neural network model on

their synthetic dataset and fine-tune it on NYUv2 [47]. A

similar network architecture is adopted by [5], that presents

an effort to retrieve 3D objects from 2D images. Their neu-

ral network is trained to predict surface normals that serve

as input to another two-stream network that estimates the

pose and the style of the depicted object in order to retrieve

the object’s 3D model from a large CAD library [3].

One of the first approaches to propose a non-standard

feedforward CNN architecture [55], treats surface normal

prediction as a classification problem instead of a regression

one, based on [28]. A three-model neural network architec-

ture is presented which comprises a top-down, a bottom-up

and a fusion network. The first learns a coarse global nor-

mal map and a room layout hypothesis incorporating van-

ishing point labels under a Manhattan World assumption.

The second learns normals for a local patch of the input im-

age and classifies the edges of the depicted scene as convex,

concave and occlusion edges. Finally, the latter network

fuses the predictions of the two input networks and outputs

a final surface normal estimation of the input image.

2.3. Joint normal and depth estimation

As depth and surface normals follow a strong geometric

correlation [46], there are a number of methods that concen-

trate on learning surface normals and depth in a joint man-

ner. Specifically in [54], a four-branch neural network ar-

chitecture that predicts dense depth and normals along with

plane and edge probability maps is presented. The predic-

tions are regularized by a dense conditional random field

(DCRF) [25] that encourages the consistency of depth and

normals within planar regions and enforces surface predic-

tions to have unit length via the predicted edges and planes.

Li et al. [31], use a pre-trained part of AlexNet [26]

for depth estimation and VGG16 for surface prediction

with non-trainable weights, which they feed with super-

pixel patches of different sizes sampled from the input im-

age. Their network makes as many predictions as the input

patches, which are then concatenated and fed to two fully-

connected layers with learnable parameters that produce the

final depth (or surface normal) output. As a final refinement

step they use a hierachical CRF that incorporates the rela-
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Table 1: Quantitative results of our model trained on our dataset’s train-split and evaluated on our test-split with four different

loss configurations. We present the mean, median and root mean square angular error across our dataset’s test-set. We also

provide an additional threshold of 5o along with the most commonly used thresholds (11.25o, 22.5o, 30o). ↓ means lower is

better, while ↑ means higher is better.

Network Loss Mean↓ Median↓ RMSE↓ 5o ↑ 11.25o ↑ 22.5o ↑ 30o ↑
VGG16-UNet L2 7.72 7.23 8.39 73.55 79.88 87.72 90.43

VGG16-UNet Cosine 7.63 7.14 8.31 73.89 80.04 87.29 90.48

VGG16-UNet Quaternion 7.24 6.72 7.98 75.8 80.59 87.3 90.37

VGG16-UNet Quaternion + Smoothness 7.14 6.66 7.88 76.16 80.82 87.45 90.47

tionship between the patches and the pixels of the image.

In [39], Geonet is presented; a two-branch neural net-

work trained to estimate depth and surface normal, using

two new modules, the depth-to-normal and normal-to-depth

networks, that both use pinhole camera geometry and the

prediction of each branch to further refine the quality of

their estimations.

An interesting method is presented in [8], where the au-

thors build on top of their previous work [7], and create

a dataset by crowd-sourcing the annotation of images col-

lected randomly from Flickr 3. They manage to train a neu-

ral network to estimate depth and surface normal using rela-

tive point-to-point depth and normal annotations evaluating

their method on [47].

Finally, the authors in [30] consider fusing two different

sources of information other than depth with surface nor-

mal, namely optical flow and semantic segmentation, intro-

ducing a novel synthetic dataset of outdoor nature scenes,

for general scene understanding. They show that joint fea-

tures efficiency and the complementary refinement of one

prediction from the other two, improves object boundaries

and region consistency in predictions.

3. Dataset Creation
The data-driven nature of deep CNN architectures is par-

tially addressed with datasets such as [47] and [44], for

learning depth or surface normals given scenes captured by

the pinhole camera projection model. However, it is diffi-

cult to obtain similar datasets of spherical images.

We overcome this limitation by following the steps of

[63], and create a mixed dataset of spherical images of in-

doors scenes. Similarly, we used a path-tracing renderer 4

and Blender 5 to render existing 3D datasets and annotate

our rendered images with their corresponding ground truth

surface normal maps that are produced as a result of the

rendering process.

3https://www.flickr.com/
4https://www.cycles-renderer.org/
5https://www.blender.org/

Specifically, we utilized the same 3D datasets, namely

Matterport3D [6], Stanford2D3D [2, 1] and SunCG [50]

to generate a dataset composed of a mixture of computer

generated (CG) and realistic scenes of indoors spaces. The

dataset consists of 24933 unique viewpoints, from which

we split 7868 scenes for training, 1098 for validation and

2176 for benchmarking our trained models. We consider

the remaining ones as invalid due to inaccuracies during

rendering. We provide the dataset publicly to enable further

research in 360o visual perception. We showcase a sample

of our dataset in Fig. 2.

4. 360o Surface Normals Estimation
Following most background work, we treat training a

fully convolutional neural network (FCN) to learn surface

normal from a single spherical image as a regression task.

In most learning-based normal regression problems the ap-

proach is to minimize either the L2 norm [31, 39, 5, 12] of

the difference of the predicted normal map and the ground

truth, or their normalized per-pixel dot-product [13, 60] that

implies their angular differences.

Quaternions can represent arbitrary rotations and surface

orientation in a very simple and compact form. To train our

network, we consider normal vectors as pure quaternions

and try to minimize their difference in terms of rotation,

showing to further boost the performance of our model (Ta-

ble 1).

We first formulate our novel quaternion loss function,

followed by the description of the neural network architec-

ture used for our experiments.

4.1. Angular loss on the hypersphere

According to Euler’s rotation theorem, a transformation

of a fixed point p(px, py, pz) ∈ R
3 can be expressed as a ro-

tation given by an angle θ around a fixed axis u(x, y, z) =
x̂i + yĵ + zk̂ ∈ R

3, that runs through p. This kind of rota-

tion is easily represented by a unit quaternion q(w, x, y, z),
where w is the quaternion’s real part, described by the fol-

lowing formula:
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Figure 3: Qualitative results on samples of our test-split.

From left to right: input equirectangular image, ground

truth surface normal, our model’s prediction.

q = e
θ
2 (x̂i+yĵ+zk̂) =⇒ (1)

q = cos(θ) + usin(θ) (2)

where ‖q‖ = 1, and cos(θ), sin(θ) are the quaternion’s real

and imaginary parts respectively.

Thereafter, we can represent two normal vectors

n̂1(n1x , n1y , n1z ) and n̂2(n2x , n2y , n2z ) as the pure quater-

nions q1(0, n1x , n1y , n1z ) and q2(0, n2x , n2y , n2z ). Then,

the angular difference between the two normal vectors can

be expressed by their transition quaternion [27], which rep-

resents a rotation from n̂1 to n̂2:

t = q1q−1
2 (3)

Because q1 and q2 are unit quaternions q−1 = q∗, where

q∗ is the conjugate quaternion of q, and q−1 = −q, due to

being a pure quaternion, and:

q1q∗2 = q1 · q2 − q1 × q2 (4)

Therefore, because q1 and q2 are pure unit quaternions,

their multiplication is reduced to a simple dot (real part) and

cross product (imaginary part). As a result, calculating the

hypersphere angle represented by the transition quaternion

can be straightforwardly implemented in most modern deep

learning frameworks.

The rotation angle of the transition quaternion t and

therefore the angular difference between the two normal

vectors n̂1 and n̂2 is calculated by the inverse tangent be-

tween the real and the imaginary parts of the transition

quaternion, which are reduced to their dot and cross prod-

uct, due to being unit quaternions.

tan (θ) =
sin(θ)

cos(θ)
=
‖q1 × q2‖

q1 · q2

=⇒ (5)

θ = atan(
‖q1 × q2‖

q1 · q2

) (6)

In the above computation, the only different operation

against other typically used error functions, like the cosine

similarity error, is the calculation of a cross product and the

atan() operator (we should note that in our implementa-

tion we use the atan2() operator). However, these kind of

operations are simple to implement and are supported by

most deep learning frameworks. Additionally, this simplic-

ity makes this loss function practical and with relatively low

performance overhead.

Due to imperfect scanning process, we do not consider

invalid normals, during back-propagation by generating a

mask M(p) at training time with its values being equal to

zero for invalid pixels and one for the remaining ones.

Additionally, to further enhance our model’s predictions

on fine details and textureless regions, we add a weighted

smoothness term Esm = ‖∇Ñ(p)‖2 in the final error ob-

jective (for more information please refer to the supplemen-

tary material).

Finally, we minimize the following error:

E(p) = (1−α)M(p) · atan(‖Ñ(p)×N(p)‖
Ñ(p) ·N(p)

)

+ αM(p)‖∇Ñ(p)‖
(7)

4.2. CNN architecture

Adopting the work of [60, 5], we utilize a fully con-

volutional (FCN) [33] encoder-decoder network with skip-

connections that regresses towards the ground truth surface

normals. The network architecture is based on UNet [42]

combined with a VGG16 [48] encoder. Despite, training

other models used in the literature, their performance was

inferior to the selected architecture.

Typically a UNet architecture consists of an encoder that

captures the input image’s context, and a symmetrical de-

coder that enables precise localization. In our implemen-

tation, the front-end encoder remains the same as conv1-

conv5 in VGG16, and the decoder is composed of symmet-

rical blocks of convolutions and bi-linear up-sampling lay-

ers. In order to localize the decoder’s upsampled features,

we concatenate them with their symmetrical high-resolution

features from the encoder via skip-connections. This tech-

nique is shown to prevent gradient degradation [20], and

proved to be an important element in the network’s design.
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Table 2: Quantitative results against other monocular surface normal estimation models. Rows with equi represent feeding

the compared models with equirectangular images, and rows with cube with cubemap projections following the method we

describe in Sec. 5.3.

Network Mean ↓ Median↓ 5◦ ↑ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑
VGG16-UNet 7.14 6.66 76.16 80.82 87.45 90.47

eq
u

i Zhang et al. [60] 41.85 27.76 11.4 31.5 45.2 51.8
Chen et al. [8] 51.37 38.29 2.7 11.8 31.0 40.8

cu
b

e Zhang et al. [60] 26.12 20.83 9.1 26.9 53.3 66.0
Chen et al. [8] 27.10 19.42 6.2 25.9 56.0 68.9

Our model outputs high resolution results and keeps fine ob-

ject details that might otherwise disappear between pooling

and up-sampling layers.

Further, we use ReLU [35] as the activation function and

batch normalization [22] after each convolutional layer. Fi-

nally, the output of the network is fed to a convolution with

a 3×3 kernel size to produce the final 3-channel prediction,

which we explicitly normalize along the channel dimension.

5. Experimental Results

This section provides an experimental evaluation of our

method. To assess the efficiency of our quaternion loss

function, we first train our model using the L2 norm of the

difference of the predicted and the ground truth surface nor-

mal, and additionaly, with their normalized per-pixel dot

product, i.e. their cosine similarity. We then compare their

performance on our dataset’s test split.

We then evaluate its performance compared to other

methods applied on cubemap projections of our dataset as

well as the original equirectangular images.

Additionally, we show the efficacy of our model’s gener-

alization ability, by applying it on a subset of the Sun360

dataset containing unseen indoors scenes. Our trained

model produces very promising qualitative results, even on

in-the-wild data coming from considerably different distri-

butions from our dataset’s train-split. To further evaluate its

effectiveness, we experiment with an image relighting ap-

plication [40]. We compare relit images using our model’s

predictions to relight them, and present qualitative results

on samples of our dataset and a subset of Sun360.

5.1. Training Details

All of our networks were implemented and trained using

pyTorch [38] framework. Experiments were performed on

a PC equipped with an NVIDIA TITAN X GPU, CUDA

[36] v9.0 and and CuDNN [9] v7.1.3. We used a ran-

dom seed of 1337 for all of our experiments, for achieving

similar training sessions and reproducibility. We initialize

our network’s encoder parameters with weights pre-trained

on ImageNet [11], and the remaining convolution layers

with Xavier weight initialization [18]. We use ADAM [24]

as the optimizer with its default parameters [β1, β2, ε] =
[0.9, 0.999, 10−8] and a learning rate of 0.0002, and we

train all of our models for 50 epochs. We feed every net-

work with equirectangular images at a 512 × 256 resolu-

tion, with the models’ predictions being of equal size. Fi-

nally, we use a loss weighting factor α = 0.025 between

the prediction and the smoothness term.

5.2. Model Performance

To evaluate our results, we use well-established error

metrics that are described in the literature, initially intro-

duced in [16]. We measure the mean, median and root-

mean-square (RMSE) angular error between the predicted

and ground truth normal maps across our dataset’s test split.

Furthermore, we present precision coverage errors for three

commonly used thresholds, namely 11.25o, 22.5o and 30o

and additionally 5o.

Table 1 presents the results of our model evaluated on our

test-set when trained under four different loss function con-

figurations, while in Fig. 3 we provide qualitative results

of our best performing model. First, we can observe that

the models trained with a more intuitive loss function that

incorporates geometric understanding, like the cosine sim-

ilarity or the quaternion loss, have improved performance

over the one trained using a generic loss function like the

L2 norm. Additionally, the model trained with our proposed

quaternion error outperforms all the others, with the results

getting further improved when we add a smoothness term

in the loss function.

5.3. Comparison against other methods

To the best of our knowledge, there is no other similar

work on monocular 360o surface normal estimation. In an

effort to show the importance of training directly on the om-

nidirectional domain, we provide comparisons of our model

with learning-based methods trained on traditional perspec-

tive images. Specifically, we employ [60], which utilizes a

similar neural network architecture, and [8] which is trained
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Figure 4: Qualitative comparisons against [8] and [60]. We present results for a sample of our test-split by applying the

compared models to cubemaps of our dataset following the method we describe in Sec. 5.3

on a dataset with relative depth and surface normal annota-

tions.

To accomplish this in a fair manner, we follow two

schemes. First, we run the predictions of the com-

pared models directly on the equirectangular images of our

dataset’s test-split, to evaluate how well 2D learned features

cope with the distortion on the spherical domain. Moreover,

we feed them cubemap projections of spherical images, and

exploiting the known rotations between the cube’s faces, we

rotate the predicted normal vectors accordingly when back-

projecting them to equirectangular. We should note that be-

cause our dataset is composed of indoors scenes, the top and

bottom faces of the cubemap projections depict only por-

tions of ceiling and floor content respectively. These mostly

contain equally textured areas, not sufficient for detecting

features in an image. Thus, we do not consider these ar-

eas when measuring each model’s performance by masking

them in the final error computation.

In addition, our dataset contains floor-aligned camera

poses, which is in contradiction with the datasets used to

train the compared methods. These datasets contain scenes

captured by arbitrary camera poses not necessarily aligned

to the floor. Thus, models trained on them would possi-

bly make rightful predictions but unaligned to our dataset’s

global orientation. To account for that, we perform singular

value decomposition (SVD) between the prediction and the

ground truth, and apply the resulting rotation to the predic-

tion, before we calculate their error.

Results of both our evaluation methods are presented in

Table 2, and qualitative samples in Fig. 4. When we run the

compared models on cubemaps instead of directly on spher-

ical images, both of the networks’ performance is superior.

This is expected, as these models are trained on 2D datasets

and cannot produce effective features from the characteris-

tics of the distorted equirectangular images. However, we

can clearly see discontinuities and inconsistency between

each cubemap face. We associate this to the fact that a 90o

FOV camera cannot capture global context information re-

quired for the models to make consistent predictions.

5.4. Surface normal estimation and 360o scene re-
lighting

To further evaluate the performance of our model, we

additionally experiment with spherical image re-lighting.

We examine [40], in which the authors focus on render-

ing diffuse objects lit from a given environment map. They

show that the scene’s irradiance, being a function of the the

scene surface normal only, can be approximated in terms of

a quadratic polynomial incorporated in the cartesian coor-

dinates of the normal vector, by only 9 spherical harmonic

coefficients with an error of only 1%. Specifically, the final

relit image is composed of a sum of spherical harmonic ba-

sis functions, scaled by the lighting coefficients of the given

environment map.

To extract natural spherical harmonic coefficients, we

use a dataset of HDR indoors environment maps introduced

in [17]. We utilize 9 lighting coefficients for relighting our

images, which are later used for estimating an analytic ap-
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Figure 5: Qualitative comparison of images relit using

ground truth normals and our model’s prediction. For each

row, the second column presents the ground truth normal

map and the relit image, while the second, our model’s pre-

diction and the relit result. In addition, the irradiance map

that used to relight both of the images is provided as an inset

in the Input rgb image.

Figure 6: Samples from the Sun360 dataset, relit using our

model’s predictions. For every sample we provide the input

rgb, our model’s surface prediction and the relit image. The

irradiance map used to relight the images is provided as an

inset in the input rgb image.

proximation. Finally, the irradiance scaled by each pixel’s

intensity produces the output relit image.

We provide qualitative results of images sampled from

our test-set in Fig 5, and additionally, in Fig 6, we present

samples from Sun360. The first, are relit using both the

ground truth normals and predictions of our model, while

the second only with our model’s output. Again our network

shows promising results, as the differences between the two

reilit images are almost imperceptible, and manifest mostly

in highly detailed regions of the image.

6. Conclusion & Discussion

In conclusion, we address the task of monocular 360o

surface estimation as a learning problem. To overcome the

lack of sufficient training data, we resolve to leveraging 3D

rendering to generate spherical images of synthetic (CG)

as well as realistic 3D datasets, along with their respective

ground truth normal maps and make this dataset publicly

available online. In addition, we train a deep CNN to es-

timate spherical surface normal given a single equirectan-

gular image as input, by employing a simple to implement

novel loss function. Our results show better network perfor-

mance when it is trained with our proposed error function.

Furthermore, they demonstrate that when 3D perception is

assimilated in the learning objective, neural networks that

tackle 3D geometry problems achieve better results. Addi-

tionally, we qualitatively present the generalization ability

of our trained model via running its predictions on in-the-

wild data and using them for an image re-lighting applica-

tion.

3D perception on spherical media is still considerably

unexplored despite their wide utilization. Synthesizing data

to circumvent the lack of spherical datasets can be a solu-

tion for training neural network models. However, these

data will be product of rendering CG or large-scale scanned

3D models, that contain inaccuracies and invalid informa-

tion. Additionally, it is very difficult to cover a large amount

of real-life indoors or outdoors scenes. Accounting for the

disadvantages of synthetic data, in the future, we would like

to experiment with 3D perception on arbitrary 360o video

sequences, employing self-supervised deep neural network

models, and additionally model the spherical distortion in

the neural network’s architecture.
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