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Abstract

In this paper a novel method for 3D content-based search
and retrieval is proposed. Guided by the imperative need
for a reliable 3D content based search tool and the very
interesting results of research work done in the past on
the performance of Krawtchouk moments and Krawtchouk
moment invariants in image processing, Weighted 3D
Krawtchouk moments are introduced for efficient 3D anal-
ysis which are suitable for content-based search and re-
trieval applications. The proposed method was tested on
Princeton Shape Benchmark. Experiments have shown that
the proposed method is superior in terms of precision-recall
comparing with other well-known methods reported in the
literature.

1. Introduction

3D shape matching has evolved to a wide research area dur-
ing the last years. At the same time, a variety of emerg-
ing applications, such as CAD and games design, computer
animations, manufacturing and molecular biology applica-
tions, dictates the need for efficient 3D search and retrieval
tools. Among the several approaches introduced for 3D
shape matching, the most well-known ones are based on
low-level geometrical characteristics, which can be effec-
tively extracted from the global shape of a 3D object.

The efficient and simple query-by-content approach has
been almost universally adopted in the literature, until now.
Any such method, however, must first deal with the proper
positioning and orientation of the 3D models. The two com-
mon methods for the solution to this problem are the pose
normalization, where models are placed in a normalized co-
ordinate frame, and native descriptor invariance, where the
models are described in a transformation invariant manner.
Most of the existing methods for 3D content based search
and retrieval, are utilizing the pose normalization method.

2. Previous Work
Many methods for 3D shape search and retrieval have been
presented in the literature. In [1], Koloniaset al. present
a fast query by example approach where the descriptors
are properly chosen in order to follow the basic geomet-
ric criteria which humans usually use for the same pur-
pose, as the aspect ratio, the angles and the edges of critical
points, while Ohbuchiet al. [2] present a method based on
shape histograms. Three shapes histograms, each one on
each principle axis, are discretely parameterized and used
to measure the shape similarity.

Daras et al. [5], propose a 3D search and retrieval
method based on Generalized Radon Transform(GRT).
Bustos et al. [6] focus on improving the effective-
ness of similarity search in 3D object repositories from a
system-oriented perspective and propose a heuristic selec-
tion, called purity, for choosing retrieval methods based on
query-dependent characteristics. Zaharia [7] introduces a
new shape descriptor, the Canonical 3D Hough Transform
Descriptor which is topologically stable, but not invariant to
geometric transformations.

In [8] topology matching is proposed as an interesting
and intricate technique. However, the small-scale applica-
tion field of the method makes it unable to face up general
purpose 3D model databases. The MPEG group has pro-
posed [9] the shape spectrum descriptor, which is defined
as the histogram of the shape index, calculated over the 3D
object’s surface. Novotni and Klein [12] exploit and extend
3D Zernike moments introduced by Canterakis [13], for 3D
searching. Zernike moments are based on Zernike poly-
nomials and are affine invariants inside the unitary sphere.
Suzuki [14] proposes a 3D shape descriptor which is invari-
ant under 90 degrees rotations around coordinate axis.

Funkhouseret al. [10] developed a web-based 3D search
and retrieval system. The system is capable of indexing
large repository of computer graphics models, querying
based on text keywords, 3D sketches, 2D sketches and 3D
models. The matching algorithm utilizes the spherical har-
monics to compute similarities, without a pose normaliza-
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tion to be needed. In [11] Kazhdan et al. present a tool for
transforming rotation dependent spherical and voxel shape
descriptors into rotation invariant ones. The main idea of
this approach is to describe a spherical function in terms
of the amount of energy it contains at different frequencies.
The results indicate that spherical harmonic representation
improves the performance of most of the descriptors.

In [15], Vranic considers 3D-shape descriptors generated
by using functions on a sphere. The descriptors are engaged
for retrieving polygonal mesh models. Rotation invariance
of descriptors achieved with PCA or by defining features in
which the invariance exists. A new rotation invariant feature
vector based on functions on concentric spheres, that out-
performed all recently proposed descriptors is defined and
two approaches for achieving rotation invariance as well as
options to use a single function or several functions on con-
centric spheres to generate feature vectors are compared.

In [16], Chenet al. propose a visual similarity-based 3D
model retrieval system. The main idea is that if two 3Dmod-
els are similar, they also look similar from all viewing an-
gles and a hundred orthogonal projections of every object
are encoded using Zernike moments and Fourier descrip-
tors. The visual similarity-based approach is robust against
similarity transformation, noise and model degeneracy, and
provided better performance in terms of precision-recall di-
agram than many other approaches.

The major drawback of the native invariant methods
(those methods that does not ?appose? the normalization
step) is a loss in discriminative power. For example, spher-
ical harmonics and 3D Zernike moments achieve rotation
invariance by computing the Euclidean norm of descriptor
vectors, which results in loss in discriminative power. On
the other hand, methods utilizing the pose normalization
step, can generally result in a description of the object that
contains highly discriminative information. However, most
of the proposed methods, require either high preprocess-
ing or process time, or very large amount of memory and
stored data. In addition, there is no normalization method
robust for 3D content-based search and retrieval. Two meth-
ods have been proposed for pose normalization, the Princi-
pal Component Analysis (PCA) and an affine normalization
method proposed by Canterakis [13]. However, the mathe-
matical structure of the latter method suffers from a per-axis
scaling step which produces misshaped objects, unsuitable
for 3D content-based search applications.

In this paper, a novel compact method suitable for effi-
cient 3D content-based search, is proposed. Guided by the
very interesting results of Krawtchouk moments in image
processing [20], the Weighted 3D Krawtchouk moments are
introduced. Given a 3D object as input, the Weighted 3D
Krawtchouk moments are computed, which are then used
as a descriptor vector. In this way, a very compact descrip-
tion of a 3D object in the form of a highly discriminative de-

scriptor vector is achieved. The descriptor extraction is very
fast and the matching process, one-to-all, for a single object
in a medium size database can be completed in few sec-
onds. The method is not invariant under geometrical trans-
formation, thus for every query 3D model a preprocessing
pose and position normalization step is required. However,
in this paper, the assumption that the rotation and orienta-
tion problems are solved has been made. The advantages
of Weighted 3D Krawtchouk moments for 3D model analy-
sis derived from their definition. Weighted 3D Krawtchouk
moments are based on Weighted Krawtchouk polynomials
which are defined on the discrete field; hence, no error is
inserted during the moment computation due to discretiza-
tion. In addition, lower order Weighted Krawtchouk poly-
nomials have relatively high spatial frequency components.
Therefore, the Weighted 3D Krawtchouk moments have the
ability to represent edges more effectively with lower or-
der moments and the computed descriptor vectors have the
ability to capture more information retaining a low dimen-
sionality and thus producing better retrieval results.

The paper is organized as follows. In Section 3 the
Weighted 3D Krawtchouk Moments are introduced in terms
of Weighted Krawtchouk polynomials. Computational as-
pects of Krawtchouk Moments are presented in Section 4
while in Section 5 the matching method is described. In
Section 6 the experimental results evaluating the proposed
method and comparing it with other methods are presented.
Finally conclusions are drawn in Section 7.

3. Extraction Of Krawtchouk Descrip-
tors

In this section, the mathematical background needed for the
introduction of Weighted 3D Krawtchouk moments is pre-
sented. Then, the Weighted 3D Krawtchouk moments are
introduced. The background of Krawtchouk polynomials
presented below can be also found in [20].

3.1. Simple Krawtchouk Polynomials
Krawtchouk moments are based on a set of orthonormal
polynomials, associated with the binomial distribution, in-
troduced by Mikhail Krawtchouk almost 80 years ago.
More recent approaches expressed Krawtchouk polynomi-
als in terms of hypergeometric function [17, 18].

The n-order Krawtchouk classical polynomials [19] are
defined in terms of hyper-geometric function as:

Kn(x; p,N) =
N∑

k=0

ak,n,px
k = 2F1(−n,−x;−N ;

1
p
)

(1)
wherex, n = 0, 1, 2 . . . N,N > 0, p ∈ (0, 1) and the func-
tion 2F1 is the hypergeometric function which is defined as:
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2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
(2)

The symbol(a)k in (2) is the Pochhammer symbol given
by

(a)k = a(a + 1)(a + 2) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
(3)

The set of Krawtchouk polynomialsS = {
Kn(x; p,N),n = 0 . . . N } has N + 1 elements and
forms a complete set of discrete basis functions with weight
function

w(x; p,N) =
(

N
x

)
px(1− p)N−x (4)

Using the properties of hyper-geometric function, it can
be proved that:

N∑
x=0

w(x; p,N)Kn(x; p,N)Km(x; p,N) = ρ(n; p,N)δnm

(5)
wheren,m = 1, 2, 3 . . . N ,

ρ(n; p,N) = (−1)n

(
1− p

p

)n
n!

(−N)n
(6)

andδnm is the Kronecker delta function.
The Equation (5) shows that the set S satisfies the orthog-

onality condition.

3.2. Normalized and Weighted Krawtchouk
Polynomials

As mentioned, the setS of Krawtchouk polynomials is or-
thogonal, however, it is not orthonormal. In order to achieve
orthonormality, the normalized Krawtchouk polynomials
are defined as:

K̃(x; p,N) =
Kn(x; p, N)√

ρ(n; p,N)
(7)

Using (5) can be shown that

N∑
x=0

M∑
y=0

w(x; p,N)K̃n(x; p,N)K̃m(x; p,N) = δnm (8)

In order to ensure the numerical stability of the poly-
nomials and to achieve an orthonormal basis function with
unitary weight function, Yap et al [20] introduced the set of
weighted Krawtchouk polynomials, defined as:

K̄(x; p,N) = Kn(x; p, N)

√
w(x; p,N)
ρ(n; p,N)

(9)

Therefore the orthogonality condition (5) becomes

N∑
x=0

M∑
y=0

K̄n(x; p,N)K̄m(x; p,N) = δnm (10)

Thus, normalized and weighted Krawtchouk polynomi-
als can be used as orthonormal function basis of discrete
space[0 . . . N − 1]

3.3. Weighted 3D Krawtchouk Moments
In [20], Yap et al. introduced Krawtchouk moments and
Krawtchouk moment invariants for image analysis, 2D ob-
ject recognition and region based feature extraction (2D
case). In this section, this work is extended in 3D and the
discrete Weighted 3D Krawtchouk moments are introduced.

Let f(x, y, z) be a 3D function defined in a discrete
field A = {(x, y, z) : x, y, z ∈ IN , x = [0 . . . N − 1],
y = [0 . . .M−1], z = [0 . . . L− 1]}. Exploiting Weighted
Krawtchouk polynomials, the Weighted 3D Krawtchouk
moments are introduced. Weighted 3D Krawtchouk mo-
ments of order (n+m+l) off , are introduced as follows:

Q̄nml =
N−1∑
x=0

M−1∑
y=0

L−1∑
z=0

K̄n(x; px, N − 1)×

×K̄m(y; py,M − 1)K̄l(z; pz, L− 1)×
×f(x, y, z) (11)

By solving the orthogonality condition (10) and the def-
inition of Weighted 3D Krawtchouk moments (11), func-
tion f(x, y, z) can be written in terms of Weighted 3D
Krawtchouk Moments as:

f(x, y, z) =
N−1∑
n=0

M−1∑
m=0

L−1∑

l=0

K̄n(x; px, N − 1)×

×K̄m(y; py,M − 1)K̄l(z; pz, L− 1)×
×Q̄nml (12)

Equations (11) and (12) show that any 3D function
f(x, y, z) defined in a discrete 3D field, can be decomposed
into the appropriate Weighted 3D Krawtchouk representa-
tion Q̃nml. Moreover, the projection off to the space of
Weighted 3D Krawtchouk moments is fully reversible.

3.4. Application of Weighted 3D Krawtchouk
Moments for 3D objects

Weighted 3D Krawtchouk moments can be used as a de-
scriptor of any 3D object, if it can be expressed as a func-
tion f(x, y, z) defined in a discrete space[0 . . . N − 1] ×
[0 . . .M − 1] × [0 . . . L − 1]. This can be achieved if the
model is expressed as a binary volumetric function.
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However, a 3D modelM is generally described by a 3D
mesh. In order to compute the Weighted 3D Krawtchouk
moments, the 3D mesh representation has to be converted
into a volumetric representation of the 3D object. This
can be achieved by utilizing an appropriate voxelization
method. A brief overview over the principles of the vox-
elization method used in this paper is presented below :

Let N ×N ×N be the size of cube with axes parallel to
the system coordinates and bounding the mesh. The bound-
ing cube is partitioned inR3 equal cube shaped voxelsui

with centersvi. The size of each voxel is(N
R )3. Let U be

the set of all voxels inside the bounding cube andUM ⊆ U,
be the set of all voxels belonging to the bounding cube and
lying insideM . Then, the discrete binary volume function
f̂(v) of M , is defined as:

f̂(v) =

{ 1, whenv ∈ UM ,

0, otherwise.

In general, 3D models have various levels-of-detail, de-
pending on their mesh representation, ranging from a very
few to thousands of vertices and triangles. The numberR3

of voxels is kept constant for all models in order to achieve
robustness with respect to the level-of-detail [21].

After normalization and generation of a binary vol-
umetric function of the 3D object, the Weighted 3D
Krawtchouk moments can be computed. These Weighted
3D Krawtchouk moments can then be used to form the de-
scriptor vector of every object. Specifically, the descriptor
vector is composed of Weighted 3D Krawtchouk Moments
up to orders, wheres is experimentally selected.

D =
[
Q̄nml|n + m + l ∈ [0 . . . s]

]
(13)

4. Computational Aspects on
Krawtchouk Moments

It can be easily seen that a brute force implementation of
Weighted 3D Krawtchouk Moments is a very heavy com-
putational task, as the complexity reachesO(n6). To over-
come this obstacle, the following recurrent relations are
used [19]:

Kn+1(x, p, N) =
(

1 +
n− np− x

pN − pn

)
Kn(x; p,N)−

− n− np

pN − pn
Kn−1(x; p,N) (14)

w(x + 1; p,N) =
w(x; p,N)p(N − x)

x + 1− p− xp
(15)

The initial conditions are:

K0(x; p,N) = 1 (16)

K1(x; p, N) = 1− 1
Np

x (17)

w(0; p, N) = (1− p)N (18)

5. Matching Method
LetA, B, be two 3D models andDA = [Q̄A

nml], n+m+l =
0 . . . s], DB = [Q̄B

nml, n + m + l = 0 . . . s], (from (11) and
(13)) their Weighted 3D Krawtchouk moments descriptors
respectively. The models are compared in pairs in terms of
Weighted 3D Krawtchouk moments using theL1 − norm
betweenDA andDB :

H(A,B) = L1(DA, DB) =
s∑

n+m+l=0

∣∣Q̄A
nml − Q̄B

nml

∣∣

(19)
wheres is the maximum order of Weighted Krawtchouk

Moments selected to describe the object. The matching is
performed by comparing the query model against the mod-
els in the database and increasingly ranking the computed
distances.

6. Experimental Results
The proposed method was tested using the Princeton Shape
Benchmark Database [22] for its performance on 3D
content-based search and retrieval application. The dataset
consists of 907 3D models classified into 35 main categories
and 92 subcategories. In this paper, the assumption that the
rotation and orientation problems are solved has been made.
Thus, a version of pre-rotated Princeton Shape Benchmark
Database has been used and the preprocessing step has been
omitted.

The Princeton Shape Benchmark consists of 3D mod-
els in VRML format. Therefore, a preprocessing step for
converting the mesh representation into a volumetric rep-
resentation was needed in order to compute the Weighted
3D Krawtchouk Moments for each model. The 3D mesh
is enclosed in the smallest bounding cube which is then
partitioned in a set of equal cube shaped voxels, using the
method presented in [5]. The resolution of the bounding
box was selected to be64× 64× 64 voxels.

The retrieval performance was evaluated in terms of
“precision” and “recall”, where precision is the proportion
of the retrieved models that are relevant to the query and
recall is the proportion of relevant models in the entire
database that are retrieved in the query [5].

The parameters required for moments extraction are se-
lected to bepx = py = pz = 0.5, because the mass cen-
ter of the object lies at the center of the voxel model and
N = M = L = 64 because of the voxel model dimen-
sions. Weighted 3D Krawtchouk moments for all objects
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Figure 1: Comparison of different order moments the pro-
posed method (Weighted Krawtchouk M oments).

have been computed forn + m + l ∈ [0 . . . s]. The value
of s has been experimentally selected to bes = 10 be-
cause produces better and more stable results. Fors > 10,
the number of descriptors increases significantly without
considerable improvement in retrieval performance. Fig-
ure 1 presents the results produced for different values of
s = 4, 6, 8, 10, 12 in terms of precision-recall on the Prince-
ton Shape Benchmark.

To evaluate the ability of the proposed method to dis-
criminate between classes of objects, each 3D model was
used as a query object. Our results (3D WKM) were com-
pared with those of the methods of Spherical Harmonics
(SHD) [11], Light Field Descriptor (LFD) [16] and REXT
method [15] which are some of the best known shape
matching methods. The resulting precision-recall diagram
is presented in Figure 2.

It has to be noted that we did not implement the above
methods. All executables were taken from the home pages
of the authors of [11, 16, 15].

These results were obtained using a PC with a3 GHz
Pentium IV processor and512MB RAM, running operat-
ing system windows 2000. The programs have been com-
piled with Microsoft Visual C++ Compiler version 6. The
average time needed for the extraction of the feature vectors
for one 3D model is1.01 seconds, while the time needed for
the retrieval process with a single query model is10 msec.
The time needed for the retrieval process depends on the
descriptor vector size, thus is constant.

Table 1 presents analytically the times required for de-
scriptor extraction with Weighted 3D Krawtchouk moments
of order up to8, 10 and12 and the corresponding retrieval

Figure 2: Comparison of the proposed method (Weighted
Krawtchouk M oments) against the methods REXT, Light
Field Descriptor (LFD) and Spherical Harmonics (SHD)
proposed in[15], [16] and [11] respectively, in terms of
precision-recall diagram, using the Princeton Shape Bench-
mark.

Table 1: Execution Times in Princeton Shape Benchmark
3D WKM

8th 10th 12th
Extraction of Min 0.4 sec 0.731 sec 1.45 sec

3D WKM Max 1.2 sec 1.99 sec 3.92 sec
Descriptors Aver. 0.58 sec 1.01 sec 2.12 sec
Comparison All 1 msec 1.5 msec 3 msec

times. The Weighted 3D Krawtchouk moments extraction
time depends on the total number of voxels which consti-
tute the object and the maximum order of computed mo-
ments. Therefore, Weighted 3D Krawtchouk moments for
smaller object are computed faster than those for bigger ob-
jects. Thus, in Table 1 the minimum, the maximum and
the average extraction times are presented. The matching
time depends on the size of the database and the size of
the descriptor vector. Thus, there is a constant time for
the descriptors comparison for Krawtchouk moments of the
same order. Furthermore, Table 1 justifies the selection of
s = 10. Although, for s = 12 the results are compara-
tive with s = 10, (Figure 1) the time required for descriptor
extraction and matching process is increased significantly.

Clearly, the time needed for the extraction of the fea-
ture vectors is short, thus the method is appropriate for ap-
plications close to real time, provided that the models are
expressed in terms of a binary volumetric function. Since
the time needed for the comparison of the feature vectors
is small, the proposed method is suitable to be used as an
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efficient tool for web-based, real-time search and retrieval
applications.

Figure 3 illustrates some of the results produced by the
proposed method. The first model in each horizontal line
is the query model while the rest are the first four retrieved
models. The similarity between the query model and the
retrieved ones is obvious.

(a) (b) (c) (d) (e)

Figure 3: Query results using the proposed method in the
Princeton database. The query models are depicted in the
first horizontal line.

The efficiency of Weighted 3D Krawtchouk Moments to
capture the object edges can be figured in the precision-
recall diagram of a specific category in Princeton Shape
Benchmark (Figure 4). The diagram compares the results
retrieved using Weighted 3D Krawtchouk moments and
Spherical Harmonics for a specific category which con-
tains models with many edges. It is obvious that the pro-
posed method produces much better results for this cate-
gory. Furthermore, Figure 5 comparatively presents the re-
trieved results of the same query model using the Weighted
3D Krawtchouk Moments (3D WKM) and Spherical Har-
monics Descriptors (SHD). The results prove that the pro-
posed method can effectively capture edges with low order
moments.

Figure 6 illustrates the retrieved results using the pro-
posed method with an aerostat as query. The results show
that the retrieved objects are semantically irrelevant, as the
first three retrieved results are not aerostats. However, the
shape similarity between the retrieved results is obvious.

7. Conclusions
In conclusion, the Weighted 3D Krawtchouk moments out-
performs other known methods due to

• Krawtchouk polynomials and Weighted 3D
Krawtchouk moments are defined in the discrete

Figure 4: Comparison of the proposed method (Weighted
Krawtchouk M oments) against the method of Spherical
Harmonics (SHD) proposed in[11], in terms of precision-
recall diagram, using the Princeton Shape Benchmark.

Figure 5: Retrieved results with 3DWKM (first line) and
SHD (second line) for the same query model. The first
model is the query model and the rest are the retrieved re-
sults.

field, while other methods, like Spherical Harmonics,
are defined in a continuous field. This is a major
advantage of the method, because no discretization
error is inserted during the Weighted 3D Krawtchouk
moments analysis.

• Krawtchouk polynomials and Weighted 3D
Krawtchouk moments of low order have rela-
tively high spatial frequency components. Therefore,
Weighted 3D Krawtchouk moments can capture sharp
shape changes of the object.

Figure 6: Retrieved results with 3DWKM for an aerostat.
The first model is the query model and the rest are the re-
trieved results
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In this paper a novel approach for 3D content-based search
and retrieval was presented. The proposed method is based
on the introduced Weighted 3D Krawtchouk moments,
which form a very compact and highly discriminative de-
scriptor vector, due to their ability to capture sharp changes
in the volumetric function with low order moments. The
proposed method was evaluated to Princeton Shape Bench-
mark and our results outperformed three other well-known
methods reported in the literature.
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