A CROSS-MODAL VARIATIONAL FRAMEWORK FOR FOOD IMAGE ANALYSIS
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ABSTRACT

Food analysis resides at the core of modern nutrition recom-
mender systems, providing the foundation for a high-level un-
derstanding of users’ eating habits. This paper focuses on the
sub-task of ingredient recognition from food images using a
variational framework. The framework consists of two vari-
ational encoder-decoder branches, aimed at processing infor-
mation from different modalities (images and text), as well as
a variational mapper branch, which accomplishes the task of
aligning the distributions of the individual branches. Exper-
imental results on the Yummly-28K data-set showcase that
the proposed framework performs better than similar varia-
tional frameworks, while it surpasses current state-of-the-art
approaches on the large-scale Recipel M data-set.

Index Terms— cross-modal, variational, VAE, ingredient
recognition, food analysis

1. INTRODUCTION

Several software and hardware advances during the last
decade have contributed to the realization of automated sys-
tems that can analyze the eating habits of users and provide
them with recommendations towards specific goals. Such
nutrition recommender systems rely heavily on food analysis
techniques, as they provide vital information, such as the
amount and type of food consumed by the user. In general,
food analysis can be divided into the following sub-tasks [1]:
a) food category recognition, b) food ingredient and cooking
instructions recognition, and c) food quantity and nutritional
content estimation. The emphasis of this work is on food
ingredient recognition, but the general nature of the proposed
framework allows it to handle any of the other tasks as well.
Contributing to this ability is the choice of generative mod-
els throughout the architecture, which model the underlying
distribution of the data. Popular instances of such models are
variational autoencoders (VAEs) [2] and generative adversar-
ial networks (GANSs) [3].

The framework itself is composed of various variational
sub-networks, each one associated with a specific task. The
variational image branch predicts recipe ingredients from in-
put images, the ingredient VAE reconstructs recipe ingredi-
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ents and the variational mapper branch aligns the distributions
produced by the image and ingredient encoders. In summary,
the proposed framework provides the following contributions:
a) it fully utilizes the VAE architecture for food ingredient
recognition, b) it introduces the variational mapper network
for distribution alignment, and c) it further guides the mapper
network into producing aligned distributions through the use
of the Wasserstein distance. Experimental results showcase
the effectiveness of the proposed framework.

The rest of this paper is organized as follows: Section
2 discusses related works in food ingredient recognition
and in cross-modal variational frameworks, in Section 3 the
proposed framework is presented in more detail, Section
4 presents the experimental set-up and comparisons of the
proposed method against state-of-the-art approaches, while
conclusions are drawn in Section 5.

2. RELATED WORK

Earlier approaches towards food analysis [4, 5] relied on
traditional feature description and classification algorithms,
like SIFT descriptors and Support Vector Machines (SVMs),
in order to recognize food categories. Lately, however, neu-
ral networks have become dominant in this field, both for
description and classification purposes. Data-sets have also
evolved, becoming bigger in size and including further infor-
mation besides food categories, such as recipe ingredients,
cooking instructions, calories, micro and macro-nutrients.
Following are some of the latest methods regarding food
ingredient recognition. The work of Salvador et al. [6] pre-
sented a retrieval-based network architecture which embeds
images, ingredients and cooking instructions into a com-
mon space, and can be used for both image to recipe and
recipe to image retrieval. Image representations were ob-
tained with a ResNet-50 CNN architecture, while ingredient
and instruction representations were produced by recurrent
neural networks (RNNs). The same network architecture was
also used by Carvalho et al. [7], but they proposed a new
optimization objective for aligning the image and text man-
ifolds. The proposed objective consists of a retrieval term
and a semantic regularization term, eliminating the need for
an additional classification layer in the model architecture.
In Chen et al. [8] a framework was proposed for predicting
food ingredients, cutting and cooking attributes, as well as



for recipe retrieval. A convolutional neural network extracts
relevant features from input images at different regions and
scales. Using these features, ingredients, cutting (e.g., Slice)
and cooking (e.g., Roasting) attributes are predicted, which
are then used in order to retrieve relevant recipes. In contrast
to their previous retrieval-based framework, [9] proposed a
network architecture that predicts ingredients and cooking in-
structions for a recipe from an input image. This is achieved
by combining a CNN with transformer blocks, which are
based on the concept of attention. Compared to their pre-
vious work, the latter approach significantly outperformed
the retrieval-based architecture in the ingredient prediction
task. The framework we propose in this paper is closest in
nature to the last two approaches, in the sense that the target
outcome is ingredient recognition and not retrieval. However,
our framework follows the generative approach, which mod-
els the underlying probability distribution of the observed
variables.

Generative models like GANs and VAEs have experi-
enced a striking growth in the last years, with applications
in various areas [10, 11, 12, 13]. Our work utilizes the
VAE framework in order to recognize food ingredients from
images. Some relevant VAE architectures presented in the
literature are described next. In their work, Spurr et al. [14]
presented a cross-modal variational framework for hand pose
estimation. For each given modality, a corresponding encoder
network transformed the input into the parameters of a normal
distribution, which was used for drawing a sample, which in
turn became the input for a decoder network in an alternat-
ing fashion. That is, the training process alternated between
staying on the same modality (autoencoder) and crossing to
another modality. Wan et al. [15] proposed an interesting
architecture for the task of 3D hand pose estimation from
depth images. Initially, two generative models are trained
separately: a) a variational autoencoder network for recon-
structing input hand poses and b) a generative adversarial
network for synthesizing realistic depth maps. An alignment
network is then employed in order to learn a mapping from
the normal distribution produced by the VAE network to the
uniform distribution used as noise source for the GAN. The
work of Liong et al. [16] employed a variational architecture
for cross-modal multimedia retrieval. First, a fusion network
takes pairs of images and text as input and learns to produce
binary codes of specific length as output. Then, two modality-
specific variational networks are trained with the objective of
producing the same binary code as the fusion network. This
approach essentially learns to encode a pair of multi-modal
data, as well as the corresponding single-modality data, all
into the same binary representation. Schonfeld et al. [17]
proposed a VAE architecture composed of one encoder and
one decoder network per modality. After an initial period of
training the architecture strictly for autoencoding, then train-
ing is augmented with both cross-alignment and distribution
alignment objectives. The architecture is applied for image

classification in the context of zero- and few-shot learning.
In this paper we propose a VAE framework that includes an
additional variational mapper branch for the specific purpose
of aligning the distributions of the individual branches.

3. METHOD DESCRIPTION

3.1. Overview

The proposed framework for ingredient recognition from food
images utilizes multiple variational networks at various lev-
els within the architecture in order to accomplish the given
task. Compared to traditional autoencoders, where an input
is encoded into a fixed point in latent space and then decoded
back to the original space, VAE networks encode an input
into latent space using a probability distribution. The decoder
reconstructs the original input by sampling from this distribu-
tion. One of the objectives of the latter approach is to create a
continuous latent space that facilitates the generative process.

In general, the architecture consists of three distinct
branches: a) the image branch (blue, upper), which pre-
dicts recipe ingredients from input images, b) the ingredients
branch (orange, lower), which is an ingredient autoencoder
and c) the mapper branch (green, middle), which acts as a
translation mechanism between the output of the image en-
coder E;,,, and the input of the ingredient decoder D3, gr- AN
overview of the framework can be seen in Figure 1. Although
it shares similarities with other VAE frameworks, there are
some key differences:

1. The proposed architecture employs one encoder and
one decoder network per task and not per modality.
This is the reason there are two ingredient decoders
(DL and D? ) in the architecture.

ingr ingr

2. A variational mapper network is proposed in order
to cross between modalities. This component learns
to align the distributions produced by the encoders
through a mapping to an intermediate distribution.

3. The mapper branch employs the Wasserstein distance
as an additional optimization objective in order to more
effectively align the distributions produced by the en-
coders of the different modalities.

A more detailed description of each branch, as well as the
way they interact with each other, are described next.

3.2. Cross-Modal Variational Framework

Initially, the image (upper) and ingredients (lower) branches
are trained, in parallel, independently of each other. Regard-
ing the first, recipe images are given as input to the image
encoder Ej,,,, which produces fixed-size vectors p and o
as output. These vectors parametrize a Gaussian distribution



Fig. 1. An overview of the proposed cross-modal variational framework, which consists of: a) the image branch (top), b) the
variational mapper branch (middle) and c) the ingredients branch (bottom). The final ingredient recognition architecture follows

the dotted line: from the image encoder, through the mapper, to the ingredients decoder D?

N(p,X), where ¥ = diag(c?,...,07), from which a sam-
ple z is drawn. This sample then becomes the input to the
ingredient decoder D}, gr» Which produces the ingredients of
each recipe. This branch optimizes its weights according to
two objectives. The first one is that the produced label distri-
bution ¢ matches the true label distribution y, by minimizing

their cross-entropy [18]:

H = —ylogy — (1 —y)log (1 - ) 1)

The second objective is that the produced p and o vectors
of Fjmng match those of a standard normal distribution, by
minimizing their Kullback—Leibler divergence [2]:

d
1
Dk = 5;(U§+u$ —Ino?—1) 2)

where d is the chosen dimensionality of the produced distri-
bution.

The ingredients (lower) branch is trained in a similar way
to the image branch, with the difference that recipe ingredi-
ents are both its input and output. After these two branches
have finished training, the second training stage of the archi-
tecture begins.

During the second stage, only the variational mapper
(middle) branch is trained, while both previous branches re-
main frozen. To this end, recipe images are given as input
to the image encoder Ej;,,,, which produces vectors p and
o. These vectors constitute the input to the mapper, which
essentially performs a re-parametrization of the distribution
produced by Ej,4, through a mapping to an intermediate
distribution. The distribution parametrized by the mapper-
generated p and o is then used in order to draw a sample
z, which becomes the input to the ingredient decoder D?

ingr:
During this stage, in addition to the previous optimization

ingr:

objectives, the mapper branch also optimizes the Wasserstein
distance [19] between the re-parametrized distribution and
the one produced by the ingredient encoder E;j, g,

Dw = (Il = pzl? + tr(S1) + tr(Sa)

_2”[(\/2_122\/2_1)1/2])1/2

Because of the fact that the covariance matrices are diagonal,
this expression can be further simplified, taking the following
form:

3)

1/2
Dy = (Il = w2l + o - o) )

The aim of this objective is to better align the distribution
produced by the mapper to the one produced by E;; 4, since
the ingredient decoder D?, gr Was trained with samples from
the latter.

After this stage is completed, the final architecture for pre-
dicting ingredients from images is the following:

2
ingr

Image — Ejpng — Mapper — D — Ingredients (5)

4. EXPERIMENTAL EVALUATION

4.1. Data-sets

The proposed methodology was evaluated on two publicly
available data-sets for ingredient recognition: Yummly-28K
[20] and RecipelM [6]. In Yummly-28K our method was
compared to other VAE frameworks, while in RecipelM it
was compared to current state-of-the-art approaches in ingre-
dient recognition. The Yummly-28K data-set contains 27,638
recipes, with each recipe corresponding to a single image.
In order to extract relevant ingredients from the recipe text,



a pre-processing framework was developed, the end result
of which were 265 unique ingredients. Since this data-set
does not provide a train-test designation, 85% (23, 493) of the
recipes were randomly selected for training and the remain-
ing 4,145 were used for evaluation. The pre-processing of
[9] was followed for RecipelM, resulting in 252, 547 recipes
for training, 54, 255 for validation and 54, 506 for evaluation.
There are 1, 488 unique ingredients and multiple images may
correspond to a single recipe.

4.2. Implementation Details

The proposed framework was implemented using the fol-
lowing components: FE;,,, is a convolutional neural network
pre-trained on ImageNet (ResNet-50 on Yummly-28K and
DenseNet-121 on RecipelM), Eingr, D}, .0 D3y, as well
as each of the two mapper components are all single-layer
feed-forward (FF) neural networks. The image encoder Ej,;,4
was augmented with two pairs of convolutional-average pool-
ing layers, placed between the CNN and FF components, to
allow for a more gradual transition to the latent space, the
dimensionality of which was set to d = 512. The Adam opti-
mizer was used in all experiments with the default parameter
values and a learning rate of 10~%, which was scaled by 0.99
after each epoch.

In order to compare our framework to other cross-modal
VAE frameworks, two methods were implemented, CM-VAE
and CADA-VAE, inspired by [14] and [17] respectively. In
both cases, the Ej,,g, Fingr and Dizngr components were the
same as the ones mentioned above, while the image decoder
D, g was implemented following a much simpler reverse en-
coder design. Although [17] proposed an image encoder-
decoder architecture with feature vectors as input and out-
put, this resulted in worse performance in our case, so the
image-based approach was used instead. For the same reason
noted by [14], the E;,4. — Dy direction was not used.
Results with a traditional (non-variational) approach are also
reported, denoted by CNN-FF.

Images were resized to 360 x 240 (median size) in
Yummly-28K and to 256 in their shortest side in Recipel M.
Random crops of 224 x 224 were used during training, while
a central crop of the same size was used for evaluation. The
data augmentation process discussed in [21] was adopted,
horizontally flipping images with p = 0.5 and randomly
rotating by 10 degrees. The benefits of this process dur-
ing evaluation were also explored (test-time augmentation),
indicated by TTA.

4.3. Experimental Results

The ingredient recognition results on Yummly-28K are shown
in Table 1. These are in terms of the F1 and IoU metrics,
computed on a per-recipe basis and then averaged. It is ev-
ident that the inclusion of an explicit distribution alignment

objective by CADA-VAE provided a big performance bene-
fit, +4.9 F1 / +4.29 IoU, compared to CM-VAE. The tra-
ditional CNN-FF approach outperformed CADA-VAE by a
small margin, while the proposed framework outperformed
CADA-VAE by 0.63 F1 /0.66 IoU. Combining the proposed
method with TTA further increased both metrics by more than
1 point.

Table 1. Ingredient recognition results on Yummly-28K.

Method F1 IoU
CNN-FF 44.76 30.65
CM-VAE 39.69 26.24

CADA-VAE 44.59 30.53
Proposed 45.22 31.19
Proposed + TTA 46.54 32.25

Regarding the large-scale RecipelM data-set, the pro-
posed framework is compared against two retrieval-based
ones (Ryo7, and Ryoz ) [6] and two non-variational models
with FF (FF7p) and transformer (TF,,;) classifiers [9]. The
metrics in this case are computed according to the code' pro-
vided by [9]. As can be seen in Table 2, the retrieval-based
models produced significantly worse results than the rest.
The proposed method outperformed the similar, in terms of
classifier, FF model by 3.24 F1 /2.79 IoU points, while it also
surpassed the transformer model by 0.57 F1 /0.5 IoU points.
TTA proved again to be beneficial, increasing the distance to
the transformer network to 1.44 F1 / 1.27 IoU points.

Table 2. Ingredient recognition results on Recipe1M.

Method F1 IoU
Rrar 31.83 18.92
RroLr 33.13 19.85
FFrp 45.94 29.82

TF et 48.61 32.11
Proposed 49.18 32.61
Proposed + TTA 50.05 33.38

5. CONCLUSIONS

In this work, a cross-modal variational framework was pro-
posed for ingredient recognition from food images. After
training per-task variational networks, a variational mapper
network is employed in order to align the distributions pro-
duced by the image and ingredient encoders, further assisted
by including their Wasserstein distance in its optimization
objectives. Experimental results on the Yummly-28K data-
set show that it outperforms similar variational architectures
and surpasses current state-of-the-art approaches in ingredi-
ent recognition on the large-scale RecipelM data-set.

Uhttps://github.com/facebookresearch/inversecooking
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