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Abstract

Deepfake detection has become a critical issue due to the rise of synthetic media and its
potential for misuse. In this paper, we propose a novel approach to deepfake detection
by combining video frame analysis with facial microexpression features. The dual-branch
fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer
model to capture microexpression patterns, which are difficult to replicate in manipulated
content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and
demonstrate that our approach outperforms existing state-of-the-art methods, achieving
99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights
the importance of integrating diverse data sources for deepfake detection, addressing some
of the current limitations of existing systems.

Keywords: deepfake detection; microexpressions; fusion model; 3D ResNet; transformer

1. Introduction

The emergence of deepfake technology has created serious concerns about the trust-
worthiness of digital media [1]. Deepfakes, synthetic media produced using artificial
intelligence methods, can alter videos to create highly realistic but fabricated content. These
manipulations convincingly depict individuals saying or doing things they never actually
did, raising significant implications for various fields, including politics, entertainment, and
personal privacy. Consequently, the development of effective deepfake detection methods
has become a crucial priority.

In response to the growing threat of deepfakes, researchers have developed automated
detection methods that primarily analyze visual and temporal inconsistencies in video
frames [2]. These approaches often rely on convolutional neural networks or other deep
learning (DL) architectures to identify artifacts or unnatural patterns, such as mismatched
lip-syncing or irregular facial movements. However, as deepfake technology continues
to improve, generating increasingly realistic facial appearances and expressions, existing
approaches struggle to detect subtle manipulations [3]. Moreover, detecting temporal incon-
sistencies often requires high-quality data and sophisticated models capable of processing
long video sequences, limiting their robustness in diverse real-world scenarios.

This paper proposes a novel approach to deepfake detection by combining traditional
video frame analysis with facial microexpression features. Microexpressions are innate,
brief facial movements that occur in response to emotions and typically last for less than a
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second [4]. These rapid movements can reveal underlying facial behaviors that are difficult
to replicate convincingly in deepfakes, offering a hidden layer of information that has not
been fully exploited in the existing literature. To leverage these features, our methodology
employs a two-branch fusion model that integrates two distinct yet complementary types
of data, namely (i) raw video frames analyzed through a 3D ResNet18 model and (ii) facial
microexpressions processed through a transformer model. By combining these modalities,
we aim to create a more robust deepfake detection system that can better handle the
challenges posed by increasingly sophisticated deepfake technologies.
The key contributions of this study are as follows:

e We propose a novel dual-branch framework for deepfake detection that combines raw
video frame analysis with facial microexpression modeling.

¢  Unlike previous methods that rely solely on visual artifacts, our approach captures
subtle, involuntary facial dynamics by encoding non-rigid shape deformations and
emotion-driven action units (AUs) using a temporal transformer.

*  We introduce a modality-aware fusion mechanism, enhancing the model’s sen-
sitivity to both visual and behavioral inconsistencies typically overlooked by
deepfake generators.

*  The proposed approach outperforms state-of-the-art methods on the FF++ dataset,
validating its effectiveness and setting a new benchmark for deepfake detection.

The remainder of this paper is structured as follows: In Section 2, we review existing
video deepfake detection methods. Section 3 outlines the research methodology in detail.
In Section 4, we evaluate the performance of the proposed model, while Section 5 inter-
prets the research findings and highlights open research problems. Finally, in Section 6,
the conclusions of this study are summarized.

2. Related Work

Deepfake detection often leverages DL to uncover subtle artifacts across spatial, fre-
quency, and temporal domains. For instance, Zhang et al. [5] introduced a two-stream
architecture with a multiscale transformer module and a fusion mechanism to analyze
spatial and noise flow artifacts. Similarly, Miao et al. [6] proposed F2Trans, which combines
wavelet sampling and central difference attention for frequency-aware feature extraction.
Zhang et al. [7] used dual-domain fusion and local enhancement attention to enrich fea-
ture representation.

Several recent studies have adopted dual-branch structures to balance local detail and
global context. Guo et al. [8] introduced LDFNet, a lightweight detector that fuses local
visual artifacts and global texture cues via a dynamic fusion module and TraceBlock-based
inference. Long et al. [9] proposed LGDF-Net, which explicitly separates and processes
local and global features using specialized modules and fuses them through a multi-
level strategy.

Other methods focus on temporal or textural robustness. Pang et al. [10] captured
spatiotemporal dependencies through a multi-rate excitation network. Yang et al. [11] and
Zhao et al. [12] emphasized texture-based cues using attention mechanisms and feature
enhancement blocks.

In a related direction, Cheng et al. [13] proposed leveraging 3D facial geometry
by measuring inconsistencies between 2D landmarks and 3D reprojections across video
frames, capturing subtle temporal anomalies using an RNN-based framework. Meanwhile,
Wang et al. [14] introduced WATCHER, which employs wavelet-guided hierarchical learn-
ing to jointly reason over texture and content features through multi-domain fusion and
attention mechanisms, achieving superior generalization to unseen manipulations.
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In parallel, generalization and robustness across datasets have emerged as pressing
concerns. Alfalasi et al. [15] addressed this by evaluating detection methods under novel
deepfake types and proposed randomized synthetic benchmarks for more reliable cross-
dataset performance evaluation.

While these studies have significantly advanced deepfake detection by leveraging
spatial, frequency, and texture-based features, a notable gap in the literature remains,
namely the incorporation of facial dynamics such as microexpressions, which are critical
in distinguishing real and fake videos. Our study bridges this gap by focusing on these
overlooked features, offering a novel perspective that complements existing approaches
and enhances detection robustness.

3. Methodology
3.1. Datasets

For our experiments, we utilized two widely recognized deepfake detection bench-
marks, namely FF++ [16] and Celeb-DF [17], as well as a recently introduced deepfake
dataset named ReenactFaces [18].

FF++ is a comprehensive dataset comprising 1000 original video sequences sourced
from 977 YouTube videos, primarily featuring frontal unobstructed faces suitable for ma-
nipulation. These original videos are altered using four advanced techniques, includ-
ing (i) DeepFakes; (ii) Face2Face; (iii) FaceSwap; and (iv) NeuralTextures, resulting in
4000 forged videos. In this study, we followed the official split, with 3600 videos for
training, 700 for validation, and 700 for testing.

To evaluate the generalizability of our approach, we extended our experiments to
Celeb-DF, which includes 590 high-quality original YouTube videos featuring 59 celebrities,
alongside 5639 deepfake videos. These forgeries are created using an improved synthesis
method that produces more photorealistic manipulations than earlier datasets. The dataset
introduces additional challenges due to its high video quality, demographic diversity, and
subtle artifacts, making it an ideal benchmark for assessing detection robustness across
real-world scenarios.

We further benchmarked our method on ReenactFaces, a new dataset compris-
ing 10,000 real and 10,000 re-enacted videos created using three state-of-the-art facial
re-enactment methods, namely the First-Order Motion Model [19], Thin-Plate Spline
Motion [20], and FSRT [21]. Videos were sourced from YouTube to ensure demographic
diversity and realistic speaking behavior, and the manipulations focus solely on facial
re-enactment rather than face swapping. Compared to existing benchmarks, ReenactFaces
provides more natural motion patterns and poses a unique challenge due to the subtle and
temporally coherent nature of its manipulations.

3.2. Preprocessing

To prepare the data for training, validation, and testing, we applied a comprehensive
preprocessing pipeline to the datasets. For video preprocessing, individual video frames
were extracted, followed by facial cropping and vertical alignment of each frame to ensure
consistent input dimensions and alignment across the entire dataset. The cropped frames
were then resized to 112 x 112 pixels, a common input size for face recognition tasks.
Next, the pixel values of the frames were normalized using a common standardization
process by centering the data around a mean of 0 and scaling it based on the standard
deviation, making it suitable for DL models. Finally, to capture temporal dynamics in
videos, the preprocessed frames were organized into sequences of 96 consecutive frames.
This sequence length was chosen to balance computational efficiency and the need to
provide sufficient temporal context for the proposed DL model.
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3.3. Microexpression Extraction

Microexpressions can offer valuable information for deepfake detection due to their
innate and involuntary nature, which is challenging to replicate in manipulated videos.
To leverage this, we followed the methodology by Baltrusaitis et al. [22] to perform a
feature-based analysis of facial landmarks and AUs, extracting the relevant microexpression
features from the preprocessed video frames. Non-rigid face shape parameters were
computed to capture facial deformations arising from expressions and identity—each
parameter represents a 2D facial landmark point. Additionally, facial AUs were analyzed
to provide complementary information about expression intensity and presence. AUs
correspond to anatomically based facial muscle movements defined by the Facial Action
Coding System (FACS) [23], representing fundamental units of facial expressions. Each AU
indicates a specific facial muscle contraction or movement, which together characterize
complex expressions. In this study, the intensity (on a scale of 0 to 5) was extracted
for 17 AUs to quantify the strength of facial movements during the expression, while
the presence (binary 0 or 1) of 18 AUs was detected to identify whether certain facial
movements occurred during the expression. In total, 69 features were extracted for each
sequence of 96 frames to form the input to the transformer-based branch of our model.
In this way, the temporal context—how those features change over time in a video—was
also taken into account in the analysis. A diagram illustrating the detailed microexpression
extraction pipeline is presented in Figure 1, while a complete list of the extracted parameters
is provided in Tables Al and A2.

Input frame
sequence

Head pose and
gaze estimation

Landmark
extraction,
both rigid and
non-rigid

Upper Foce A
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Final AU
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and output
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Figure 1. The detailed microexpression extraction pipeline. It begins with an input facial frame
sequence, which is processed through two parallel paths. In the first path, facial landmark detection
is performed, where black dots indicate the extracted 2D facial landmarks, including both rigid
and non-rigid components. In the second path, the same sequence is used for head pose and gaze
estimation. Both streams then feed into a shared module for AU extraction and intensity estimation,
culminating in the final AU categorization. Arrows denote the directional flow of data between
processing stages.

3.4. DL Models

The proposed system employed two widely used DL architectures, including (i) a
3D ResNetl8 and (ii) a transformer model. The 3D ResNet18 [24] extends the ResNet
architecture to video data by incorporating 3D convolutions, enabling it to learn spatiotem-
poral features from sequences of frames. It is commonly applied in video classification
and action recognition tasks due to its effectiveness in modeling temporal dynamics in
video data. On the other hand, transformer [25] models, originally introduced for natural
language processing, have gained prominence in vision tasks due to their ability to model
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long-range dependencies and relationships. They are widely used in video understanding
and multimodal learning for their attention mechanism, which excels at capturing complex
patterns in sequential data. The specific implementation and integration of these models
within our framework are detailed in Section 3.5.

3.5. Fusion Approach

To leverage both spatiotemporal and microexpression modalities, we implemented
a dual-branch fusion approach. An overview of the proposed approach is presented in
Figure 2, while a more detailed view of the architecture of each branch and their fusion is
illustrated in Figure 3.
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Figure 2. Overview of the proposed methodology.
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Figure 3. Detailed architecture of the dual-branch fusion model, illustrating (a) the 3D ResNet18-
based frame branch, (b) the Transformer-based microexpression branch, and (c) the late fusion and
classification stage.

The first branch employed a 3D ResNet18 architecture, pre-trained on Kinetics-400 [26],
a large-scale video dataset designed to capture diverse human actions in various contexts.
This network comprises 18 convolutional layers structured into four residual blocks, each
with two 3D convolutional layers, followed by batch normalization and ReLU activation.
The input to the model consists of sequences of 96 RGB frames resized to 112 x 112 pixels.
For our task, the pre-trained model was fine-tuned to capture spatiotemporal patterns
specific to deepfake detection. The final fully connected (FC) layer of the original model
was removed, and the output from the last global average pooling layer was used to obtain
a 512-dimensional feature vector per sequence.
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The second branch utilized a lightweight transformer model tailored for sequential
microexpression data. It consisted of two encoder layers, each containing multi-head
self-attention with three heads, a model dimensionality of 128, and a feedforward network
of size 256. Positional encodings were added to the input to preserve temporal ordering.
This branch processed sequences of 96 time steps, where each time step consisted of a
69-dimensional vector formed by concatenating non-rigid facial shape parameters and AU
features (as described in Section 3.3). The final output was passed through an FC layer that
reduced the representation to 128 dimensions.

The outputs of the 3D ResNet18 (512-dimensional) and transformer (128-dimensional)
branches were then concatenated to form a 640-dimensional combined feature vector. We
adopted feature-level fusion due to its simplicity, computational efficiency, and strong
empirical performance. This approach allows the model to integrate complementary cues
from both modalities early in the decision process while avoiding the complexity and
overhead of decision-level or attention-based fusion strategies. This joint representation
was passed through a classification head composed of two FC layers: the first reduced
the vector to 128 units with ReLU activation, followed by a second layer projecting to a
single-output neuron with a sigmoid activation for binary classification (real vs. fake). This
strategy was critical for improving the model’s ability to distinguish between authentic
and manipulated videos, particularly in cases where spatial or temporal inconsistencies
alone were insufficient for detection.

4. Results
4.1. Experimental Setup

The DL model for detecting video deepfakes was developed and tested in a Python
3.9 environment, with PyTorch (version 2.4.1) serving as the main framework for model
implementation. All computational tasks were carried out on a workstation equipped
with an NVIDIA GeForce RTX 3060 GPU and utilizing CUDA 11.6, which enabled efficient
processing for the demanding training and evaluation phases.

The model was trained using a binary cross-entropy loss function, optimized with the
Adam optimizer (learning rate = 1 x 10~*) and a cosine annealing learning rate scheduler.
Training was performed over 100 epochs with early stopping triggered if the validation loss
did not improve for 10 consecutive epochs. A batch size of eight was used to accommodate
the computational requirements of processing both video frames and microexpression
features. The model’s performance was evaluated on the test set using accuracy, precision,
recall, F1 score, and area under the receiver operating characteristic curve (ROC-AUC).

4.2. Experimental Evaluation

To evaluate the contribution of each modality to the overall performance of our
model, we conducted an ablation study. We tested the model’s performance using three
different configurations as follows: (i) using only the frame branch; (ii) using only the
microexpression branch; and (iii) combining both modalities in the fusion model.

As shown in Table 1, the fusion model, which integrates both video frames and
microexpression features, achieved the highest performance across all metrics on the FF++
dataset. Specifically, it demonstrated exceptional accuracy (99.81%), precision (99.88%),
recall (99.88%), and F1 score (99.88%), with a perfect ROC-AUC score of 100%. These results
highlight the significant advantage of combining spatiotemporal features from video frames
with microexpression patterns, enabling the model to more effectively detect deepfakes.
The frame-only branch also performed well with high accuracy and precision, but the fusion
consistently outperformed both individual branches. This underscores the complementary
nature of microexpressions and temporal context in robust deepfake detection.
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To further investigate the impact of the transformer configuration in our fusion model,
we performed an ablation study varying the number of encoder layers and attention
heads. As shown in Table 2, using two encoder layers and three attention heads resulted
in the best performance, achieving an accuracy of 99.81%, F1 score of 99.88%, and perfect
ROC-AUC of 100%. Reducing the encoder layers to one or increasing them to three led
to slight performance degradation, likely due to underfitting or overfitting, respectively.
Similarly, adjusting the number of attention heads from 3 to either 1 or 23—both divisors
of the input embedding dimension of the microexpression features (69)—also resulted in
reduced performance. This is consistent with the notion that an intermediate number of
heads strikes a better balance between representation capacity and training stability. These
results validate that our chosen configuration effectively balances model complexity and
generalization, confirming the optimality of the transformer structure used in the proposed
fusion model.

Table 1. Results of the ablation study on the FF++ dataset, showing the performance of the model
using only the frame branch, only the microexpression branch, and the fusion of both modalities. The
best value for each metric is highlighted in bold.

Method Accuracy Precision  Recall F1 Score ROC-AUC
Frame branch 98.69% 99.38% 98.95% 99.16% 99.91%
Microexpression branch ~ 84.68% 89.50% 91.10% 90.29% 86.30%
Fusion (proposed) 99.81% 99.88% 99.88% 99.88% 100%

Table 2. Ablation study on the number of transformer encoder layers and attention heads in the
fusion model. The best value for each metric is highlighted in bold.

Layers Heads Accuracy F1 Score ROC-AUC
1 3 98.92% 99.05% 99.24%
2 3 99.81% 99.88% 100%
3 3 99.09% 99.23% 99.47%
2 1 98.65% 98.75% 98.88%
2 23 98.34% 98.42% 98.49%

In addition to evaluation metrics, we assessed the inference efficiency of each model
variant. The average frame processing rates were 13 FPS for the frame branch, 15 FPS for
the microexpression branch, and 12 FPS for the fusion model. Despite integrating both
modalities, the fusion model maintains a competitive inference speed close to real time,
highlighting its practicality for deployment in realistic settings. These results indicate that
our approach effectively balances high detection accuracy with computational efficiency.

To test the generalizability of our approach, we evaluated the same models on the
Celeb-DF dataset [17]. As shown in Table 3, the fusion model once again achieved perfect
scores across all metrics, confirming its effectiveness on more challenging high-fidelity
forgeries. Interestingly, the frame branch alone also performed strongly (99.78% accuracy
and 100% ROC-AUC), while the microexpression branch showed a notable drop in precision
but maintained high recall—highlighting its sensitivity to manipulated cues, albeit with
more false positives. The fusion of both branches balanced these strengths to deliver
unmatched detection reliability. It is also worth noting that although the model was
trained exclusively on FF++, its robust learned features generalize well to Celeb-DF’s
distinct forgery characteristics, enabling superior detection performance even without
direct training on this dataset. These results demonstrate that the proposed model maintains
state-of-the-art performance not only on FF++ but also on Celeb-DF, affirming its robustness
across datasets with different characteristics and difficulty levels.
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Furthermore, we conducted additional experiments on the ReenactFaces dataset [18],
a specialized open access dataset focusing on facial re-enactment manipulations. Reenact-
Faces offers a targeted benchmark for reenactment deepfakes, addressing a critical gap in
current datasets, which often emphasize single manipulation types. It comprises both real
and re-enacted videos, enabling a precise evaluation of models” robustness to re-enactment-
based deepfakes, which pose unique detection challenges due to subtle facial motion and

expression transfer.

Table 3. Results of the ablation study on the Celeb-DF dataset, showing the performance of the model
using only the frame branch, only the microexpression branch, and the fusion of both modalities. The
best value for each metric is highlighted in bold.

Method Accuracy Precision  Recall F1 Score ROC-AUC
Frame branch 99.78% 99.74% 99.91% 99.83% 100%
Microexpression branch ~ 77.40% 74.83% 98.01% 84.87% 87.57%
Fusion (proposed) 100% 100% 100% 100% 100%

The experimental results are summarized in Table 4. Our fusion model again achieves
superior performance, with accuracy reaching 99.13%, a precision of 99.59%, recall of
98.78%, F1 score of 98.65%, and an outstanding ROC-AUC of 99.71%. The frame-only
branch also performed well, confirming the effectiveness of spatiotemporal features, while
the microexpression branch showed comparatively lower recall, indicating some diffi-
culty capturing re-enactment-specific cues independently. Nonetheless, the fusion of both
modalities demonstrates strong complementarity and robust detection capability.

Table 4. Results of the ablation study on the ReenactFaces dataset, showing the performance of
the model using only the frame branch, only the microexpression branch, and the fusion of both
modalities. The best value for each metric is highlighted in bold.

Method Accuracy Precision  Recall F1 Score ROC-AUC
Frame branch 96.21% 96.85% 96.26% 96.56% 96.54%
Microexpression branch ~ 85.85% 95.82% 80.80% 87.67% 96.26%
Fusion (proposed) 99.13% 99.59% 98.78% 98.65% 99.71%

These findings demonstrate that our proposed fusion model generalizes effectively
beyond common deepfake datasets, including challenging re-enactment manipulations.
This supports the model’s applicability for real-world scenarios where diverse forgery
techniques may be encountered.

4.3. Comparison with State-of-the-Art Methods

To further assess the effectiveness of our proposed approach, we compared its per-
formance with several state-of-the-art deepfake detection methods. These include both
image-based and video-based approaches, which operate on different input modalities
but are commonly benchmarked on FF++. The results of this comparison are presented in
Table 5. Note that the performance metrics of the other methods are those reported in the
respective papers, where the authors followed consistent training and evaluation proce-
dures using the FF++ dataset, identical to those used in this study. Comparative results
for Celeb-DF and ReenactFaces are not included, as consistent training and evaluation
protocols or official implementations for all referenced methods are not publicly available,
making such comparisons infeasible.

The proposed model significantly outperforms all the compared methods in terms of
both accuracy (99.81%) and ROC-AUC (100%). While the best-performing method in the
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literature by Miao et al. [6] achieved an accuracy of 98.71% and an ROC-AUC of 99.74%,
our model improves upon this by over one percentage point in accuracy and achieves a
perfect ROC-AUC. Other methods such as those by Long et al. [9] and Yang et al. [11]
performed well but were still significantly below our model’s performance.

This performance improvement can be attributed to the fusion of both spatiotemporal
and microexpression features, which together provide a richer representation that enhances
the model’s ability to detect even the most subtle manipulations in deepfake videos.

Table 5. Comparison with state-of-the-art deepfake detection methods on the FF++ dataset. The best
value for each metric is highlighted in bold.

Method Accuracy ROC-AUC
Zhang et al. [5] 95.20% 98.68%
Miao et al. [6] 98.71% 99.74%
Zhang et al. [7] 94.14% 98.44%
Guo et al. [8] 96.01% 98.92%
Long et al. [9] 97.64% 99.70%
Pang et al. [10] 97.76% 98.81%
Yang et al. [11] 97.86% 99.38%
Zhao et al. [12] 97.60% 99.29%
Alfalasi et al. [15] 97.31% 99.60%
Ours 99.81% 100%

5. Discussion

This study demonstrated a novel approach to deepfake detection by fusing spatiotem-
poral video frame features with microexpression-based features. The results showcase the
effectiveness of leveraging complementary modalities, achieving state-of-the-art perfor-
mance on the FF++ dataset. However, while the proposed method shows great promise,
the larger context of deepfake detection requires ongoing efforts to create robust systems
capable of addressing the wide variety of deepfake manipulation techniques and their
evolving nature.

Despite considerable advancements, there are several open research problems in the
domain of deepfake detection. One of the key challenges is the constant evolution of deep-
fake generation techniques, which increasingly focus on improving realism and reducing
detectable artifacts. As deepfake models improve, the corresponding detection models
must be equally adaptive. Current methods are often limited to detecting specific forms of
manipulation and may not generalize well to new or unseen types of deepfakes [27].

Furthermore, the need for high-quality data and sophisticated models to analyze long
video sequences presents another barrier, as many existing methods struggle with scalability
or require significant computational resources. Additionally, while many methods focus
on visual and spatiotemporal features, there is still a lack of comprehensive systems that
combine multiple forms of information, such as microexpressions, audio, and motion,
to enhance robustness across a broader range of manipulations.

This study addresses some of these challenges by incorporating facial microexpres-
sion features—involuntary facial movements that are difficult to replicate—alongside
spatiotemporal video frame analysis. To the best of our knowledge, this is the first time
microexpressions have been utilized for deepfake detection, marking a significant ad-
vancement in the field. The proposed dual-branch fusion model significantly outperforms
existing state-of-the-art methods when evaluated on the FF++ dataset. This highlights
the importance of integrating complementary features to detect even the most refined
deepfake manipulations and presents a new avenue for improving detection systems in
future research.
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While the proposed model shows promising results, there are a few limitations. First,
its evaluation was limited to three deepfake datasets, which may not fully capture the
diversity of new deepfake techniques. Moreover, while facial microexpressions improve
detection, other modalities like audio and motion analysis remain underexplored. Also,
while the extracted AU and shape features are generally robust, their reliability may be
affected under less ideal conditions such as partial occlusions (i.e., glasses or hands), side-
profile views, or suboptimal lighting. Furthermore, although the datasets used in this
study do contain various forms of compression and natural variations, they do not fully
replicate the range of visual distortions common in real-world media, such as social media
filters, watermarks, or postproduction effects. Evaluating the model’s robustness under
these conditions remains an important direction for future work to better understand
its applicability in unconstrained environments. Although the deployed datasets may
already include such variations to some extent, we have not explicitly assessed their impact,
and further validation would be necessary to fully understand model behavior in these
scenarios. Finally, although the model achieves strong performance, its interpretability is
currently limited, which could be a barrier to adoption in high-stakes domains. In future
work, we aim to test the model on a wider range of datasets, incorporate additional
modalities, explore more advanced fusion strategies, and investigate interpretability tools
such as attention visualization to enhance model explainability and user trust.

6. Conclusions

In this study, we proposed a novel deepfake detection method that fuses spatiotempo-
ral video frame analysis with facial microexpression features. This dual-branch approach
achieved state-of-the-art results on the FF++ dataset, highlighting the potential of lever-
aging involuntary facial movements to enhance detection robustness. While promising,
ongoing research is necessary to adapt to evolving synthesis techniques. Future work
should explore additional modalities and more diverse datasets to further improve general-
izability and investigate novel approaches to enhance interpretability.
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Appendix A

Table Al. Detailed list of non-rigid shape parameters grouped by facial regions.

Parameters Facial Region

0-1 Right cheek, upper part
24 Right cheek, middle part
5-6 Right cheek, lower part
7-9 Chin

10-11 Left cheek, lower part
12-14 Left cheek, middle part
15-16 Left cheek, upper part
17-21 Right eyebrow

22-26 Left eyebrow

27-30 Nose, vertical

31-35 Nose, horizontal

Table A2. Detailed list of facial action units (AUs) with presence and intensity indicators.

AU Definition Presence Intensity
1 Inner Brow Raiser v v
2 Outer Brow Raiser v v
3 Brow Lowerer v v
4 Upper Lid Raiser v v
5 Cheek Raiser v v
6 Lid Tightener v v
7 Nose Wrinkler v v
8 Upper Lip Raiser v v
9 Lip Corner Puller v v
10 Dimpler v v
11 Lip Corner Depressor v v
12 Chin Raiser v v
13 Lip Stretcher v v
14 Lip Tightener v v
15 Lips Part v v
16 Jaw Drop v v
17 Lip Suck v X
18 Blink v v
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