
Computer Networks 168 (2020) 107034 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

A modular CNN-based building detector for remote sensing images 

Dimitrios Konstantinidis, Vasileios Argyriou 

∗, Tania Stathaki, Nikolaos Grammalidis 

Kingston University London, SEC, Kingston, London KT12EE, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 14 April 2019 

Revised 4 November 2019 

Accepted 26 November 2019 

Available online 28 November 2019 

Keywords: 

Remote sensing 

Modular-CNN 

Building detection 

a b s t r a c t 

Convolutional neural networks (CNNs) have resurged lately due to their state-of-the-art performance in 

various disciplines, such as computer vision, audio and text processing. However, CNNs have not been 

widely employed for remote sensing applications. In this paper, we propose a CNN architecture, named 

Modular-CNN, to improve the performance of building detectors that employ Histogram of Oriented Gra- 

dients (HOG) and Local Binary Patterns (LBP) in a remote sensing dataset. Additionally, we propose two 

improvements to increase the classification accuracy of Modular-CNN. The first improvement combines 

the power of raw and normalised features, while the second one concerns the Euler transformation of 

feature vectors. We demonstrate the effectiveness of our proposed Modular-CNN and the novel improve- 

ments in remote sensing and other datasets in a comparative study with other state-of-the-art methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In the last few decades, the image sensors attached to satel-

ites have evolved in a way that nowadays allows the capture of

igh-resolution multi-spectral satellite images, [1–4] . As a result,

and cover classification became a widely-studied field providing

lso solutions on the detection and classification of buildings and

ther structures. A few important application areas, where the de-

elopment of a system capable of monitoring and modelling urban

hanges can nd usefulness are [5,6] a) sociology, for the monitor-

ng the dynamic processes that occur in a complex urban environ-

ent, b) citizen welfare, for city planning, c) city protection, for

he analysis and assessment of the impact of fire, flood and nat-

ral disasters in an urban environment, d) illegal construction for

etecting illegal building activity and e) navigation, for the devel-

pment and constant update of accurate urban maps that can be

mployed for navigation purposes. Several remote-sensing appli-

ations, such as city planning, urban mapping and urban change

etection can be improved using building detection systems that

mploy satellite images and reconstructed 3D representations. Ad-

itionally, urban expansion or decline can be studied and corre-

ated to climatic changes and social, economic or natural factors in

rder to provide solutions and ensure human prosperity. Lately, 2D

nd 3D building detection from remote sensing images is tackled

y means of machine learning and, more specifically, convolutional
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eural networks [7–9] . Convolutional neural networks were heav-

ly employed in the 1990s [10] but were later abandoned, when

he SVMs were introduced [11] . The interest in CNNs was rekin-

led when Krizhevsky et.al [12] showed the superior performance

f CNNs on the ImageNet Large Scale Visual Recognition Challenge

13] . 

In this work, we implement a CNN architecture for building de-

ection able to accommodate models when the amount of train-

ng data is low as in the case of remote sensing datasets (e.g.

orldView-2, Quickbird and Benedek in [14] ). Furthermore, the

roposed CNN architecture tends to perform better due to its mod-

lar structure and the ability to optimise easily. The optimisation

implicity of the suggested CNN allows us to analyse in depth the

ffect of this improvements on the accuracy of the overall detec-

ion. Our first contribution is the combined use of both normalised

nd raw features inside the CNN. Although normalisation makes a

lassifier more robust to intensity variations, the use of raw fea-

ures can increase the discrimination ability of a CNN. Moreover,

e propose the Euler transformation of the feature vectors before

heir classification based on the use of the cosine-based distance

unction that was proposed by Fitch as a metric for the separation

etween classes [15] . Overall the proposed method offers advan-

ages due to its modular structure and the optimisation simplic-

ty of the CNN architecture. Also supports both raw and processed

ata and it can be extended including deeper modules. Further-

ore, the introduced layers provide improved robustness to noise

nd low-quality data. The main disadvantages are related to the

omplexity of the proposed system that it is higher in terms on

omputational time and required operations. Regarding the train-

ng stage it may be more time consuming, but it doesn’t affect

https://doi.org/10.1016/j.comnet.2019.107034
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Fig. 1. Flowchart of the proposed building detection methodology. 
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further the performance during the deployment. We demonstrate

using different datasets that a cosine-based distance function can

make a classifier more robust to noise and outliers and increase

the performance of a CNN. 

2. Related work 

Building detection is a significant, yet challenging task for re-

mote sensing applications, since buildings present significant size,

3D shape, colour and texture variations. Several building detection

methodologies have been proposed with varying degree of success.

Energy functions based on building properties were constructed

and employed in a level-set segmentation framework to achieve

accurate building segmentation results [16] . Lines were utilised for

building detection, since building shapes favour line detection [5] .

Shadow detection has also been incorporated in several method-

ologies, as a way to denote the existence of tall structures, which

can be candidate buildings [17] . Corner and texture features, whose

distribution maxima can be considered as observations of build-

ing presence were also considered [18] . On the other hand, Ilsever

et.al in [19] employed HOG [20] features for the identification of

building regions. Konstantinidis et.al in [21] proposed an accurate

building detector based on the features suggested in [22] , along

with a new distance function that can be employed to improve

the robustness of an SVM classifier to noise. Last but not least,

Markov Random Fields were employed for building segmentation

in [23,24] . 

Regarding the work on CNNs, several modifications have been

proposed to increase their classification performance. A detailed

overview of recent improvements to CNNs can be found in [25–

27] . Next, we present and focus on the improvements that are rel-

evant to our work. Nair and Hinton introduced the Rectified Linear

Unit (ReLU) as an alternative to the sigmoid and hyperbolic tan-

gent activation functions [28] . It has been shown that ReLU out-

performs other activation functions and allows a CNN to be trained

faster and obtain easier sparse representations [12,29] . Dropout is

a regularisation technique proposed by Hinton et.al in order to

prevent overfitting during the training of deep neural networks

[30] . Several modifications to the dropout method, such as max-

out and adaptive dropout were later proposed [31,32] . To enhance

model discriminability and avoid overfitting Lin et.al proposed the

Network in Network (NIN), which concerns the use of multi-layer

perceptrons inside the deep neural network [33] . Their work led

Szegedy et.al to propose the Inception module [34] , which uses

variable filter sizes to capture patterns of different size. Finally, He

et.al proposed residual learning to address the problem of degra-

dation in deep neural networks, achieving state-of-the-art perfor-

mance on several benchmark datasets [35] . 

Different from the CNN improvements discussed above, we pro-

pose the NL and ETL layers that consist alternative ways of increas-

ing the accuracy and robustness of CNNs. The novel NL and ETL

layers perform simple transformations of CNN feature representa-
ions without adding additional training parameters to the prob-

em, although the next layers have their inputs doubled due to the

se of the proposed NL and ETL layers. As a result, the proposed

L and ETL layers can be considered efficient due to the lack of

raining weights, especially if combined with an operation that re-

uces their output features. 

Furthermore, in order to demonstrate the link between the ac-

uracy and the appropriate method selection for satellite building

etection the work presented at the survey papers and frameworks

36,37] demonstrates the difference performance expectations in

elation to the selected methods and the corresponding datasets

nd applications. 

. Proposed modular-CNN architecture 

Our method takes advantage of the accurate feature based

uilding detectors such as HOG and LBP. In this work we extend

nd improve the building detection methodology by employing our

odular -CNN. A flowchart of the proposed methodology can be

een in Fig. 1 . A tested image is split in overlapping windows and

ultiple scales and is fed to proposed building detection method-

logy. Initially feature based algorithms are employed as the first

rocessing step in order to acquire an as accurate as possible ini-

ial set of image blocks that represent candidate buildings. The de-

ected buildings at this stage are provided as input to the proposed

odular -CNN architecture and there is an option to apply 3D re-

onstruction methods [38,39] aiming to obtain an estimate of the

uildings’ height map. Our Modular -CNN is then employed to fur-

her improve and refine the building detection results by discard-

ng false detections. In this way, we take advantage of both the

ower of the discriminative HOG and LBP features and the ability

f a CNN to automatically generate descriptive features. Further-

ore, the use of the Modular -CNN on the positive output of the

eature based algorithm allows a speed up of the detection proce-

ure as the Modular -CNN is not applied to the entire image and

he introduction of new false alarms from the Modular -CNN detec-

or is suppressed. The disadvantage of this approach is that build-

ngs lost by the feature based classifier cannot be recovered at a

ater stage. 

In this work, we implement a CNN that consists of maximum

wo units or modules placed in a sequential and/or parallel config-

ration, as shown in Fig. 1 . We call this architecture Modular -CNN

or sake of the modules that it consists of. A module is a basic CNN

hat has a combination of layers such as convolutional layers, acti-

ation functions and pooling layers (e.g. similar to VGG-S or VGG-

6). The top of the Modular -CNN architecture consists of two fully

onnected linear layers, the first of which reduces the number of

eatures and, consequently, parameters that need to be optimised,

hile the second one performs a linear mapping without modify-

ng the feature vector dimensionality. The last layer performs the

lassification of the feature vectors to classes. Each module has its

wn set of hyper-parameters that needs to be optimised. Our strat-
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Fig. 2. Proposed Normalisation (top) and Euler transform (bottom) layers. 
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t  
gy is to optimise the Modular -CNN as follows: modules are added

o the CNN architecture one by one, their hyper-parameters are op-

imised independently of the hyper-parameters of other modules

nd then these hyper-parameters are kept fixed, while subsequent

odules are introduced. The optimisation procedure lasts as long

s the classification performance of the CNN increases or until the

equired depth or width is reached. Next, we present and analyse

wo novel improvements that come in the form of additional layers

dded to the Modular -CNN architecture. These new layers are the

ormalisation and Euler transform layers, and as we demonstrate,

hey improve the performance and robustness of the tested CNNs. 

.1. Normalisation layer 

Normalising the input data is a common data pre-processing

ethod that increases the performance of a classifier, especially

ne that relies on stochastic gradient optimisation methods. This

s needed due to the equal weighing of scaled features. Otherwise,

oo large input values can saturate some of the hidden neurons

f a neural network, rendering the neurons of the next layers in-

ctive and the neural network to get stuck in local optima. How-

ver, since the output of a CNN is a non-linear mapping of the

ormalised input, the effect of normalisation is in most cases lost

n the feature space [40] . As a result, it is useful to normalise the

omputed feature vectors prior to their classification. On the other

and, since the raw features come from already normalised data,

he neural network mapping may have led some important fea-

ures to become prominent in the output and this discrimination

an be lost after a new normalisation in the feature space. Based

n these ideas and observations, we suggest the use of a shortcut

onnection before the feature vector classification. The proposed

ormalisation Layer (NL), shown at the top of Fig. 2 , takes as input

 feature vector x and creates a new feature vector that has twice

he size of the initial vector. The first half of the new feature vec-

or is a copy of the initial vector (i.e. x ), while the second half is a

ormalised by l 2 -norm copy of the initial feature vector (i.e. x 
‖ x ‖ 2 ). 

.2. Euler transform layer 

Fitch et.al was the first to introduce a new distance function as

 replacement to the l 2 -norm in the computation of displacement

etween video frames [15] . The l 2 -norm is known to be signifi-

antly affected by large values that can be attributed to noise. The

ew distance function was proposed to counter this sensitivity of

he l 2 -norm, as it is considered to be robust to noise and outliers.

iven two feature vectors x i and x j that have values in the range

0,1] and are of length L , an ideal distance function can be approx-

mated by a limited number P of sinusoidal terms, giving rise to

he cosine-based dissimilarity measure 

( x i , x j ) ≈
P ∑ 

p=1 

L ∑ 

l=1 

b p (1 − cos (a p π( x i (l) − x j (l))) ) (1) 
In the special case, where only one sinusoidal term is consid-

red (i.e. P = 1 ), the cosine-based distance function of Eq. (1) boils

own to the measure 

( x i , x j ) = 

L ∑ 

l=1 

(1 − cos (απ( x i (l) − x j (l)) )) (2) 

The cosine-based dissimilarity measure of Eq. (2) is controlled

y a single variable α that affects the response of the dissimilarity

easure to large differences. Small values of α make the cosine-

ased function to behave similarly to the l 2 -norm, meaning that

he distance between two feature vectors increases as their differ-

nce becomes larger. On the other hand, large values of α make

he cosine-based dissimilarity measure to suppress its response to

arge differences. Since large differences between feature vectors

an be attributed to outliers, the cosine-based distance function

ttempts by regularising its control variable α to suppress the ef-

ect of noise and outliers. The optimal value of the parameter α
an be determined by an exhaustive search on a validation set. The

osine-based distance function has the ability to suppress noise be-

ause its derivative is equivalent to Andrew’s M-Estimate [15,41] ,

efined in Eq. (3) , for difference values in the range [ −1 , 1] . The

ndrew’s M-Estimate is a redescending m-estimator, which is con-

idered as an outlier rejection technique. This holds because the

osine-based distance function is not a monotonically increasing

unction as the difference between two vectors increases, like the

 2 -norm, but it redescends smoothly towards zero for large dif-

erence values. This allows the cosine-based distance function to

moothly suppress large differences, which can be attributed to

oise or outliers. 

(r) = 

{
sin (π r) if −1 ≤ r ≤ 1 

0 otherwise 
(3) 

The cosine-based distance function can either be directly em-

loyed as an alternative to the l 2 -norm [15] or the feature vectors

an be transformed to their Euler representation before they are

apped to classes. Applying the cosine-based dissimilarity mea-

ure to a pair of vectors x i and x j is equivalent to transforming

he feature vectors to their Euler representation z i and z j , where

 i = 

1 √ 

2 
e iαπx i and subsequently employ the l 2 -norm function. With

he use of a few trigonometric identities and the substitution θi =
πx i , the proof is presented in Eq. (4) . In this work, we choose

o employ the Euler transformation method since it is easily in-

egrated in a neural network framework. Therefore, we propose

he addition of a new layer, called Euler transform layer (ETL), in

he Modular -CNN architecture. The ETL layer, which is introduced

ust before the layer that classifies feature vectors and after the

L layer, transforms features to their Euler representation, mean-

ng that each feature vector x is now described by a cosine (i.e.

os ( απx )) and a sine (i.e. sin ( απx )) part that are concatenated

ogether. The ETL layer is depicted at the bottom of Fig. 2 . 

 z i − z j ‖ 

2 = 

1 

2 

L ∑ 

l=1 

‖ ( cos (θi (l)) + i sin (θi (l)) 

− ( cos (θ j (l)) − i sin (θ j (l)) ‖ 

2 

= 

1 

2 

L ∑ 

l=1 

∥∥∥∥2 sin 

(
θi (l) − θ j (l) 

2 

)(
ie i 

θi (l)+ θ j (l) 

2 

)∥∥∥∥
2 

= 

L ∑ 

l=1 

1 − cos (θi (l) − θ j (l)) (4) 

. Experiments 

In this section, we present the implementation details and op-

imisation procedure of our Modular -CNN. Moreover, we analyse
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Fig. 3. Optimal Modular -CNN architectures for the (a) QuickBird/WorldView-2, (b) 

CIFAR-10 and (c) MNIST datasets. 
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and compare the effect of our proposed layers on the performance

of the Modular -CNN and PlainNet, a deep CNN employed in [35] ,

on three different datasets. Finally, we evaluate the overall build-

ing detection performance of our proposed method and compare it

with other state-of-the-art methods. 

4.1. Implementation details 

The construction of an optimal Modular -CNN follows a module -

based optimisation scheme. This means that each module is ini-

tially introduced to the current CNN and its hyper-parameters are

optimised using stochastic gradient descent. In the case that the

addition of the module is beneficial to the performance of the

CNN, the module is added permanently in the CNN and its hyper-

parameters are kept fixed, while new modules are introduced. Oth-

erwise, the optimisation procedure terminates and the current

CNN without the latest module is returned. The optimisation of the

Modular -CNN is performed without the proposed novel NL and ETL

layers. These layers are introduced afterwards and the CNN is re-

trained with its hyper-parameters kept fixed to the optimal values.

Each module is optimised with respect to the hyper-parameters

of the basic layers that it consists of. These hyper-parameters are

the convolution type, the convolutional filter size, the number of

convolutional filters, the activation function, the pooling type and

the pooling size and stride. Only the activation function is fixed to

the ReLU unit, while the other hyper-parameters are optimised as

described below. Two types of convolution are examined, the lo-

cal convolution and the full convolution, proposed in [42] . The full

convolution is employed for dense predictions since it has the abil-

ity to output features of various sizes, not necessarily smaller than

the input size. In our implementation of the full convolution, we

choose the output size to be equal to the input size, by adding ap-

propriate zero padding. The number of convolutional filters is se-

lected by the value pool {25, 50, 75, 100}. We also experiment with

symmetrical ( m × m ) and asymmetrical (1 × m, m × 1) convolu-

tional filters, where m = { 3 , 5 , 7 } , in an attempt to extract useful

features from the images. Furthermore, we test both max and av-

erage pooling using either a kernel of size 2 × 2 with a stride of

2 (i.e. non-overlapping pooling) or a kernel of size 3 × 3 with a

stride of 1 (i.e. overlapping pooling). It has been shown that over-

lapping pooling can prevent overfitting [12] . 

Other hyper-parameters that affect the Modular -CNN architec-

ture and training are optimised with respect to the remote sensing

dataset and kept fixed for the other datasets. The dimensionality of

the feature vectors introduced to the second fully connected layer

of the Modular -CNN is optimised to the value of 20 0 0. Linear and

Euclidean layers for the classification of feature vectors are tested

and we conclude that the Euclidean layer that performs cluster-

ing of the feature vectors by employing the l 2 -norm distance func-

tion outperforms the linear layer. Dropout is examined but leads

to sub-optimal results. Finally, the size of the mini-batch and the

learning rate are optimised to the value of 32 and 0.05 respectively.

The CNN training with each hyper-parameter configuration is

performed for a maximum number of 100 iterations. In each itera-

tion, the training set is introduced to the CNN in mini-batches and

the CNN is then evaluated on a validation set. During the evalu-

ation, the loss on the validation set, which is equal to the aver-

age negative log-likelihood of each sample to belong to the correct

class, is computed. The training phase is terminated when the loss

on the validation set does not decrease for 5 consecutive iterations.

This strategy is employed to prevent overfitting of the CNN to the

training data, since after a few epochs the loss on the training set

keeps decreasing, while the loss on the test set starts increasing.

This typical behaviour of a CNN is reported during our experiments

with the Modular -CNN. The CNN training is repeated for 3 rounds,

where a new initialisation/reset of the weights is performed in the
eginning of each new round. The average performance of the CNN

n the validation set is computed and used for the selection of

he optimal hyper-parameter configuration. The Modular -CNN and

he novel layers were developed using the Torch software and a

VIDIA Tesla K40 GPU was used for a boost in the computational

peed. 

.2. Evaluation of proposed NL and ETL layers 

In order to evaluate the performance of the proposed NL and

TL layers, we consider two different CNN architectures (i.e. the

roposed Modular -CNN and PlainNet), and we perform experi-

ents by deploying the proposed layers in both of them. Plain-

et is a version of the plain-net for n = 1 defined in [35] . More

pecifically, PlainNet consists of stacks of two (3 × 3) convolu-

ion layers for each feature map size. The feature map size is pro-

ressively halved from D to D /4, while the number of filters is

oubled from 16 to 64. For the evaluation we used remote sens-

ng images from QuickBird/WorldView-2, the CIFAR-10 and MNIST

atasets. Experiments are performed to optimise the modules that

he CNN consists of. The optimal performance on the validation set

s achieved by the Modular -CNN architecture depicted in Fig. 3 (a).

he average loss on the validation set of our Modular -CNN with

nd without the addition of the NL and ETL layers for values of α
n the range [0 − 1 . 9] is depicted in Fig. 4 (a). Table 1 summarises

he performance of the Modular -CNN and PlainNet with and with-

ut the addition of the proposed layers on the three tested

atasets. 

From Table 1 and Fig. 4 (a), one can conclude that the addition

f the proposed layers to the Modular -CNN and PlainNet leads to

 decrease in the error on the remote sensing validation set. Fur-

hermore, the addition of the ETL layer reduces significantly the

verage loss on the validation set, thus increasing the generalisa-

ion power of the Modular -CNN. The optimal value of the parame-

er α for the ETL layer is included next to the corresponding error

n Table 1 . A comparison between PlainNet and Modular -CNN re-

eals that our proposed novel Modular -CNN slightly outperforms

lainNet with or without the addition of the novel layers, how-

ver at the expense of increased CNN parameters. To further val-

date the advantages of the proposed NL and ETL layers, experi-

ents are performed on CIFAR-10 [45] and MNIST [46] benchmark

atasets. The images of CIFAR-10 and MNIST datasets are small in

ize (i.e. 32 × 32 and 28 × 28 pixels respectively) and thus ap-

ropriate for the testing of the performance of the proposed CNN
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Fig. 4. Performance of Modular -CNN w/o NL and ETL layers with respect to average loss on validation set for (a) QuickBird/WorldView-2, (b) CIFAR-10 and (c) MNIST datasets. 

Table 1 

Classification performance of CNN architectures on the 3 tested datasets. 

Method Error (%) No. of params 

QuickBird/WorldView-2 CIFAR-10 MNIST 

NIN [33] — 10.41 0.47 0.97M 

DSN [43] — 9.69 0.39 0.97M 

RCNN-96 [44] — 9.31 0.31 0.67M 

PlainNet [35] 3.404 25.94 0.71 2.69M 

PlainNet + NL 3.118 25.35 0.69 2.69M 

PlainNet + NL + ETL 3.049 ( α= 1.3) 25.35 ( α= 1.3) 0.63 ( α= 1.4) 2.70M 

Modular -CNN 3.123 21.75 0.54 22.20–25.43M 

Modular -CNN + NL 2.871 21.29 0.53 22.21–25.44M 

Modular -CNN + 2.866 ( α= 1.2) 21.29 ( α= 1.1) 0.51 ( α= 1.4) 22.22–25.45M 

NL + ETL 
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rchitecture. The CIFAR-10 training set consists of 50 0 0 0 labelled

mages equally distributed between 10 different classes, while the

est set consists of 10 0 0 0 images. The validation set is formed by

andomly selecting 10 0 0 0 images out of the CIFAR-10 training set.

he MNIST training set consists of 60 0 0 0 grayscale images depict-

ng digits 0 − 9 , while the test set consists of 10 0 0 0. The vali-

ation set is formed by randomly selecting 10 0 0 0 images out of

he MNIST training set. The optimisation procedure leads to the

NN architectures described in Fig. 3 , where only two sequential

odules are employed. From Table 1 and Fig. 4 one can conclude

hat the addition of the NL layer improves the accuracy of both

ur Modular -CNN and PlainNet with respect to the cases without

he NL layer. Moreover, the introduction of the ETL layer leads to

 smaller loss on the validation set and thus, better generalisa-

ion ability of the Modular -CNN. Finally, our Modular -CNN with the

ovel layers outperforms by about 5.4% PlainNet with the novel
ayers on CIFAR-10. Although PlainNet demonstrates a larger depth,

apable of learning complex features, the proposed Modular -CNN

ith a higher number of parameters can more effectively describe

he dataset. Also for the MNIST dataset, our Modular -CNN outper-

orms PlainNet and achieves comparable performance with other

tate-of-the-art methods. 

The proposed NL and ETL layers are not limited to the specific

eep learning architectures or classification problem presented in

his paper and as a result, the improved performance they achieve

an be utilised in deeper deep learning architectures and in other

mage or video classification tasks, potentially leading to break-

hroughs as far as accuracy and robust of deep networks is con-

erned. Finally, the notion of Euler Transform can be employed in-

ide convolutional layers in order to provide more enriched and

obust feature representations that can lead to better classification

erformance on several image and video classification tasks. 



6 D. Konstantinidis, V. Argyriou and T. Stathaki et al. / Computer Networks 168 (2020) 107034 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

c  

m  

p  

w  

t  

n  

t

 

t  

w  

f  

b  

i  

m  
4.3. Experimentation on QuickBird/WorldView-2 Dataset 

We employ QuickBird and WorldView-2 remote sensing images

for the comparative evaluation of the proposed Modular -CNN in

the task of building detection from satellite images. The training

set consists of 900 positive and 1400 negative manually segmented

and annotated images of size 20 × 20 pixels, depicting buildings

and other structures (i.e. roads, trees etc) respectively. Since the

training set is too small for accurate training of a CNN, it is aug-

mented by taking horizontal and vertical flips of the images. The

validation set consists of 20 0 0 0 images randomly cropped from 5

labelled satellite images, while the test set consists of 24 labelled

satellite images. The images consist of 4 spectral channels, namely

red, green, blue, and near-infrared plus the height maps. Exam-

ples of the obtained height maps are shown in Fig 5 . In our ex-
Fig. 5. Examples of the 3D reconstructed buildings an

Table 2 

Performance (average and standard deviation) of bui

set. DAB: Discrete Adaboost. 

Method Recall Precisio

DAB with HAAR 0.767 ± 0.07 0.641 ±
LogitBoost with LBP 0.901 ± 0.041 0.706 ±
Fisherfaces 0.998 ± 0.003 0.466 ±
Sirmacek [18] 0.552 ± 0.046 0.489 ±
Ilsever [19] 0.962 ± 0.008 0.209 ±
Konstantinidis [21] 0.953 ± 0.07 0.814 ±
Modular -CNN 0.968 ± 0.019 0.596 ±
Proposed method 0.937 ± 0.082 0.859 ±
eriments, we employ the YUV colour space and the near-infrared

hannel, since this spectral configuration leads to the best perfor-

ance on the validation set. Generally, we found that the CNN

erformance is strongly affected by the selected colour channels,

hich makes the selection of an optimal colour representation for

he images critical to the performance of a CNN. The dataset is

ormalised to have zero mean and unity variance before it is fed

o the CNNs for training and testing. 

By employing the Modular -CNN with the proposed layers for

he detection of buildings in the satellite images of the test set,

e notice that our Modular -CNN can work complementary with a

eature based algorithm as the locations of the false alarms differ

etween the two algorithms. Due to the small training set, apply-

ng the Modular -CNN directly to the test images leads to subopti-

al results, as it is reported on Table 2 . So, we propose a build-
d the corresponding height and normal maps. 

lding detectors on QuickBird/WorldView-2 test 

n F 1 -score Av. eval. time 

0.105 0.691 ± 0.067 22.4 secs 

0.105 0.786 ± 0.068 24.1 secs 

0.136 0.624 ± 0.123 18.5 secs 

0.133 0.509 ± 0.082 39.1 secs 

0.098 0.323 ± 0.121 51.2 secs 

0.106 0.871 ± 0.058 55.9 secs 

0.1 0.733 ± 0.081 59.7 secs 

0.083 0.891 ± 0.055 62.4 secs 
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o  
ng detection method that combines the abilities of both feature

ased and Modular -CNN classifiers. In the new approach, the fea-

ure based classifier is initially applied to a test image and posi-

ive detections are extracted. Afterwards, the Modular -CNN is ap-

lied only in the positive detections (i.e. image regions), result-

ng in a set of final positive detections. This approach speeds up

he detection procedure as the CNN is not applied to the entire

mage and avoids the introduction of new false alarms from the

odular -CNN detector. Table 2 compares the object-based perfor-

ance of our proposed building detector with other state-of-the-

rt methods. The conclusion that can be drawn is that our pro-

osed building detector discards several false alarms that the fea-

ure based algorithm produces, thus achieving an increase in the

etric of F 1 -score by 2.3%. We demonstrate the ability of our pro-

osed building detector to suppress false alarms in the test set in

ig 6 . 
ig. 6. Detections shown as green bounding boxes in QuickBird/WorldView-2 from 

eature based (first column) and our proposed (second column) building detectors. 

For interpretation of the references to colour in this figure legend, the reader is 

eferred to the web version of this article.) 
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. Conclusions and future work 

In this paper, we propose a novel CNN architecture, called

odular -CNN that can be combined with a feature based classifier

o improve the building detection performance on 2D and 3D re-

ote sensing data. Furthermore, we propose two novel layers that

an be added to CNN architectures in order to increase their dis-

rimination ability and robustness. We analyse the effect of the

ovel layers on both our Modular -CNN and other deep CNN archi-

ecture, named PlainNet and demonstrate their beneficial effect in

 comparative study with other state-of-the-art methods for build-

ng detection on remote sensing images. 

As a future work, the proposed novel NL and ETL layers can be

dopted by other deeper deep networks and applied to other im-

ge or video classification tasks boosting accuracy and robustness

f deep networks. Additionally, of great research interest is a study

n the use of Euler Transform inside convolutional layers provid-

ng more enriched feature representations, as well as a study on

he performance of deep networks when multiple ETL layers are

mployed. 
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Supplementary material associated with this article can be
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