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Abstract: The environmental challenges the world faces nowadays have never been greater or more
complex. Global areas covered by forests and urban woodlands are threatened by natural disasters
that have increased dramatically during the last decades, in terms of both frequency and magnitude.
Large-scale forest fires are one of the most harmful natural hazards affecting climate change and
life around the world. Thus, to minimize their impacts on people and nature, the adoption of
well-planned and closely coordinated effective prevention, early warning, and response approaches
are necessary. This paper presents an overview of the optical remote sensing technologies used in
early fire warning systems and provides an extensive survey on both flame and smoke detection
algorithms employed by each technology. Three types of systems are identified, namely terrestrial,
airborne, and spaceborne-based systems, while various models aiming to detect fire occurrences with
high accuracy in challenging environments are studied. Finally, the strengths and weaknesses of
fire detection systems based on optical remote sensing are discussed aiming to contribute to future
research projects for the development of early warning fire systems.

Keywords: early fire detection; multispectral imaging systems; terrestrial; aerial; satellite;
artificial intelligence

1. Introduction

Over the last few years, climate change and human-caused factors have a significant impact on
the environment. Some of these events include heat waves, droughts, dust storms, floods, hurricanes,
and wildfires. Wildfires have extreme consequences on local and global ecosystems and cause serious
damages to infrastructure, injuries, and losses in human lives; therefore, fire detection and the
accurate monitoring of the disturbance type, size, and impact over large areas is becoming increasingly
important [1]. To this end, strong efforts have been made to avoid or mitigate such consequences
by early fire detection or fire risk mapping [2]. Traditionally, forest fires were mainly detected by
human observation from fire lookout towers and involved only primitive tools, such as the Osborne
fire Finder [3]; however, this approach is inefficient, as it is prone to human error and fatigue. On the
other hand, conventional sensors for the detection of heat, smoke, flame, and gas typically take time
for the particles to reach the point of sensors and activate them. In addition, the range of such sensors
is relatively small, hence, a large number of sensors need to be installed to cover large areas [4].

Recent advances in computer vision, machine learning, and remote sensing technologies offer
new tools for detecting and monitoring forest fires, while the development of new materials and
microelectronics have allowed sensors to be more efficient in identifying active forest fires. Unlike other
fire detection review papers that have focused on various sensing technologies [5], on video flame
or/and smoke methodologies in visible or/and InfraRed (IR) range [6–9], on various environments [10],
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and airborne systems [11,12], in this paper, we provide a comprehensive study of the most representative
forest fire detection systems, focusing on those that use optical remote sensing, as well as digital image
processing [13] and classification techniques [14]. Depending on the acquisition level, three broad
categories of widely used systems that can detect or monitor active fire or smoke incidents in
real/near-real-time are identified and discussed, namely terrestrial, aerial, and satellite. These systems
are usually equipped with visible, IR, or multispectral sensors whose data are processed by machine
learning methods. These methods rely either on the extraction of handcrafted features or on powerful
deep learning networks (Figure 1) for early detection of forest fires (Figure 2) as well as for modeling fire
or smoke behavior. Finally, we present the strengths and weaknesses of the aforementioned methods
and sensors, as well as future trends in the field of early fire detection.
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Figure 1. Generalized multispectral imaging systems for early fire detection.
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Figure 2. Systems discussed in this review target the detection of fire in the early stages of the fire cycle.

This paper is organized as follows: Section 2 covers different optical remote sensing systems for
early fire detection, organized into three subsections—for Terrestrial, Aerial, and Satellite systems
respectively—Section 3 includes discussion and the future scope of research.
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2. Early Fire Detection Systems

2.1. Terrestrial Systems

Terrestrial-based early detection systems consist of either individual sensors (fixed, PTZ, or
360◦ cameras) or networks of ground sensors. These sensors need to be carefully placed to ensure
adequate visibility. Thus, they are usually located in watchtowers, which are structures located
on high vantage points for monitoring high-risk situations and can be used not only for detection
but also for verification and localization of reported fires. There are two types of cameras used for
early fire detection, namely optical cameras and IR cameras that can capture data ranging from low
resolution to ultra-high resolution for different fire detection scenarios [15]. Optical cameras provide
color information, whereas IR imaging sensors can provide a measure of the thermal radiation emitted
by objects in the scene [16]. More recently, early detection systems that combine both types have also
been introduced. The computer-based methods can process a high number of data aiming to achieve
a consistent level of accuracy maintaining a low false alarm rate. In the following, we first present
traditional approaches that are based on handcrafted features followed by more recent methods using
deep learning for automated feature extraction.

2.1.1. Traditional Methods

Detection methods that use optical sensors or RGB cameras combine features that are related
to the physical properties of flame and smoke, such as color, motion, spectral, spatial, temporal,
and texture characteristics. The following color spaces have been used for the task of early fire detection:
RGB [17–19], YCbCr [20], CIELAB [21], YUV [22,23], and HSV [24]; however, a drawback of color-based
fire detection models is the high false alarm rates, since single-color information is insufficient in most
cases for the early and robust fire detection. Thus, many of the developed methodologies combine color
and motion information in images and videos [25]. Zhang et al. [26] used a probabilistic color-based
model for the detection of fire regions and motion features for the final fire existence occurrence
decision. Avgerinakis et al. [27] identified the smoke candidate blocks and then constructed the
histograms of oriented gradients (HOGs) and histograms of optical flow (HOFs), thus taking into
account both appearance and motion information. Likewise, Mueller et al. [28] used two optical flow
schemes, namely optimal mass transport models and data-driven optical flow models.

Other researchers focused on the flickering effect of fire. This is observed in flame contours at a
frequency of around 10 Hz, independently of the burning material and the burner [29]. To this end,
Gunay et al. [30] distinguished flame flicker from the motion of fire-colored moving objects in videos
using hidden Markov models (HMMs). Training HMMs leads to the reduction of data redundancy and
improvement of reliability, while real-time detection is also achieved [31]. Furthermore, HMM-based
methods for fire detection in the compressed domain have been proposed in MJPEG2000 [32] and
H. 264 [33] compressed video. The use of multi-feature fire-based detection can offer more accurate
results. Chen et al. [34] combined motion detection using a Gaussian mixture model, color analysis
using an RGB color filtering, and flickering temporal analysis. The algorithm was applied to a video
dataset consisting of different daytime and nighttime environments; however, at night, color analysis
is less useful and night smoke is less visible. Thus, nighttime wildfire detection typically relies
on motion analysis. Also, Töreyin, et al. [35] proposed a system equipped with an optical camera
and a methodology that combines feature extraction (moving pixel/region extraction, color-based
segmentation, and wavelet analysis in temporal and spatial domains), followed by a voting-based
classifier. In [36], Barmpoutis et al. extracted an additional feature aiming to estimate a spatio–temporal
consistency energy. Thereafter, they used a support vector machine (SVM) classifier to increase the
robustness of fire detection.

Many other researchers have used infrared cameras aiming to reduce the false alarm rates of the
optical-based terrestrial systems. The IR cameras measure the thermal radiation emitted by objects
within the spectral range from either 3 to 5 µm (middle wavelength infrared, MWIR) or 8 to 14 µm
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(long wavelength infrared, LWIR). The MWIR band detectors, although they are optimal for fire
detection, are expensive due to the cooling system required, so typically LWIR cameras are used. In IR
videos the existence of rapid time-varying contours is an important sign of the presence of fire in the
scene. Arrue et al. [37] observed that fire detection systems fail for distant fires and proposed a system
for false alarm reduction in infrared forest-fire detection. More specifically, they used an adaptive
infrared threshold, a segmentation method, and a neural network for early fire detection. Furthermore,
Töreyin, et al. [16] used IR video to overcome the limitations of optical cameras in the detection of
fires with little radiance in the visible spectrum. Specifically, they first estimated the boundaries of
moving bright regions in each frame and then used spatio–temporal analysis in the wavelet domain
using HMMs.

In contrast to single-sensor systems, multisensor systems typically cover wider areas and can
achieve higher accuracies by fusing data from different sensors. The idea of integrated early fire
detection and monitoring by combining data from optical and infrared cameras as well as a wireless
sensor network (WSN) of temperature/humidity sensors was proposed by Grammalidis et al. [38].
Sensor data were processed and transmitted to a monitoring center employing computer vision and
pattern recognition algorithms for automated fire detection and localization. The algorithm took
into account color, spatial, and temporal information for flame detection, while for smoke detection,
an online adaptive decision fusion (ADF) framework was developed. This framework consisted of
several algorithms aiming to detect slow-moving objects, smoke-colored regions, and smoke region
smoothness. Furthermore, improved early wildfire detection was achieved by fusing smoke detection
from visual cameras and flame detection from infrared (LWIR) cameras. Similarly, Bosch et al. [39]
proposed a system consisting of a wireless sensor network with a central monitoring station. In this,
each sensor consists of an optical and a thermal camera and an integrated system for the processing of
data and communication.

More recently, Barmpoutis et al. [40] and Dimitropoulos et al. [41] introduced fire detection systems
based on smoke and flame dynamic texture analysis through linear dynamical systems (LDSs). Their
modeling, combining color, motion, and spatio–temporal features led to higher detection rates and a
significant reduction of false alarms. Temporal and spatial dynamic texture analysis of flame for forest
fire detection was performed in [42]. Dynamic texture features were derived using two-dimensional
(2D) spatial wavelet decomposition in the temporal domain and three-dimensional (3D) volumetric
wavelet decomposition. In [43], the authors improved the smoke modeling of the fire incidents through
dynamic textures solving higher order LDS (h-LDS). Finally, in [44], the authors took the advantage of
the geometric properties of stabilized h-LDS (sh-LDS) space, and they proposed a novel descriptor,
namely, histograms of Grassmannian points (HoGP) to improve the classification of both flame and
smoke sequences.

2.1.2. Deep Learning Methods

In contrast to previously discussed methods that rely on handcrafted features, deep learning
(DL) methods [45] can automatically extract and learn complex feature representations. Since the
seminal work of Krizhevsky et al. [46], which achieved exceptional image classification performance
by training a convolutional neural network (CNN) with efficient computation resources, deep learning
is one of the most rapidly evolving fields and has been successfully applied to numerous computer
vision problems. To this end, Luo et al. [47] developed a smoke detection algorithm based on the
motion characteristics of smoke and a CNN. Firstly, they identified the candidate regions based on
the background dynamic update and dark channel a priori method [48]. Then, the features of the
candidate region were extracted automatically by a CNN consisting of five convolutional layers and
three fully connected layers. In [49], the authors combined deep learning and handcrafted features to
recognize the fire and smoke areas. For static features, the AlexNet architecture was adapted, while for
dynamic features an adaptive weighted direction algorithm was used. Moreover, Sharma et al. [50]
used optical images and re-tuned two pre-trained CNNs, based on VGG16 and ResNet50 backbones to
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distinguish images that contain fire and images that do not. It is worth mentioning that for the training,
they created an unbalanced dataset including more non-fire images. Zhang et al. [51] proposed deep
CNNs for forest fire detection in a cascaded fashion. Firstly, they trained a full image fire classifier
to decide whether the image contains the fire or not and then applied a fine-grained patch classifier
to localize the fire patches within this image. The full image classifier is a deep CNN that has been
fine-tuned from AlexNet and the fine-grained patch classifier is a two-layer fully connected neural
networks trained with the upsampled Pool-5 features. Muhammad et al. [52], inspired by GoogleNet
architecture and proposed a fine-tuned fire detection CNN model for surveillance videos, while Shen
et al. [53] used an optimized YOLO model for flame detection from video frames. Frizzi et al. [54]
built a simple CNN consisting of nine layers. The architecture of this model was similar to LeNet-5
including dropout layers and used a leaky rectified linear unit (ReLU) activation function. Muhamad
et al. [55] proposed a fine-tuned CNNs architecture based on the SqueezeNet model and developed a
feature map selection algorithm for fire segmentation and background analysis. In [56], the authors
combined AlexNet as a baseline architecture and the internet of multimedia things (IoMT) for fire
detection and disaster management. The developed system introduced an adaptive prioritization
mechanism for cameras in the surveillance system allowing high-resolution cameras to be activated
to confirm the fire and analyze the data in real-time. Furthermore, Dunnings and Breckon [57] used
low-complexity CNN architectural variants and applied a superpixel localization approach aiming to
reduce the computational performance offering up to 17 fps processing time.

Since the number of publicly available wildfire datasets is still limited, Sousa et al. [58] proposed
a fire detection method based on data augmentation and transfer learning. A method that had
been pre-trained on the ImageNet Inception-v3 model was retrained and evaluated using ten-fold
cross-validation on the Corsican Fire Database [59]. Extending deep learning approaches, Barmpoutis
et al. [60] combined the power of faster region-based convolutional neural network (R-CNN) with
multidimensional dynamic texture analysis based on higher-order LDSs aiming the early forest fire
detection. A modified faster R-CNN and a 3D CNN were combined in [61]. To that end, the faster
R-CNN with non-maximum annexation was utilized to realize the smoke target location based on
static spatial information and then a 3D CNN was used for smoke recognition by combining dynamic
spatial–temporal information. Jadon et al. [62] developed the FireNet convolution neural network
using a standard fire dataset and a self-proposed dataset, achieving an encouraging performance in
terms of a series of evaluation metrics. Zhang et al. [63] trained a faster R-CNN for forest smoke
detection by creating synthetic smoke images and achieved great performance when tested on real
smoke images. Moreover, in [64] the authors extracted spatial features through a faster R-CNN for the
detection of the suspected regions of fire (SroFs) and non-fire. Then, the features of the detected SroFs
in successive frames were used by a long short-term memory (LSTM) for them to identify whether
there is a fire or not in a short-term period. Finally, a majority voting method and the exploitation
of fire dynamics were used for the final decision. Shi et al. [65] inspired by the idea of R-CNN and
combined image saliency detection and convolutional neural networks. More specifically, they utilized
the pixel-wise image saliency aggregating (PISA) method [66] to identify the candidate regions and
then classified them into fire or non-fire regions.

Instead of extracting bounding boxes, Yuan et al. [67] used a two-path encoder-decoder fully
convolutional network (FCN) for visual smoke segmentation. FCNs can achieve end-to-end pixel-wise
segmentation so the precise location of smoke can be identified in images. They also created synthetic
smoke images instead of labeling the real smoke images manually for training and then tested the
network on both synthetic and real videos. Cheng et al. [68] proposed a smoke detection model using
Deeplabv3+ and a generative adversarial network (GAN). The smoke pixels were first identified by
fusing the result Deeplabv3+ and the heatmap of smoke based on HSV features. Then, a GAN was
employed for predicting the smoke trend heatmap based on the space–time analysis of the smoke
videos. Finally, in [69] the authors used a two-stage training of deep convolutional GANs for smoke
detection. This procedure included a regular training step of a deep convolutional (DC)-GAN with real
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images and noise vectors and a training step of the discriminator separately using the smoke images
without the generator.

2.2. Unmanned Aerial Vehicles

Terrestrial imaging systems can detect both flame and smoke, but in many cases, it is almost
impossible to view, in a timely manner, the flames of a wildfire from a ground-based camera or
a mounted camera on a forest watchtower. To this end, autonomous unmanned aerial vehicles
(UAVs) can provide a broader and more accurate perception of the fire from above, even in areas
that are inaccessible or considered too dangerous for operations by firefighting crews. Either fixed or
rotary-wing UAVs cover wider areas and are flexible, allowing the change of monitoring area, but they
are affected by weather conditions and have limited flight time. UAVs mostly use ultra-high-resolution
optical or infrared charge-coupled device (CCD) cameras to capture images as well as other sensors for
navigation, such as global positioning system (GPS) receivers or inertial measurement units (IMUs).

2.2.1. Traditional Methods

The first attempts for aerial fire detection began around 1920 when planes were used for forest
fire detection as a result of their unsuccessful deployment for the extinguishing of fires [70]. In 1986,
Stearns et al. [71] captured IR images by the Flying Infrared Signatures Technology Aircraft of the
U.S. Air Force Geophysics Laboratory and described a spatial and spectral analysis methodology to
provide wildfire detection and monitoring for fire control. Similarly, Den Breejen et al. [72] used a
single manned aerial vehicle for forest fire detection and tracking; however, although the operation of
manned aerial vehicles is safer in busy airspace around fire [12], these vehicles are typically large and
require increased operational costs making them a less useful tool for fire detection.

In recent times, the deployment of UAVs is considered to be a better option for the task of forest
fire detection. More specifically, to achieve forest fire detection and tracking, Yuan et al. [73] used
median filtering for noise reduction, color analysis based on CIELAB color space, Otsu threshold for fire
segmentation, and blob counting. More recently, in [74] they used visual images captured by an optical
camera of an unmanned aerial vehicle. Then, two color spaces, namely, RGB and HIS were chosen
as inputs of a fuzzy logic rule and an extended Kalman filter was employed to adapt environmental
condition variations and to perform smoke detection. Extending the color-based methods in [75,76] fire
flame and smoke pixels are segmented using both color and motion characteristics. For the estimation
of color features, they utilized three color spaces RGB, YCbCr, and HIS, whereas for the extraction of
motion characteristics they noted that flames have turbulent movement or disordered characteristics.
Thus, an optical flow algorithm was used to examine the motion characteristic of forest fires and extract
fire motion pixels using dynamic background analysis.

Aiming to identify the fire location in terms of latitude, longitude, and altitude in [77], the authors
used a DJI F550 hexacopter and applied two coordinate system transformations between the
body-fixed frame, namely north-east-down frame (NED) and Earth-centered Earth-fixed (ECEF)
frame. Then, a rule-based color model combining RGB and YCbCr color spaces was used for the
identification of fire pixels. A fire simulation platform based on the Unity game engine and robot
operating systems (ROS) was developed by Esfahlani [78]. The video data were collected through a
monocular camera and navigation relied on a simultaneous localization and mapping (SLAM) system.
A fire detection algorithm based on color, movement attributes, temporal variation of fire intensity,
and its accumulation around a point was deployed. Finally, a mixed reality (MR) system incorporating
physical and virtual elements was adopted to visualize and test the developed system.

Sudhakar et al. [79] proposed a method for forest fire detection through UAVs equipped with an
optical and an infrared camera. They used a LAB color model and a motion-based algorithm followed
by a maximally stable extremal regions (MSERs) extraction module. For improved presentation, the
extracted forest fire detections are joined with landscape information and meteorological data. In [80]
two types of UAVs, a fixed-wing drone and a rotary-wing drone equipped with optical and thermal
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cameras were used. As soon as the fixed-wing drone detects a fire, the rotary-wing drone will fly
at a much lower altitude (10 to 350 m) compared to a fixed-wing UAV (350 to 5500 m), thus having
better and more detailed visibility of the area and reducing false alarms through a neural network.
Chen et al. [81] used optical and infrared sensors and data to train a CNN first for smoke detection
and then for flame detection. In [82], the authors developed a system consisting of a central station
and several aerial vehicles equipped with infrared or visual cameras, aiming to increase the coverage
area. For fire detection, they applied a threshold for fire segmentation and then performed color and
fire contour analysis.

2.2.2. Deep Learning Methods

Zhao et al. [83] used a UAV equipped with GPS and deployed a saliency detection algorithm for
localization and segmentation of the fire area in aerial images. Then, a 15 layered deep convolutional
neural network architecture was employed for both low and high-level fire feature extraction and
classification. Tang et al. [84] captured 4K data using a ZenMuse XT2 dual vision sensor and applied an
adaptive sub-region select block to detect fire candidate areas in 4K resolution images. Then, a YOLOv3
backbone architecture was used for fire detection. Jiao et al. [85] used a UAV to capture and
transmit images to the ground station in real-time deploying a YOLOv3 network for fire detection.
Furthermore, they deployed a UAV equipped with a visible and an infrared camera for image
acquisition [86]. The onboard computer carried by UAV can perform local image processing and
mission planning through a YOLOv3-tiny architecture. In addition, a ground station receives images
and location information of fire spots, contributing to the detection of forest fires. Furthermore,
it provides operational commands to the UAV for path planning and re-planning. Integrating fog
computing and CNNs, Srinivas and Dua [87] employed a UAV to reduce the false alarm rates towards
the task of forest fire detection at an early stage. More recently, Barmpoutis, et al. [88,89] used an optical
360-degree complementary metal-oxide-semiconductor (CMOS) camera mounted on a UAV to capture
an unlimited field of view images. More specifically, they converted the equirectangular raw data
to cubemap and stereographic projections, respectively. Then, they used deep neural networks and
exploited fire dynamic textures aiming to reduce false alarms that are caused due to clouds, sunlight
reflections, and fire/smoke-colored objects. Experimental results demonstrate the great potential of the
proposed system for both flame and smoke detection.

2.3. Spaceborne (Satellite) Systems

Recently, mainly due to the large number of satellites launched and the decrease of associated
costs, there are many research efforts to detect forest wildfires from satellite images. Specifically, a set
of satellites were designed for Earth observation (EO, e.g., environmental monitoring or meteorology).
Depending on their orbit, satellites can be broadly classified into various categories, each having their
advantages and disadvantages. The most important categories include: (a) the geostationary orbit
(GEO), which is a circular orbit with an altitude of 35,786 kilometers and zero inclination, so that the
satellite does not move at all relative to the ground, providing a constant view of the same surface area,
(b) the low Earth orbit (LEO), which has an altitude of 2000 km or less, requires the lowest amount of
energy for satellite placement and provides high bandwidth and low communication latency, (c) the
polar sun-synchronous orbit (SSO), which is a nearly polar orbit that passes the equator at the same
local time on every pass. Most EO satellites are in specific low Earth polar SSO orbits, whose altitude
and inclination are precisely calculated so that the satellite will always observe the same scene with the
same angle of illumination coming from the Sun, so shadows appear the same on every pass.

Data from sun-synchronous satellites have high spatial resolution but low temporal resolution,
whereas geostationary satellites have high temporal resolution but low spatial resolution. Some satellites
of the first category, like Landsat or Sentinel satellites, have a large revisit time (eight-day repeat cycle
for LandSat-7/8 and approximately 2–3 days at mid-latitudes for Sentinel 2A/2B). Hence, they are
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unsuitable for real-time active forest fire detection, but only for less time-sensitive tasks, e.g., burnt
area estimation, and therefore their studies fall within the scope of this paper.

2.3.1. Fire and Smoke Detection from Sun-Synchronous Satellites

Imaging sensors in sun-synchronous satellites include three multispectral imaging sensors,
namely advanced very-high-resolution radiometer (AVHRR) [90], moderate resolution imaging
spectroradiometer (MODIS) [91], and visible infrared imaging radiometer suite (VIIRS) [92,93],
whose data have also been used for wildfire detection. The advanced very-high-resolution
radiometer (AVHRR/3) is a multipurpose imaging instrument that measures the reflectance of
the Earth and has been used for global monitoring of cloud cover, sea surface temperature, ice,
snow, and vegetation cover characteristics [90]. AVHRR instruments are or have been carried by
the National Oceanic and Atmospheric Administration (NOAA) family of polar-orbiting platforms
(polar-orbiting operational environmental satellite—POES) and European Meteorological Operational
(MetOp) satellites. The instrument provides six channels, three in the visible/near-infrared region
and three thermal infrared channels, with 1 km spatial resolution. The moderate resolution imaging
spectroradiometer (MODIS), onboard the National Aeronautics Space Administration (NASA) EO
Terra and Aqua satellites that have a revisit time of 1–2 days, capture data in 36 spectral bands ranging
in wavelengths from 0.4 to 14.4 µm and at varying spatial resolutions (2 bands at 250 m, 5 bands at
500 m, and 29 bands at 1 km). MODIS was succeeded by the visible infrared imaging radiometer
suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (NPP) and NOAA-20
weather satellites. The instrument provides 22 different spectral bands, i.e., 16 moderate-resolution
bands (M-bands, 750 m), 5 imaging resolution bands (I-bands, 375 m), and 1 day/night panchromatic
band (750 m).

Traditional Methods

These imaging sensors have also been extensively applied for near-real-time wildfire detection.
For instance in [94], Sayad et al. combined big data, remote sensing, and data mining algorithms
(artificial neural network and SVM) to process big data collected from MODIS images and extract
insights from them to predict the occurrence of wildfires. More specifically, they used pre-processed
MODIS data to create a dataset based on three parameters related to the state of the crops: namely
normalized difference vegetation index (NDVI), land surface temperature (LST), and thermal anomalies.
For wildfire prediction, they used two different supervised classification approaches based on neural
networks and SVM, achieving good prediction accuracies, i.e., 98.32% and 97.48%, respectively.
Results were assessed using several validation strategies (e.g., classification metrics, cross-validation,
and regularization) and comparisons with other wildfire prediction models, demonstrating the
efficiency of the model in predicting the occurrence of wildfires.

Several papers deal with the problem of smoke detection based on MODIS data, which is a
very challenging problem given its strong similarity with clouds, haze, and other similar phenomena.
Shukla et al. [95] proposed an algorithm for automatic detection of smoke using MODIS data, which
was based on a multiband thresholding technique for discriminating between smoke plumes and
clouds. Results suggested that the algorithm was able to isolate smoke pixels in the presence of other
scene types, such as clouds, although it performed better in identifying fresh dense smoke as compared
to highly diffused smoke. Similarly, Li et al. [96] proposed an approach to automatically separate smoke
plumes from clouds and background by analyzing MODIS data. Specifically, a previous approach
proposed by Li et al. [97] for the AVHRR sensor was improved based on spectral analysis among
the smoke, cloud, and underlying surface using MODIS data. Specifically, a multi-threshold method
was used for extracting training sample sets to train a back-propagation neural network (BPNN) to
discriminate between three classes: (smoke, cloud, and underlying surface). Results using MODIS data
of several forest fires occurred in different places and different dates were satisfactory. Advantages
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include the ability of the algorithm to detect smoke plumes in different seasons using seasonal training
data sets, as well as that it provides quantitative and continuous outputs of smoke and other objects.

Many researchers used active fire products derived from these sensors to assess various other
proposed algorithms. Hally et al. [98] examined the performance of a threshold algorithm against
commonly used products such as the VIIRS active fire product, to determine the completeness of
anomaly capture. Specifically, the study considers two commonly used active fire products: the MODIS
Collection 6 (MOD/MYD14) 1 km active fire product as outlined in Giglio et al. [99] and the VIIRS 375 m
(VNP14IMG) active fire product described in Schroeder et al. [93]. In both cases, the geographic position
of the detected hotspots, as well as the time of satellite overpass, were used. Also, Wickramasinghe et
al. [100] compared the Advanced Himawari Imager—Fire Surveillance Algorithm (AHI-FSA) across
the Northern Territory of Australia (1.4 million km2) over ten days with the well-established active fire
products from satellites: MODIS and VIIRS.

Finally, the Chinese HuanJing sun-synchronous satellites (“HuanJing” means “environment” in
Chinese) are satellites for disaster and environmental monitoring that are capable of visible, infrared,
multi-spectral, and synthetic aperture radar imaging. Lin et al. [101] presented a spatio–temporal
model (STM) based forest fire detection method that uses multiple images of the inspected scene based
on Huanjing-1B satellite images. A comparison of detection results demonstrated that the proposed
algorithm is useful to represent the spatio–temporal information contained in multi-temporal remotely
sensed data.

Deep Learning Methods

Deep Learning methods have also been recently applied for fire and smoke detection from
multispectral satellite images. Ba et al. [102] presented a new large-scale satellite imagery dataset
based on MODIS data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes
(i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world.
Using this dataset, they evaluated several state-of-the-art deep learning-based image classification
models for smoke detection and proposed SmokeNet, a new CNN model that incorporated spatial- and
channel-wise attention in CNN to enhance feature representation for scene classification. Also, Priya et
al. [103] used a dataset of 534 RGB satellite images from different sources, including MODIS images
from the NASA Worldview platform and Google. An effective approach using an Inception-v3 CNN
framework and transfer learning was used for fire and non-fire image classification. Then, the fire
regions were extracted based on thresholding and local binary patterns.

2.3.2. Fire and Smoke Detection from Geostationary Satellites

Regarding satellite imagery from geostationary satellites, important work for fire and smoke
detection has already been performed using the advanced Himawari imager (AHI) sensor of the
Himawari-8 weather satellite. Himawari 8 is a new generation of Japanese geostationary weather
satellites operated by the Japan Meteorological Agency. AHI-8 has significantly higher radiometric,
spectral, and spatial resolution than its predecessor.

Regarding Europe and the US, two additional sensors that are installed in geostationary satellites
are the European Space Agency (ESA) Meteosat second generation (MSG, a satellite series)-spinning
enhanced visible and infrared imager (SEVIRI) sensor and the NASA geostationary operational
environmental satellite (GOES)-16 advanced baseline imager (ABI) sensor. The MSG-SEVIRI
geostationary sensor is a 50 cm diameter aperture, line-by-line scanning radiometer, which provides
image data in 12 spectral channels (four visible and near-infrared (NIR), including a broadband high
resolution (1 km) visible channel, and eight thermal IR with a resolution of 3 km) with a baseline
repeat cycle of 15 min. GOES-16 is the first of the GOES-R series of the geostationary operational
environmental satellite (GOES) operated by NASA and the NOAA. The advanced baseline imager
(ABI) is its primary instrument, providing high spatial and temporal resolution imagery of the Earth
through 16 spectral bands at visible and infrared wavelengths.
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Traditional Methods

Hally et al. [98] extended previous work by the same authors Hally et al. [104] using AHI sensor
data from the Himawari geostationary satellite in the application of a multi-temporal method of
background temperature estimation, known as the broad area training (BAT). This method involves a
two-step process for geostationary data: a preprocessing step, where AHI Band 7 images are aggregated
and then a fitting step, where this spatially aggregated data are used in individual pixel fitting using a
single value decomposition (SVD) process. These fittings at the pixel level can then be compared to the
raw brightness temperature data as measured by the satellite sensor, to identify thermal anomalies
such as those caused by an active fire. Results are seen to compare favorably to active fire products
produced by low Earth orbit satellite data during the period of study. Fatkhuroyan et al. [105] perform
a study of data from fires in Sumatera and Kalimantan regions in August, September, and October 2015
and concluded that smoke detection and monitoring is feasible using pseudo-RGB images consisting
of one visual channel and two near-infrared channels. A limitation revealed by this study is that
Himawari-8/AHI is a passive sensor that very dependent on the reflection of solar radiance, so it
can only monitor the forest fire during the day-time. Xu et al. [106] investigated the feasibility of
extracting real-time information about the spatial extents of wildfires using the Himawari-8 satellite.
The algorithm is based on previous work using the MODIS sensor: it first identifies possible hotspots
and then eliminates false alarms by applying certain thresholds, similar to Giglio et al. [99]. False
alarms are then rejected by cloud, water, and coast tests based on the additional bands and comparison
with neighboring pixels. Results demonstrated that fire detection is robust to smoke and moderate
cloud obscuration and sensitive enough for early detection of wildfires.

Typically, only temporal-based fire detection algorithms are used for geostationary orbital sensors,
detecting the fire by analyzing multi-temporal changes of brightness temperature (BT). On the other
hand, polar-orbiting platforms, use spatial-based fire detection algorithms, which are commonly
classified either “fixed-threshold” or “contextual”. Aiming to combine the merits of both approaches,
Xie et al. [107] presented a spatio–temporal contextual model (STCM) that fully exploits geostationary
data’s spatial and temporal dimensions using data from Himawari-8 Satellite. They applied an
improved robust fitting algorithm to model each pixel’s diurnal temperature cycles (DTC) in the middle
and long infrared bands. For each pixel, a Kalman filter was used to blend the DTC to estimate the
true background brightness temperature.

Significant research results have also been produced using data from the GOES ABI and MSG
SEVIRI instruments. A multi-temporal change-detection technique, namely robust satellite techniques
for fires detection and monitoring (RST-FIRES) using data from the MSG-SEVIRI sensor. Filizzola
et al. [108] was seen to be very efficient for the timely detection of even small/short-living fire
incidents. Furthermore, Di Biase et al. [109] updated the satellite fire detection (SFIDE) algorithm,
previously proposed by the same authors Laneve et al. [110] to reduce the false alarm rate. Specifically,
they improved the estimation of the reference temperature used to define a fire pixel, the cloud mask
accuracy, and the exploitation of the high refresh rate of the images to implement several tests for more
accurate detection of forest fires. In Hall et al. [111], both satellite imaging sensors (GOES ABI and
MSG SEVIRI) were found to be very efficient in detecting active fire incidents. Additional sensing
systems providing such broad spatial coverage and favoring improved geostationary satellite fire data
consistency across regions could further improve performance. Reference fire data were derived from
Landsat-8 Operational Land Imager (OLI) 30 m imagery using the Schroeder et al. [112] Landsat-8 OLI
automated fire detection algorithm.

Deep Learning Methods

Very recently, Larsen et al. [113] presented a deep FCN for predicting fire smoke in satellite
imagery in near-real-time (NRT) using data from the Himawari-8/AHI sensor. Also, Phan et al. [114]
proposed a novel remote wildfire detection framework based on GOES-16 sensor imagery, which
contains three distinct stages: (i) a streaming data processing component to purify and examine raw
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image data for ROI’s, (ii) an early wildfire prediction component using deep learning architectures to
grab spatial and spectral designs for more accurate and robust detection, and (iii) a streaming data
visualization dashboard for potential wildfire incidents.

2.3.3. Fire and Smoke Detection Using CubeSats

A recent trend in remote sensing from satellites is using “Cubsats”, i.e., miniaturized satellites that
typically weigh between 1 and 10 kg and follow the popular ‘CubeSat’ standard [115], which defines the
outer dimensions of the satellite within multiple cubic units of 10 × 10 × 10 cm and can accommodate
small technology payloads to perform different scientific research or commercial functions and explore
new space technologies. Technically, it is easier for CubeSats to function in the LEO-zone due to
their unique characteristics. More than 1100 CubeSats have been successfully launched by several
universities and companies worldwide, as of January 2020.

The latest advances in satellite imagery had allowed CubeSats to rapidly discover wildfires.
Barschke et al. (2017) [116] described a nanosatellite called TUBIN (Technische Universität Berlin
Infrared Nanosatellite), which was designed to validate an infrared microbolometer for wildfire remote
sensing. Another constellation of four 6U Cubesats for monitoring forest fires and other natural
disasters was proposed in Africa and Asia [117]. The payload is an optical sensor with three spectral
bands (green, red, and near-infrared) with a revisit time of 72 h. Shah et al. [118] proposed a system
consisting of a constellation of nanosatellites equipped with multi-spectral visible to Infrared (IR)
cameras and a ground station, which will allow all surface points on the planet to be revisited at
least once in an hour. Capturing a surface location with high resolution in MWIR and LWIR allows
for the precise estimation of the thermal output of the surface. Simulations indicated that a fire of
about four hundred square meters can be detected using a payload of a multispectral IR camera
measuring incident power in two thermal infrared bands (mid-wave and long-wave). The system
will use onboard data processing, enabling an early wildfire warning within 30 min and minimizing
bandwidth requirements. Additionally, compressed raw images can be transmitted to the ground
station to provide global thermal data updated every 90 min. The first satellite is planned for launch in
late 2020 with the data available for research purposes.

3. Discussion and Conclusions

Three categories of early fire and smoke detection systems have been analyzed and compared
(Table 1) thoroughly in this literature review paper, namely terrestrial, unmanned aerial vehicles, and
satellite-based systems. In general, terrestrial systems tend to be more efficient in terms of accuracy
and response time to wildfire incidents. Furthermore, these systems offer high spatial resolution
depending on the camera resolution and the viewing angle/distance; however, their coverage is limited
when compared to the other two solutions, as the cameras are placed in fixed positions and additional
limitations may apply (e.g., occlusions).

On the other hand, aerial-based systems gained recently a lot of attention due to the rapid
development of UAV technology. Such systems provide a broader and more accurate perception
of the fire, even in regions that are inaccessible or considered too dangerous for fire-fighting crews.
In addition, UAVs can cover wider areas and are flexible, in the sense that they monitor different areas,
as needed. Recent technological achievements have led to better camera resolutions offering high
spatial resolution, wider field of view, and better battery autonomy. The latest UAVs are equipped with
both visible and infrared cameras, improving the detection accuracy and allowing night operation;
however, they are affected by weather conditions and, in many cases, their flight time is limited.
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Table 1. Multispectral imaging systems and their characteristics.

(Satellite)-Sensor Spectral Bands Access to the
Data

Specs/Advantages/Limitations Spatial
Scale

Spatial Resolution Data Coverage Accuracy Range

Te
rr

es
tr

ia
l Optical Visible

spectrum
Both web

cameras and
image and

video datasets
are available

Easy to operate, limited field of
view, need to be carefully placed

in order to ensure adequate
visibility.

Local
Very high spatial resolution
(centimeters) depending on

camera resolution and
distance between the
camera and the event

Limited
coverage

depending the
specific task of

each system

85%–100%
[35,40,58,60]

IR Infrared
spectrum

Multimodal Multispectral

A
er

ia
l

Optical Visible
spectrum

Limited number
of accessible

published data

Broader and more accurate
perception of the fire, cover

wider areas, flexible, affected by
weather conditions, limited flight

time.

Local—Regional
High spatial resolution

depending on flight
altitude, camera resolution
and distance between the

camera and the event

Coverage of
hundred
hectares

depending on
battery capacity.

70%–94.6%
[75,86,89]

IR Infrared
spectrum

Multimodal Multispectral

Sa
te

ll
it

e

Terra/Aqua-MODIS
[118]

36 (0.4–14.4 µm) Registration
Required
(NASA)

Easily accessible, limited spatial
resolution, revisit time: 1–2 days

Global 0.25 km (bands 1–2) 0.5 km
(bands 3–7)

1 km (bands 8–36)

Earth 92.75%–98.32%
[94–96,99,102]

Himawari-8/9—AHI-8
[119]

16 (0.4–13.4 µm) Registration
Required/

(Himawari
Cloud)

Imaging sensors with high
radiometric, spectral, and

temporal resolution. 10 min (Full
disk), revisit time: 5 min for

areas in Japan/Australia)

Regional 0.5 km or 1 km for visible
and near-infrared bands

and 2 km for infrared bands

East Asia and
Western Pacific

75%–99.5%
[98,100,104–107,113]

MSG—SEVIRI [120] 12 (0.4–13.4 µm) Registration
Required

(EUMETSAT

Low noise in the long-wave IR
channels, tracking of dust storms
in near-real-time, susceptibility

of the larger field of view to
contamination by cloud and lack

of dual-view capability, revisit
time: 5–15 min

Regional 1 km for the
high-resolution visible

channel
3 km for the infrared and

the 3 other visible channels

Atlantic Ocean,
Europe and

Africa

71.1%–98%
[108–111]

GOES-16ABI [121] 16 (0.4–13.4 µm) Registration
Required
(NOAA)

Infrared resolutions allow the
detection of much smaller
wildland fires with high
temporal resolution but

relatively low spatial resolution,
and delays in data delivery,

revisit time: 5–15 min

Regional 0.5 km for the 0.64 µm
visible channel
1 km for other
visible/near-IR

2 km for bands > 2 µm

Western
Hemisphere
(North and

South America)

94%–98%
[111,114]
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Table 1. Cont.

(Satellite)-Sensor Spectral Bands Access to the
Data

Specs/Advantages/Limitations Spatial
Scale

Spatial Resolution Data Coverage Accuracy Range

HuanJing
(HJ)-1B—WVC (Wide

View CCD
Camera)/IRMSS

(Infrared Multispectral
Scanner) [122]

WVC: 4
(0.43–0.9 µm)

IRMSS: 4
(0.75–12.5 µm)

Registration
Required

Lack of an onboard calibration
system to track HJ-1 sensors’

on-orbit behavior throughout the
life of the mission, revisit time:

4 days

Regional WVC: 30 m
IRMSS: 150–300 m

Asian and
Pacific Region

94.45% [101]

POES/MetOp—AVHRR
[123]

6 (0.58–12.5 µm) Registration
Required
(NOAA)

Coarse spatial resolution, revisit
time: 6 h

Global 1.1 km by 4 km at nadir Earth 99.6% [97]

S-NPP/
NOAA-20/NOAA—

VIIRS-375 m [124,125]

16 M-bands
(0.4–12.5 µm)

5 I-bands
(0.6–12.4 µm)

1 DNB
(0.5–0.9 µm)

Registration
Required
(NASA)

Increased spatial resolution,
improved mapping of large fire

perimeters, revisit time: 12 h

Global 0.75 km (M-bands)
0.375 km (I-bands)

0.75 km (DNB)

Earth 89%–98.8% [93]

CubeSats (data refer to a
specific design from

[126])

2: MWIR
(3–5 µm) and

LWIR (8–12 µm)

Commercial
access planned

Small physical size, reduced cost,
improved temporal

resolution/response time, Revisit
time: less than 1 h.

Global 0.2 km Wide coverage
in orbit

The first satellite is
planned for launch in

late 2020
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Finally, Earth Observation satellite systems have been used successfully for wildfire detection,
mainly due to their large-scale coverage. The majority of satellites providing earth imagery are
either geostatic or in the near-polar sun-synchronous orbit and include multispectral imaging
sensors. Sun-synchronous satellites provide data with high spatial resolution but low temporal
resolution, while geostationary satellites have a high temporal resolution but low spatial resolution.
More recently, advances in nanomaterials and micro-electronics technologies have allowed the use
of tiny low-Earth-orbiting satellites, known as CubeSats. CubeSats have significant advantages in
comparison with traditional satellites regarding smoke and fire detection, since they are more effective
in terms of costs, temporal resolution/response time, and coverage. In addition, they are smaller in size
than traditional satellites and need less time to be put into orbit; however, one issue that needs to be
tackled is their poor ability to transmit large amounts of data to the ground. From the aforementioned
analysis, it is clear that each category has its advantages and disadvantages. To this end, recent research
efforts on wildfire detection [127–129] focus either on the combination of these technologies or on the
use of additional input sources such as crowdsourcing, social media, and weather forecasting.

It is worth mentioning that most of the institutions and agencies aiming to support wildfire
management at the national and regional level use either satellites or combine them with a small
fleet of planes to detect and map the extent, spread, and impact of forest fires [130,131]. Furthermore,
various organizations have installed network-connected optical cameras in or near wildland areas
sharing live images on the web to assist early forest fire detection [132].

A detailed comparison between the three categories of early fire detection systems in terms of
the performance (Accuracy), number of research papers (Volume of works), the potential for future
improvement (Future potential), the minimum fire size that can be detected (Minimum fire size),
the monitoring area covered by the system (Coverage area), and time needed for early fire detection
(Response time) in the scale 0 (low) to 5 (high) is shown in Figure 3. Most of the literature shows that
terrestrial systems have been extensively studied, achieving high accuracy rates and fast response
times, despite the limited coverage area that they offer. Thus, large networks of ground sensors can
be deployed to increase the coverage area; however, in this case, a trade-off between the number
of sensors, cost, and complexity is required. On the other hand, aerial and satellite-based systems
provide better coverage. These systems have already shown their great potential and accuracy rates
and response times.
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Figure 3. Radar chart showcasing the findings of this review for different early forest fire detection
systems with regards to accuracy, response time, coverage area, future potential, and volume of works
in the scale 0 (low) to 5 (high).

Also, the terrestrial and aerial-based systems can detect fires at a very early stage depending on their
distance from the fire and their spatial resolution in parallel with short latency time [132]. In contrast,
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regarding satellite-based systems, time latency and minimum detectable fire size are expected to be
improved in the following years. Currently, imaging sensors in sun-synchronous-orbiting satellites,
such as MODIS, can detect after observation very small fires (up to 50 m2) under near-ideal conditions
and an average size of 30 × 30 = 900 m2 under a variety of conditions [133]. Regarding the latency
time, MODIS fire products are produced and delivered to fire managers partners in near-real-time
(within 2–4 h of when MODIS collected the observations) [133]. On the other hand, geostationary
sensors, like Himawari-8 AHI, can provide observations every 10–30 min, making them ideal for
near-real-time fire surveillance, at the cost of a higher spatial resolution (2 km pixel size, which can
be reduced to 500 m) [100]. Furthermore, the creation of new datasets for the training of novel deep
learning algorithms (e.g., super-resolution), as well as advances in transmission technologies will
further contribute towards this direction.

Similarly, Figure 4 demonstrates some attributes for each of the three sensor types: visible,
infrared, and multispectral. Although the research community has thoroughly utilized optical-based
systems, multispectral approaches seem to achieve better accuracy rates, due to the complementarity
of information provided by different spectral bands; however, the use of multispectral technology
increases significantly the overall cost of the system. This fact justifies the extensive use of low-cost
optical sensors by many research works in the literature. Nevertheless, the wider use of multispectral
sensors in different systems is expected to further improve the performance of early wildfire detection
systems. To this end, extensive research is still needed on systems that integrate multimodal sensing
technologies along with advanced deep-learning algorithms.
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Figure 4. Radar chart showcasing the findings of this review for different sensor types with regards to
accuracy, response time, cost, future potential, and volume of works in the scale 0 (low) to 5 (high).

Furthermore, to explore the evolution of the forest fire detection research domain, we carried
out a bibliometric analysis. The initial search yielded over 2024 papers related to forest fire detection
published in the Web of Science (WoS) database [134]. Figure 5 shows the trend in the number of
articles published between 1 January 1990 and 31 October 2020. Narrowing the results to only the
imaging research area, the search yielded 697 published articles (Figure 6). These results show that
there is a growth in publications in the last 30 years. Of these, 378 are related to forest fire detection
based on terrestrial systems, 59 based on aerial systems, and 260 based on satellite systems (Figure 7).
The results of Figure 7 indicate that the field of forest fire detection in the image research area for
terrestrial, aerial, and satellite-based systems is still evolving.
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Figure 5. The number of published articles per year related to forest fire detection. Data retrieved from
Web of Science [134] for dates between 1990 to October 2020.
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Figure 6. The number of published articles per year related to forest fire detection in the imaging
research area. Data retrieved from Web of Science [134] for dates between 1990 to October 2020.
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Figure 7. The number of published articles per year for terrestrial, aerial, and satellite-based systems.
The analysis was performed for forest fire detection in the imaging research area. Data retrieved from
Web of Science [134] for dates between 1990 to October 2020.

Subsequently, to provide information on the identity of papers and the corresponding systems
that receive the most citations, we performed a quantitative citation analysis. A citation occurs when
one paper refers to another paper. In this analysis (Figure 8), we identified that papers related to
forest fire detection in the imaging satellite-based research area receive the most citations followed by
terrestrial and aerial-based papers. Finally, to identify the study area of the aforementioned papers,
a study analysis of the funding agencies was performed. In Figure 9, ten of the organizations and
agencies that were the major sponsors of these papers are shown. More specifically, the National
Natural Science Foundation of China (NSFC) has funded 42 papers related to forest fire detection in
the imaging research area, while National Aeronautics Space Administration (NASA) has funded
37 papers. In addition, organizations and agencies from Canada, the European Union, France, the USA,
and the UK have funded more than 79 papers related to the field of imaging-based forest fire detection.
Similarly, in the second analysis, the authors’ countries of affiliation were mapped (Figure 10). To this
end, over 25 percent and 15 percent of the authors are affiliated with an organization that is based in
the USA and China, respectively.
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Figure 8. The number of times cited the published articles per year for terrestrial, aerial, and
satellite-based systems. The analysis was performed for forest fire detection in the imaging research
area. Data retrieved from Web of Science [134] for dates between 1990 to October 2020.
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Figure 9. Organizations and agencies that funded most of the published articles for forest fire detection
in the imaging research area. Data retrieved from Web of Science [134] for dates between 1990 to
October 2020.
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Figure 10. Authors’ affiliation by country (%) for forest fire detection in the imaging research area.
Data retrieved from Web of Science [134] for dates between 1990 to October 2020.
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Abbreviations

ABI Advanced Baseline Imager
ADF Adaptive Decision Fusion
AHI Advanced Himawari Imager
AVHRR Advanced Very-High-Resolution Radiometer
BAT Broad Area Training
BPNN Back-Propagation Neural Network
BT Brightness Temperature
CCD Charge-Coupled Device
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
DC Deep Convolutional
DL Deep Learning
DTC Diurnal Temperature Cycles
ECEF Earth-Centered Earth-Fixed
EO Earth Observation
ESA European Space Agency
FCN Fully Convolutional Network
GAN Generative Adversarial Network
GEO Geostationary Orbit
GOES Geostationary Operational Environmental Satellite
GPS Global Positioning System
h-LDS higher-order LDS
HMM Hidden Markov Models
HOF Histograms of Optical Flow
HOG Histograms of Oriented Gradients
HoGP Histograms of Grassmannian Points
IMU Inertial Measurement Unit
IoMT Internet of Multimedia Things
IR InfraRed
LDS Linear Dynamical Systems
LEO Low Earth Orbit
LST Land Surface Temperature
LSTM Long Short-Term Memory
LWIR Long Wavelength InfraRed
MetOp Meteorological Operational
MODIS Moderate Resolution Imaging Spectroradiometer
MR Mixed Reality
MSER Maximally Stable Extremal Regions
MSG Meteosat Second Generation
MWIR Middle Wavelength InfraRed
NDVI Normalized Difference Vegetation Index
NED North-East-Down
NIR Near-InfraRed
NOAA National Oceanic and Atmospheric Administration
NPP National Polar-orbiting Partnership
NRT Near-Real-Time
OLI Operational Land Imager
PISA Pixelwise Image Saliency Aggregating
POES Polar-orbiting Operational Environmental Satellite
R-CNN Region-Based Convolutional Neural Networks
ReLU Rectified Linear Unit
RST Robust Satellite Techniques
SEVIRI Spinning Enhanced Visible and Infrared Imager
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SFIDE Satellite Fire Detection
sh-LDS stabilized h-LDS
SLAM Simultaneous Localization and Mapping
SroFs Suspected Regions of Fire
SSO Sun-Synchronous Orbit
STCM Spatio–temporal Contextual Model
STM Spatio–Temporal Model
SVD Single Value Decomposition
SVM Support Vector Machine
UAV Unmanned Aerial Vehicles
VIIRS Visible Infrared Imaging Radiometer Suite
WoS Web of Science
WSN Wireless Sensor Network
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30. Günay, O.; Taşdemir, K.; Töreyin, B.U.; Çetin, A.E. Fire detection in video using LMS based active learning.
Fire Technol. 2010, 46, 551–577. [CrossRef]

31. Teng, Z.; Kim, J.H.; Kang, D.J. Fire detection based on hidden Markov models. Int. J. Control Autom. Syst.
2010, 8, 822–830. [CrossRef]

32. Töreyin, B.U. Smoke detection in compressed video. In Applications of Digital Image Processing XLI;
International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10752, p. 1075232.

33. Savcı, M.M.; Yıldırım, Y.; Saygılı, G.; Töreyin, B.U. Fire detection in H. 264 compressed video. In Proceedings
of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 8310–8314.

34. Chen, J.; He, Y.; Wang, J. Multi-feature fusion based fast video flame detection. Build. Environ. 2010, 45,
1113–1122. [CrossRef]
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