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Houstis 

Abstract— This paper presents a novel approach for fast rigid docking of proteins based on geometric complementarity. After 
extraction of the 3D molecular surface, a set of local surface patches is generated based on the local surface curvature. The shape 
complementarity between a pair of patches is calculated using an efficient shape descriptor, the Shape Impact Descriptor. The key 
property of the Shape Impact Descriptor is its rotation invariance, which obviates the need for taking an exhaustive set of rotations 
for each pair of patches. Thus, complementarity matching between two patches is reduced to a simple histogram matching. Finally, 
a condensed set of almost complementary pairs of surface patches is supplied as input to the final scoring step, where each pose is 
evaluated using a 3D distance grid. The experimental results prove that the proposed method demonstrates superior performance 
over other well-known geometry-based, rigid-docking approaches.  

Index Terms — protein docking, rigid body, geometric complementarity, shape impact descriptor. 

——————————   Φ   —————————— 

1 INTRODUCTION 
ROTEIN functions are carried out through their interactions with other biological molecules, such as proteins, nucleic 

acids, lipids, sugars, nucleotides, ions and water. A failure to create the appropriate complex, during a protein interaction, 

may be the cause of several serious diseases, such as Alzheimer’s disease, Huntington's disease, cystic fibrosis, etc. Thus, it 

is not surprising that research in protein interactions has attracted special interest from the scientific community for dec-

ades and still remains a hot research topic in Biochemistry, Biophysics and Bioinformatics. The study of protein interac-

tions may involve experimental approaches like Co-immunoprecipitation, BiFC, In-vivo crosslinking, DPI, FCS, crystallo-

graphy, etc. as well as computational approaches like Protein-protein docking, binding site prediction, protein interaction 

networks, etc. While determining the existence or not of an interaction can be easily carried out experimentally, the same is 

not possible yet for the accurate prediction of the binding interface, unless crystallography is applied. Therefore, computa-

tional approaches of protein-ligand docking are very popular to pharmaceutical companies, providing an important tool 

in computer-assisted drug design. 

The problem of molecular docking involves prediction of a ligand conformation and orientation, also known as pose, 

within the active site of a receptor. The stability of a pose is a result of the so-called “weak interactions” (Coulomb forces, 

hydrogen bonds, Van der Waals forces, hydrophobic interactions). However, apart from the physicochemical complemen-

tarity, geometric complementarity is not underestimated and it is taken into consideration in several docking algorithms. 
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1.1 Related Work 
Protein docking has been evolved into a distinct computational discipline, bringing together techniques from a broad spec-

trum of sciences such as physics, chemistry, biology, mathematics and computing, with the objective to model in silico 

how proteins behave [1]. A wide spectrum of algorithms including Fast Fourier Transform (FFT) correlations [5], geome-

tric hashing [16], and Monte Carlo (MC) [32] techniques has been utilized in current docking algorithms. The aim in all of 

the above approaches is to produce a set of candidate docking poses, among which a near-native binding mode is often 

observed. In order to evaluate the feasibility of each pose several scoring functions have been introduced, based either on 

geometric complementarity or other non-geometric factors such as desolvation, hydrophobicity, and electrostatics [19], 

[33]. 

Regarding geometric docking, two broad categories of algorithms can be identified: a) brute force scanning of the trans-

formation space and b) local shape feature matching. Brute force algorithms [2], [3], [4] search the entire 6-dimensional 

transformation space of the ligand. They begin with a simplified rigid body representation of protein shape obtained by 

projecting each protein onto a regular 3D Cartesian grid, and by distinguishing grid cells according to whether they are 

near or intersect the protein surface, or are deeply buried within the core of the protein. Then, docking search is performed 

by scoring the degree of overlap between pairs of grids in different relative orientations. The running times of those algo-

rithms may reach days of CPU time. In order to make the procedure faster, several techniques have been utilized, such as 

the FFT [5]. 3D FFT has been incorporated in several correlation-based docking algorithms [6], [7], [8]. A recent overview 

of the principles of grid-based FFT docking approaches is given in [9]. In [10], a grid-free Spherical Polar Fourier (SPF) 

approach is introduced which allows rotational correlations to be calculated rapidly using one-dimensional (1D) FFTs. 

Towards the direction to improve the computation time in brute-force algorithms, ZDOCK [19] introduces a shape com-

plementarity scoring function called Pairwise Shape Complementarity (PSC). The method computes the total number of 

receptor-ligand atom pairs within a distance cutoff. In contrast with traditional FFT based methods, PSC does not explicit-

ly explore the entire rotational space resulting in low computation times. Finally, there are also non-deterministic methods 

in the category of brute-force docking approaches that use genetic algorithms [20], [21]. 

Local shape feature matching approaches usually require a representation of the molecular surface, attempting to find 

regions of interest on the surface. Then, they apply pairwise complementarity matching of these regions between the re-

ceptor and the ligand. One of the first docking approaches, based on local shape feature matching, was introduced in 1982 

[11]. In [12], a method to match local curvature maxima and minima points was presented. This technique has been ex-

tended in [13], [14]. In [15], a method based on geometric hashing [16] is presented. Each protein surface is first pre-
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processed to give a list of critical points (“pits”, “caps”, and “belts”) which are then compared, using geometric hashing, to 

generate a relatively small number of trial docking orientations for grid scoring. The method requires low computation 

times, comparing with other docking algorithms, however, it is not so efficient in predicting the correct pose since the pits, 

caps and belts do not enclose significant shape information. A more recent approach extracts local features from the sol-

vent excluded surface of a protein and is called context shapes [17]. These are boolean data structures and correspond to 

significantly large parts of the protein surface. Complementarity shape matching is achieved using efficient boolean opera-

tions. The method demonstrates superior performance over other similar approaches in predicting the correct docking 

pose using only geometric criteria. However, the exhaustive search of relative orientations for each local feature, even with 

the use of a pre-calculated lookup table, increases the computational cost as well as the memory requirements. In an at-

tempt to deal with the limitations of the above mentioned local shape feature matching methods, the proposed approach 

provides a fast solution, while being at the same time efficient in terms of complementarity shape matching. 

 More recent docking approaches aim to combine geometric and physicochemical information in order to produce more 

accurate solutions. In [35], geometric complementarity matching, achieved by geometric hashing, and several  knowledge 

- based potentials, including electrostatics, desolvation, residue contact preferences and Van-derWaals potential, are effi-

ciently merged, demonstrating remarkable results in a test set of 68 bound and 30 unbound test cases. The most important 

conclusion that can be drawn by this study is that none of the two aforementioned factors, geometric and physicochemical 

complementarity, should be underestimated, but the enhancement of a geometric method with additional non-geometric 

properties, during the soring phase, can successfully discard false positive predictions and improve the results of the algo-

rithm.  

1.2 Method Overview and Contributions 
The proposed method can be summarized as in the block diagram presented in Fig. 1. The input is the PDB [22] file of the 

protein, which is used to generate the Solvent Excluded Surface (SES). Then, a set of critical points is extracted from the 

surface. The critical points correspond to the centers of small elementary patches (either convex or concave). Then, for each 

critical point, an Extended Surface Patch (ESP) is created, which spreads over a wider surface area around that point. Each 

ESP that corresponds to a convex (or concave) elementary patch of the receptor protein is matched with all ESPs that cor-

respond to concave (or convex) elementary patches of the ligand protein. For complementarity shape matching a new rota-

tion-invariant shape descriptor, called the Shape Impact Descriptor (SID), is used. Since SID is invariant to rotation, there 

is no need to rotate the ESP of the ligand with respect to the receptor patch. The pairs of ESPs ranked as most complemen-

tary are given as input to the final step of the algorithm, where the candidate poses are scored, using a distance transform 
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grid. 

 

Fig. 1. Block diagram of the proposed method 
 

The major strength of the proposed approach is that it introduces a shape similarity descriptor to measure surface com-

plementarity. This is based on the notion that two ESPs with complementary shape can be also regarded as of similar 

shape if a) they have a specific size and b) the second ESP is turned upside down so that the inner part of the ligand sur-

face matches the outer part of the receptor surface. The size of the ESP should be relevantly large to enclose significant 

shape information, while at the same time it should be kept within a maximum radius, since with further growth in ESP’s 

size the criterion (b) may not be fulfilled. While there are only few techniques for efficient complementarity surface match-

ing, regarding similarity shape matching a wider variety of algorithms is available. Thus, following the notion described 

above, it is easier to develop a method for partial surface complementarity by appropriately modifying a shape matching 

technique. The idea of matching the negative surface of a protein to deal with complementarity matching has been used in 

the past for similar problems. The DOCK program [36], which is widely used in protein docking, is based on generating a 

negative image of the receptor’s docking site. Then, the shape of a ligand is matched with this negative image in terms of 

similarity. This approach, which is analysed in [37], differs from the proposed method in the following: the method pre-

sented in [37] requires an approximation of the imaginary atoms that lie at the other side of the receptor’s negative surface, 

since mathching is performed by atom-by-atom comparison with the atoms of the ligand. On the other hand, our method 

is applied directly on the surfaces of the interacting molecules in a more efficient way. 
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Another innovative feature is that the proposed Shape Impact Descriptor is invariant to any rotation of the matching 

ESPs, which obviates the need for an exhaustive search of relative orientations, during the pairwise complementarity 

matching of ESPs. This reduces significantly the computation time and provides an efficient fast filtering for the final scor-

ing stage. 

The reduction of computation time is of crucial importance for a docking algorithm, however, the prediction accuracy 

should by no means be underestimated. The proposed method achieves significant improvement in prediction accuracy 

by introducing two conceptually simple features in the geometric scoring stage. The first involves a set of additional trans-

lations, after superimposition of the two ESPs. The reason is that an actual contact point may not always coincide with a 

critical point. In fact the actual contact point may lie in a small area close to the critical point. By slightly moving the ligand 

ESP within a small area close to the critical point, it is more likely to find a pose, which is close to the original pose. The 

second feature is a slight modification of the scoring function. More specifically, instead of using the ligand surface points 

to access the distance grid, the triangle centers of the ligand surface are used. The contribution of each triangle to the total 

score is multiplied by the area of the triangle. This results in a more accurate scoring, taking into account that the point 

distribution is not uniform across the 3D mesh of the molecular surface.  

The idea behind the proposed approach was inspired by the method presented in [17]. The concept of pairwise com-

plementarity matching of equally sized surface patches is common to both approaches; however, the method presented in 

this paper introduces several innovative features. First of all, in [17], the authors adopt the method in [14] in order to gen-

erate an initial set of sparse critical points, while, in this paper, a new method is developed (Section 2), which provides a 

more approximate representation with sparse points and it can be applied also to non-molecular 3D meshes. Furthermore, 

the two methods use different local descriptors to measure the shape complementarity of surface patches. In [17], the Con-

text Shapes are used, which require an exhaustive set of rotations of the ligand patch with respect to the receptor. In the 

proposed approach, a new descriptor is introduced, the Shape Impact Descriptor, which is rotation-invariant, thus, it does 

not require several rotations of the ligand. This provides a fast geometric filtering, keeping only a very small subset of 

candidate poses for the final scoring step. Finally, the proposed method provides an additional scoring step, which is an 

improvement of the distance grid used in [15], in order to produce more accurate results. 

The rest of the paper is organized as follows: in Section 2 a new approach for extraction of critical points from the mole-

cular surface is introduced. In Section 3, a description of the Shape Impact Descriptor is given, while in Section 4, the final 

step of the algorithm, which includes alignment and geometric scoring is presented. Then, in Section 5, the experimental 

results are presented, where the proposed method is compared with other state-of-the-art approaches. Finally, conclusions 
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are drawn in Section 6. 

2 MOLECULAR SURFACE REPRESENTATION AND CRITICAL POINTS EXTRACTION 
A local shape feature matching algorithm for protein docking requires, as a first step, an appropriate representation of the 

molecular surface. In this work, the Solvent Excluded Surface (SES) [23] has been used, which efficiently represents the 

shape of a protein. SES is calculated by rolling a probe sphere (of size equal to the size of the solvent molecule) over the 

exposed contact surface of each atom. In order to generate the SES, the Maximal Speed Molecular Surface (MSMS) [24] 

algorithm has been utilized.  

Given the SES of a protein as input, a set of critical points can be extracted. These are usually the centers of concave 

(holes), convex (knobs) or saddle areas of the molecular surface. Several approaches have been utilized to derive critical 

points from SES. One of the most widely used is the sparse surface representation [25]. The sparse surface consists of three 

types of points called caps, pits and belts. These points correspond to the face centers of convex, concave and flat areas of 

the surface, respectively. The face centers are calculated by projecting the centroid of each face to the surface in the normal 

direction. 

 

Fig. 2. Estimation of the local curvature around a point P 
 

In this paper, a method for generating critical points based on the local curvature of the surface is introduced. The rea-

son for not adopting the sparse surface [25] to extract critical points is that the proposed method is applied directly to the 

3D mesh, while the sparse surface requires additional information about the surface atoms. Thus, the sparse surface [25] 

can be used to estimate the local curvature only for molecular surfaces extracted using the Connolly algorithm, while the 

proposed approach is applicable to all types of triangulated meshes. 

More specifically, for each point P of the molecular surface, the vector k, which provides a local estimation of the curva-

ture, is calculated as follows (Fig. 2): 
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and qi is the vector from P to Qi. 

For surface points P that belong to convex areas, their corresponding vectors k point at the inner part of the molecule, 

while the vectors of points that belong to concave areas point at the outer part of the molecule (Fig. 2). In flat areas, the 

vectors are almost tangential to the surface (they point neither at inner nor outer part of the molecule). This can provide an 

initial segmentation of the SES into three distinct regions according to the curvature (convex, concave and flat regions), 

which is reduced to selecting continuous regions where the vectors point at the same direction (inner, outer or tangential 

to molecular surface). In Fig. 3, a Connolly surface, segmented into different regions according to the curvature, is de-

picted. Convex areas are marked with red, concave areas with blue and flat areas with green color, respectively. 
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Fig. 3. Segmentation of SES into convex, concave and flat regions. The critical points are represented by yellow dots.   
 

These areas need to be further segmented into smaller patches. The centers of these patches will eventually provide the 

set of critical points. The algorithm for the segmentation of these areas (Fig. 4) consists of the following steps: 

Step 1: select a continuous region of surface points of the same type (convex, concave or flat). 

Step 2: rank all region points according to their distance from the region contour and select those with the maximum 

distance as seed points. In Fig. 4 (a), the two selected seed points are marked with the blue dots. 

Step 3: expand each seed point uniformly to all directions along the surface until the region contour is reached. In the 

example shown in Fig. 4 (b), the contour is reached at the second level of expansion for both seed points. The set of surface 

points, which are grouped around a seed point, constitute an elementary patch (convex, concave or flat) centered at the 

seed point (Fig. 4 (c)). If a seed point is already included in a group centered at another seed point, it is removed from the 

seed points list. 
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Fig. 4. The steps for segmenting a continuous region of surface points of the same type: (a) select the most distant 
points from the region contour as seed points (b) expand uniformly to all directions until the region contour is 
reached; the numbers represent the level of expansion around the seed point (c) group all surface points covered by 
the expansion around each seed point; these sets of points constitute the elementary patches.   

 

In Fig. 3, the yellow points represent the centers of elementary patches after the segmentation step. The procedure de-

scribed above results in a sparse set of critical surface points. These can be characterized as convex, concave or flat, accord-

ing to the type of their corresponding elementary patches. Critical points provide a sufficient approximation of the mole-

cular surface, which significantly reduces the search space in local shape feature matching algorithms. In our approach, 

the convex points of the receptor are matched with the concave points of the ligand and vice versa (excluding flat points) 

in order to find candidate poses. The matching relies on the shape complementarity between the extended patches which 

correspond to each critical point. The Shape Impact Descriptor used for complementarity matching is described in the fol-

lowing subsection. 

3 THE SHAPE IMPACT DESCRIPTOR 
The idea of local shape complementarity matching in this paper is similar to the one presented in [17]. More specifically, 

we are interested in finding one or more Possible Contact Points (PCPs) from the receptor and their corresponding points 

from the ligand. These PCPs can be derived from the sparse critical surface points of each molecule, since sparse critical 

surface provides a good approximation of the molecular surface. If two PCPs, one from the receptor and one from the li-

gand, are actual contact points, the ligand is translated so that its PCP coincides with the receptor’s PCP. Then the ligand is 

appropriately rotated around that point in order to find the optimal pose. 

It can be easily inferred from the above that for a pair of actual contact points, the ESPs, which are centered at these 

points, should be parts of the actual binding site and reveal shape complementarity. Thus, in order to identify candidate 
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poses, a complementarity matching of all potential pairs of ESPs takes place. In the proposed approach, the ESPs of the 

receptor centered at convex critical points are matched with the ESPs of the ligand centered at concave critical points and 

vice versa. This is due to the assumption that a convex critical point is highly probable to match with a concave critical 

point, while other combinations (convex-convex, concave-concave, convex-flat, concave flat) are less likely to happen. Fi-

nally, the case of flat-flat critical points is not taken into account, even if it is very likely to happen. The reason is that the 

discriminative power of a complementarity matching algorithm cannot be fully exploited in this case, since two flat-only 

ESPs can be both complementary and similar at the same time. Therefore, at least one convex-concave or concave-convex 

combination should appear in every pair of matching ESPs. 

3.1 Preprocessing 
Given the SES of a protein along with the set of critical points described in Section 2, an ESP is extracted as follows: 

Firstly, a sphere of a given radius E centered at a critical point is created. The ESP consists of the part of the SES 

(points/triangles) enclosed within the sphere. In order to discard small unconnected surface parts enclosed within the 

sphere, an additional filtering based on the geodesic distance G from the center is applied. Geodesic distance between two 

surface points is the shortest path on the surface connecting these points. In Fig. 5, the creation of an ESP is depicted. Based 

only on Euclidean distance between the ESP center K and all surface points, both S1 and S2 surface parts are included. 

However, points that belong to the unconnected surface part S2 are very far from the ESP center in terms of geodesic dis-

tance, thus, they should be discarded. Surface points with geodesic distance greater than a predefined threshold (Gmax) are 

excluded from the ESP. The value of Gmax has been experimentally determined and the value that was used for the experi-

ments is given in Table IV. 

 

Fig. 5. Removal of unconnected surface parts using geodesic distance: taking into account only Euclidean distances 
from the center K of the ESP, both S1 and S2 surface parts are enclosed. However, points of S2 have geodesic dis-
tances greater than the predefined threshold Gmax, thus, they are discarded. 

 

In Fig. 6, a pair of complementary ESPs of the 1CGI complex is depicted. Their centers (red spheres) are actual contact 
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points in the SESs of the two interacting proteins. Note that in both Fig. 6a and 6b, the outer parts of the surface patches 

are shown. In Fig. 6c, the inner part of the ligand ESP is depicted. It is obvious that the latter patch has similar shape with 

the receptor ESP (Fig. 6a), if its inner part is treated as outer and vice versa. Based on this observation, the complementari-

ty matching of ESPs can be reduced to a similarity matching problem, using a shape similarity descriptor, the Shape Im-

pact Descriptor. 

 

Fig. 6. a) an ESP of the receptor of the 1CGI complex (large protrusion); b) the ESP of the ligand (deep cavity) cen-
tered at a critical point which is a point of actual contact with the ESP in a); c) the ESP of b) turned upside down so 
that the inner surface is visible. The patches in a) and c) have approximately similar shapes. 

 

The Shape Impact Descriptor was first introduced in [26] as a shape similarity measure for 3D objects. In the present 

work, the 3D objects are the ESPs of the receptor and the ligand. In order to proceed to descriptor extraction, the triangu-

lated mesh representation of the ESPs has to be transformed into a binary 3D function. More specifically, the triangulated 

mesh, after translation, is placed inside a cubic grid (Fig. 7). The binary 3D function f(i,j,k) for each voxel [i,j,k] of the cubic 

grid is given as: 

 

         ( ) =kjif ,,  

 

Note that in the above equation voxels that lie inside the molecule are not taken into account, since only surface points 

lead to non-zero values of f(i,j,k). Note also that scaling normalization of the 3D mesh is not required in this case since all 

ESPs have the same size. 

1,       when at least one surface point lies inside the voxel 

0,       otherwise 
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Fig. 7. a) An ESP of the receptor of the 1AY7 complex (triangulated mesh); b) the same ESP represented as a binary 
3D function f. Here only the voxels (red boxes) where f has non-zero values are depicted. 

3.2 Descriptor Extraction 
The key idea of the Shape Impact Descriptor (SID) is the description of the resulting phenomena that occur by the insertion 

of the 3D object in the space. It is expected that similar objects will result in similar physical phenomena. Regarding the 

specific problem of complementarity matching between two ESPs, presented in this paper, SID can provide an efficient 

geometric descriptor. Some obvious selections are the traditional electrostatic force field (following the Coulomb law) and 

the Newtonian force field. More sophisticated selections could involve the generalized Einstein field theory, or the Max-

well electromagnetic field theory [34]. 

In order to compute a field, a cause for the field existence should be selected. Thus, every voxel of the 3D object is con-

sidered as point mass, (or, equivalently as a point charge). Any 3D object can be considered as a distributed mass (or a 

distributed charge) with a specific distribution, resulting in a static field around it. More specifically, in every point x = [x y 

z]T of the 3D space that is not occupied by the object, the density and the potential of the field can be computed according 

to: 
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where r = 1,2, . . . is a free parameter that defines the field’s law. It is obvious that for r=2, the generalized field is iden-

tical to the classical Newtonian/Coulombian field. The constant parameter has been selected to be C = 1, without any loss 

of generality. Equations (3) and (4) are applied to all points x = [x y z]T of the 3D space not occupied by the object, i.e. those 
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points lying at the centers of the voxels [i,j,k] of the cubic grid where f(i,j,k)=0. The parameter N in (3) and (4) represents the 

number of all non-zero voxels, i.e. where f(i,j,k)=1. With the voxel-based representation, a uniform distribution of field 

points around the 3D object is easily obtained. 

The introduction of the parameter r in the field's equations offers a great flexibility: different values of r result in differ-

ent ways that every point of the object contributes to the resulting field. Generally, the static field at a point is mainly the 

result of the mass that is included in an area centered at this point and its size depends on the value of r, due to the quanti-

ty 
1−− r

ixx  in the denominator of (3) and (4). For lower values of r, the area that affects the value of the field in a specific 

point is larger, while for greater values of r, the area is smaller. In general, when the value of r is low, the resulting field 

captures more global information while greater values of r result in a more local object description. 

The field is computed in various points in the exterior of the object. The key point in the presented approach is the se-

lection of the appropriate observation areas in the exterior of the 3D object to create histograms. By examining (3) and (4) it 

is observed that the field vanishes and tends to be homogeneous as the point under suspicion in the exterior of the 3D ob-

jet is moved away from the object. This effect is clearly depicted in the equipotential areas around the object (Fig. 8). Thus, 

the field at points that are closer to the surface of the object presents more variations and, thus, the resulting descriptor 

corresponding to these points is intuitively more discriminative. 

 

Fig. 8. The field’s potential f(x) produced from the surface of an ESP 
 

In the proposed approach, SID is composed of three major histograms created by: 
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The field potential values, computed in points that are equidistant from the object surface. A point x belongs to a set of 

equidistant points of distance d from the object, if its distance to the closest non-zero voxel is equal to d. For the computa-

tion of the sets of equidistance points, the voxel-based distribution, described in Section 3.1, is used, where points x lie at 

the centers of zero valued voxels. 

 { }dxxRxx i =−∈ )min(,:)( 3φ  (5) 

The field density Euclidean norms, computed in points that are equidistant from the object surface. 

 { }dxxRxxE i =−∈ )min(,:)( 3
 (6) 

The radial component of the field density, computed in points that are equidistant from the object surface. 

 { }dxxRxxnxE ir =−∈⋅ )min(,:)()( 3
 (7) 
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c
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xxxn
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=)( and xc is the mass center of the 3D object. 

The computation of the histograms involves only relative distances, thus the resulting histograms are invariant under 

rotation of the 3D object. In fact, very slight variances in the values of SID descriptors between an ESP at the initial pose 

and the same ESP under rotation are observed. In general, the creation of a 3D voxel grid results in information loss due to 

discretisation errors. Therefore, the resulting voxel grids are not completely invariant under rotation of the original ESPs 

(surface points). However, if an adequate level of resolution is chosen for the 3D grid (643 voxels, see description page 14, 

paragraph 4), these variances are insignificant (0.001% dissimilar) comparing with the dissimilarity values between two 

SID descriptors of different ESPs.  

In our implementation, the ESPs are described as binary 3D functions in a M x M x M grid. The size M of the grid was 

determined experimentally. More specifically, several resolutions of the binary 3D function were tested (M = 32, 64, 128, 

256). For M<64, the resolution was not high enough to efficiently describe cavities and protrusions of the ESP, while for 

M>64, the descriptor extraction time became dramatically high.  Finally, M = 64 was selected as the optimal grid size.  

Each ESP’s descriptor is composed of eight histograms of potential values, eight histograms of field’s density and eight 

histograms of field’s radial component. More specifically, each of the above three measures (potential values, field’s densi-

ty and field’s radial component) is calculated for r = 1, 2, 5, 6 field’s laws, examined at points that are d = 1 and d = 2 far 

from the object surface. Therefore a total of 3 x 4 x 2 = 24 histograms are calculated. Every histogram consists of 75 bins. 

The values of r have been appropriately chosen so as to capture both global (r = 1, 2) and local (r = 5, 6) features. Based on 

the notion that similar 3D objects will result in similar physical phenomena, these sets of histograms are expected to effi-
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ciently capture the geometry of the ESP patch. For a more elaborate analysis of how these values were selected, the reader 

could refer to [34], which describes the extraction of the SID descriptor in detail.  

3.3 Matching 
Due to the different nature of the histograms described above, several comparison metrics have been utilized. More specif-

ically, for the potential related histograms, the normalized distance, presented in [27], has been utilized: 

 ∑
= +

−
=

K

i iHiH
iHiH

HHdis
0 21

21
21 )()(

)()(2
),(  (8) 

where K is the number of histogram bins. For the other two types of histograms (field’s density and field’s radial com-

ponent), the diffusion distance [28] was used. In diffusion distance, the difference between two histograms H1 and H2 is 

treated as an isolated temperature field and a metric for its diffusion is computed. 

The object descriptors are compared in pairs. Each SID descriptor consists of 24 histograms (8 histograms of potential 

values, 8 of field’s density and 8 histograms of field’s radial component). Every histogram is compared to the appropriate 

histogram of the other object and “sub-dissimilarities” are computed using the aforementioned dissimilarity metrics. The 

final dissimilarity metric between two objects is the summation of the sub-dissimilarities. 

Let now R and L be the receptor and ligand protein and NR, NL the number of critical points of their SESs respectively. 

We also define the extended surface patches ESPR(i) and ESPL(j), as well as the Shape Impact Descriptors SIDR(i) and 

SIDL(j) for each critical point, where i=1,...,NR and j=1,...,NL. All pairwise dissimilarities disij between convex (or concave) 

critical points i of the receptor and concave (or convex) critical points j of the ligand, are computed: 

 ( ))(),( jSIDiSIDdisdis LRij =  (9) 

where the dissimilarity between two SID descriptors is computed using the comparison metrics described above. Pairs 

of ESPs with low values of disij have similar shape and should constitute pairs of complementary surface patches. In order 

to keep only pairs of complementary patches, the array of pair dissimilarities disij is sorted in ascending order and the k-

first pairs are selected for the final scoring step. 

In the final scoring step, for each of the selected complementary ESP pairs, a set of candidate poses is calculated and a 

score for each pose is computed. The process of final geometric scoring is much more time consuming than the dissimilari-

ty matching between SID descriptors. Therefore, only a significantly small subset of patch pairs should be selected as k-

first, in order to avoid high computation times. On the other hand, the number of k-first pairs should not be very small, so 

that at least one pair of actual contact points is among these pairs.   

In order to determine an optimal value for k-first, an experiment has been performed using a set of 10 arbitrarily chosen 



16 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 

 

complexes from the Docking Benchmark v2.4 [29]. The results are shown in Table I. In the second column, the total num-

ber of ESP pairs (convex-concave and concave-convex) between receptor patches and ligand patches is depicted. In the 

third column, the rank of the first ranked pair of actual contact points is shown. In order for a pair of patches to be a pair of 

actual contact points, the following inequality must be fulfilled: 

 ( ) ε<LREUCL CCdis ,  (10) 

where disEUCL is the Euclidean distance between the centres CR and CL of the receptor and ligand ESPs, respectively. The 

coordinates of CR and CL are the absolute coordinates in the original complex and ε  should be a very small value (less 

than 1.5Å but not zero in order to compensate for small translations around the contact points). From this table it can be 

inferred that just 0.1% of the total ranked pairs suffice to derive at least one pair of actual contact points. Moreover, the 

number of k-first selected pairs is not a constant value but it depends on the sizes of the two interacting molecules. 

Table I: The rank of the first ranked pair of actual contact points along with the percentage over the total number of 
ESP pairs for 10 arbitrarily chosen complexes from the Docking Benchmark v2.4. 
 

Complex Total Pairs First ranked pair of Ac-
tual Contact Points Percentage (%) 

1AVX 438010 96 0.022 
1CGI 238932 68 0.028 
1F51 685587 891 0.1 
1FAK 1033662 783 0.005 
1FSK 1105528 726 0.065 
1GCQ 91749 12 0.013 
1HE1 353156 19 0.005 
1JPS 1246835 333 0.026 
1MLC 704308 207 0.03 
1WEJ 719943 20 0.0027 

 

4 ALIGNMENT AND FINAL GEOMETRIC SCORING 
In this section the final stage of the proposed docking approach is described, which involves alignment and scoring of 

candidate poses. More specifically, the ligand L is translated and rotated with respect to the receptor R and the feasibility 

of each pose is calculated. 

4.1 Alignment 
Translation is performed by superimposing the centers of each pair of ESPs. Only the k-first ranked pairs of ESPs (i.e. the 

most complementary pairs, according to SID results) are taken into account. 

While candidate translations can be easily retrieved from the SID results, the optimal rotation estimation for each trans-

lation is not straightforward. This is due to the fact that the SID descriptor is a rotation-invariant shape measure, thus, it 

does not provide information about the relative rotation between two interacting ESPs. In order to avoid the use of an ex-
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haustive set of rotations, an initial alignment based on solid vectors [17] takes place. The solid vector of an ESP is defined 

below: 

Let P and E be the center and radius of an ESP, respectively. Let also V be the solvent excluded volume of the molecule 

enclosed by the sphere S(P,E), which is regarded as a homogeneous mass, and M its mass center. The solid vector v is the 

vector from P to M, as shown in Fig. 9. For the alignment of two superimposed ESPs with respect to rotation, their corres-

ponding solid vectors (v and v’) are placed such that their angle ω is 180 degrees. 

 

Fig. 9. Alignment of two ESPs based on their solid vectors v and v’. The angle ω between the two solid vectors is 180 
degrees. 

 

The translation and rotation estimation described above provide only an approximation of the final pose. Small transla-

tions and rotations (after the initial alignment) should be also taken into account so as to achieve the best pose. Regarding 

rotation, the ligand ESP is firstly rotated about its solid vector in ϕ degrees intervals (Fig. 10). This results in a set of 

360/ϕ  different poses. Then, the solid vector is rotated by θ  degrees from its initial position and the ESP is rotated again 

around the solid vector, resulting in 360/ϕ more poses. The procedure is repeated several times, keeping the direction of 

the solid vector within a region of solid angle Ω  (Fig. 10). Eventually, a set of θN  uniformly sampled positions of the 

solid vector are retained, resulting in a total of ( θN  x (360/ϕ )) rotations. 

Furthermore, the ligand, after the final superimposition, is translated from the receptor’s possible contact point along 

several directions. The step is kept small (1Å), while the set of directions can be derived from the vertices of a regular po-

lyhedron of radius 1 (e.g. icosahedron) in order to be uniformly distributed. If the 12 vertices of a regular icosahedron are 
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used to model the set of small translations, a total of 13 translations is required. If it is combined with the set of ( θN  x 

(360/ϕ )) rotations, it results in ( )( )ϕθ /36013 ××= NN Poses  different poses for each pair of ESPs. For each of these NPoses 

poses, a scoring is computed based on the distance transform grid and the pose with the best score is finally selected. 

 

Fig. 10. Rotations of the ligand ESP, after first alignment based on solid vector: angle ϕ  corresponds to rotations 
about the solid vector v. Angle θ  corresponds to rotations of the solid vector from its initial position. The direction 
of the solid vector is kept within a region of solid angle Ω . 

 

4.2 Geometric Scoring 
For the geometric scoring of each pose, a method based on a 3D distance grid [15] has been implemented. The SES of 

the receptor R is inserted in a bounding rectangle divided in equally sized voxels and a 3D function ( )kjiDT ,,   is used to 

represent the value of each voxel. The sign of ( )kjiDT ,,   is given as: 

 

         ( ) =kjiDT ,,  

 

 

The absolute value in each voxel corresponds to the Euclidean distance from the closest surface point. Then, the dis-

tance grid is divided into shells according to the distance from the molecular surface. In our implementation, 5 shells are 

used, which are presented in Table II. The ranges of the shells have been experimentally determined (Section 5.1). 

Table II: The shells in which the distance grid is divided. 
 

Shell 1 [1.4, ∞) The range (in Å) of the first shell of the distance grid  
Shell 2 [-0.8, 1.4) The range of the second shell of the distance grid  

0,       if at least one surface point lies inside the voxel 

< 0,    if the voxel lies inside the molecule  

> 0,    if the voxel lies outside the molecule 
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Shell 3 [-1.8, -0.8) The range of the third shell of the distance grid  
Shell 4 [-3.2, -1.8) The range of the fourth shell of the distance grid  
Shell 5 [–∞,  -3.2) The range of the fifth shell of the distance grid  

w1-5 0, 1, -7, -10, -27 The values of the weights in the scoring function  
(equation 12)  

 

The scoring of each pose is calculated as follows: the molecular surface of the ligand L, after translation and rotation, en-

ters the 3D distance grid of the receptor R. L’s surface points access the voxels of the 3D grid and are assigned a value ac-

cording to the distance from R’s molecular surface. The score of the transformation is given by: 

 ∑
=

=
5

1i
ii NwScore  (11) 

where Ni is the number of L points in shell i of the distance grid and wi the weight of i-th shell (Table II). The above equ-

ation can be modified to better represent the surface of the ligand L in each shell, as follows: 
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where Ni is the number of ligand triangles whose centroids lie in i-th shell, wi the weight of i-th shell and sij the area (in 

Å2) of j-th triangle of i-th shell. 

The 3D distance grid provides an accurate measure for geometric scoring of candidate poses. The computation time re-

quired for this process is proportional to the size as well as the resolution of the ligand’s molecular surface. In the align-

ment step of the proposed method NPoses different poses of the ligand are taken for each pair of complementary ESPs. In 

order to achieve low computation times without affecting the accuracy of scoring, two different resolutions of the ligand 

molecular surface are used. For the low-resolution surface, a point density of 1 point per Å2 was chosen as parameter to 

MSMS algorithm [24], while for the high-resolution surface a density of 4 points per Å2 was chosen. The low-resolution 

surface is used to score the entire set of NPoses poses, during the first step of the scoring procedure. After filtering out the 

majority of poses, only the poses with the highest scores are used for high-resolution scoring. Finally, the pose with the 

highest score is kept for each pair of ESPs. The first scoring step may become even faster if instead of the entire SES of the 

ligand only the part that belongs to the corresponding ESP is used. In this case, the filtering criteria to exclude poses at the 

first step are given below: 

 5.0

1

1
1

1

>

∑

∑

=

=

TotalN

j
j

N

j
j

s

s
 (13) 



20 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 

 

 1.0

1

1
2

2

<

∑

∑

=

=

TotalN

j
j

N

j
j

s

s
 (14) 

 0,0 43 == NN  (15) 

where NTotal is the total number of triangles of the ligand ESP and sj is the area of each triangle. The first criterion implies 

that at least half of the area of the ligand ESP should lie within a region close to the surface of the receptor, while the last 

two criteria imply that very deep penetrations are not allowed.   

5 RESULTS AND DISCUSSION 
The proposed method was experimentally evaluated using the protein-protein docking benchmark v2.4 [29]. This dataset 

consists of 84 known complexes, with 63 rigid-body cases, 13 cases of medium difficulty, and 8 cases of high difficulty 

with substantial conformational change.  

To evaluate the performance of the method, for each complex of the dataset, the receptor and ligand are separated from 

each other and the ligand is translated and rotated arbitrarily. Then, the docking algorithm described in the previous sec-

tions is applied to generate a set of candidate poses of the ligand. A predicted pose is called a hit if the interface Root Mean 

Square Deviation (RMSD) between the ligand in that pose and the ligand in the original complex is less than a predefined 

threshold. The interface RMSD is calculated over the interface Ca atoms of the ligand. The value of the predefined thre-

shold was selected to be 2.5Å.  

5.1 Comparison with Context Shapes, ZDOCK and PatchDock 
The results of the proposed method were compared to those of the following three methods: a) Context Shapes (CS) [17], 

b) ZDOCK (PSC) [19] and c) PatchDock [30]. The first and the third method belong to the category of “local shape feature 

matching” approaches, while the second is a brute force approach. ZDOCK(PSC) returns a maximum of 3600 predictions, 

therefore, only the top 3600 predictions are taken into account for all methods. More specifically, for the proposed ap-

proach, the number of k-first selected pairs after the SID complementarity matching was set to 3600 in order to be compa-

rable to the other methods. In our experiments, the R-bound/L-bound case was evaluated. In this case, the receptor and li-

gand are both bound, i.e., the receptor and the ligand from the co-crystallized protein complexes are used. The perfor-

mance of the above three methods was computed by using the executables taken from the home pages of the authors: 

http://www.cs.rpi.edu/~zaki/software/ContextShapes/ for Context Shapes, http://zlab.bu.edu/zdock/ for ZDOCK 

v2.1 and http://bioinfo3d.cs.tau.ac.il/PatchDock/ for PatchDock. 

The method has been optimized by training on a small dataset (20 complexes) of the docking benchmark v0.0 [31]. This 
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dataset was selected so as not to include complexes common in benchmark v2.4. The dataset is depicted in Table III.  

Table III: Selected training dataset from Docking Benchmark v0.0. 
 

1 1CHO(E:I) 11 1BQL(LH:Y) 
2 2PTC(E:I) 12 1NMB(LH:N) 
3 1TGS(Z:I) 13 1MEL(B:M) 
4 1CSE(E:I) 14 2VIR(AB:C) 
5 2KAI(AB:I) 15 1EO8(LH:A) 
6 1BRC(E:I) 16 1AVZ(B:C) 
7 1BRS(A:D) 17 1MDA(LH:A) 
8 1UGH(E:I) 18 1SPB(S:P) 
9 1FSS(A:B) 19 1BTH(LH:P) 

10 1AVW(A:B) 20 1FIN(A:B) 
 

The set of parameters that required optimization is given in Table IV: 

Table IV: The set of parameters that required optimization. In the first column, the abbreviation of the parameter as 
stated in the text is given. In the second and third column, the optimal value and the description of each parameter 
are given, respectively. 
 

Abbreviation Optimal Value Description 

E 10Å The radius of the sphere that determines the 
size of an ESP (Section 3.1) 

Gmax 12 Å The maximum allowed geodesic distance from 
the center of ESP (Section 3.1) 

φ 22.5Ο The angle interval (in degrees) for rotations of 
the ESP about the solid vector (Section 4.1) 

Ω 0.068π The solid angle within which the solid vector is 
rotated (Section 4.1) 

Nθ 9 The number of uniformly sampled positions of 
the solid vector (Section 4.1) 

NPoses 1872 The total number of different poses for each pair 
of ESPs (Section 4.1) 

 

Each of the above parameters has been assigned several values, during the training procedure. Those values that pro-

duced better docking results on this dataset were selected for the experiments in benchmark v2.4.  

In Table V, the performance of the proposed method in benchmark v2.4, compared with the other three methods, is de-

picted. In the first column for each method, the rank of the best ranked hit is presented. This is not necessarily the hit with 

the smallest RMSD value, it is the first result of the rank list that produces RMSD less than 2.5Å. In the second column for 

each method, the RMSD value of the best ranked hit is given. In complexes where these values are missing, the method 

failed to return a hit within the first 3600 predictions. In 7 cases none of the four methods returned a hit in the first 3600 

predictions, thus, they are not stated in Table V.  
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Table V: R-bound/L-bound: Comparisons between the proposed method, Context Shapes, ZDOCK(PSC) and Pat-
chDock on 84 test cases from Benchmark v2.4. PDB gives the PDB id for the protein complex. RMSD and Rank give 
the RMSD and rank of the best ranked hit (using 2.5 Å cut-off). In 7 cases none of the four methods returned a hit in 
the first 3600 predictions, thus, they are not stated. 
 

   Proposed Method  Context Shapes  ZDOCK(PSC)  PatchDock 
PDB  Rank  RMSD  Rank RMSD Rank RMSD Rank  RMSD
1A2K  17  0.92  40 1.08 570 2.41 300  1.47
1ACB  13  1.89  8  2.32 6 0.82 10  1.60
1AHW  167  1.8  7  1.20 56 1.18 40  1.55
1AK4  908  0.52  2925 2.08 3471 1.14 ‐  ‐ 
1AKJ  174  1.67  265 2.15 448 1.88 ‐  ‐ 
1ATN  223  1.64  49 2.10 558 1.15 ‐  ‐ 
1AVX  7  1.71  10 1.76 1 1.96 43  2.14
1AY7  23  2.69  193 1.23 46 1.68 24  2.07
1B6C  3  2.26  11 1.78 24 1.69 40  1.92
1BGX  1  2.51  1  1.96 ‐ ‐ ‐  ‐ 
1BJ1  ‐  ‐  1  1.05 3 1.42 ‐  ‐ 
1BUH  49  1.58  61 1.55 393 1.43 83  1.14
1BVK  249  5.05  45 1.69 1087 1.43 131  2.12
1BVN  1  0.99  1  1.55 10 1.24 1  0.75
1CGI  1  0.72  1  1.37 1 1.12 1  1.08
1D6R  2  1.31  4  1.68 35 1.04 ‐  ‐ 
1DE4  538  2.17  13 1.21 452 1.62 ‐  ‐ 
1DFJ  1  1.08  ‐  ‐ ‐ ‐ ‐  ‐ 
1DQJ  49  1.12  67 1.65 19 2.00 83  1.71
1E6E  34  2.4  1  1.58 58 2.06 2  2.29
1E6J  526  2.31  1337 1.92 699 2.02 1706  1.43
1E96  809  2.32  1206 1.84 ‐ ‐ 1767  1.44
1EAW  1  1.95  1  1.41 1 1.75 1  0.99
1EER  1  1.16  1  1.62 ‐ ‐ 1  1.66
1EWY  103  2.45  518 2.26 ‐ ‐ 139  1.42
1EZU  1  2.07  1  1.60 ‐ ‐ 1  0.94
1F34  1  2.4  1  1.99 ‐ ‐ 1  1.90
1F51  3  1.18  7  2.01 ‐ ‐ 1  1.92
1FAK  119  1.47  1997 1.70 ‐ ‐ ‐  ‐ 
1FC2  2  2.34  7  1.85 55 2.18 49  1.24
1FQJ  8  1.62  12 1.94 120 1.94 248  1.48
1FSK  145  0.99  9  2.06 19 1.70 218  1.57
1GCQ  1  1.16  2  1.26 382 1.81 ‐  ‐ 
1GP2  551  2.07  53 1.86 ‐ ‐ ‐  ‐ 
1GRN  1  1.66  1  1.84 7 2.26 3  1.45
1H1V  49  1.75  14 2.37 1510 2.40 ‐  ‐ 
1HE1  1  0.8  1  1.44 7 1.67 1  1.06
1HIA  8  1.05  2  1.07 1 1.70 14  1.19
1I2M  1  0.86  6  1.36 14 1.80 ‐  ‐ 
1I4D  1278  2.48  104 1.42 793 2.08 167  1.05
1I9R  142  1.38  ‐  ‐ 1271 2.04 ‐  ‐ 
1IB1  1  1.87  2  1.48 ‐ ‐ ‐  ‐ 
1IBR  1  2.01  1  2.05 ‐ ‐ ‐  ‐ 
1IQD  531  1.09  14 1.19 55 1.83 ‐  ‐ 
1JPS  216  1.68  2  1.26 23 2.30 96  1.87
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1K4C  712  2.21  5 0.88 30 1.16 337  1.53
1K5D  59  1.98  2 2.06 10 2.11 ‐  ‐ 
1KAC  14  1.5  ‐ ‐ 381 1.52 ‐  ‐ 
1KKL  158  2.68  226 1.67 ‐ ‐ ‐  ‐ 
1KLU  899  2.28  1108 1.80 ‐ ‐ ‐  ‐ 
1KTZ  240  1.84  2280 1.41 ‐ ‐ ‐  ‐ 
1KXP  2  1.87  3 2.17 ‐ ‐ ‐  ‐ 
1KXQ  3  1.35  229 1.51 30 1.60 29  1.63
1M10  6  2.4  ‐ ‐ 33 2.23 ‐  ‐ 
1MAH  1  1.44  1 1.45 1 1.91 1  1.27
1ML0  532  2.46  569 1.91 75 1.94 7  0.58
1MLC  955  1.86  30 1.15 1205 1.37 516  1.79
1N2C  8  2.12  3 1.36 ‐ ‐ ‐  ‐ 
1NCA  76  2.21  3 1.77 20 1.48 ‐  ‐ 
1NSN  149  1.15  ‐ ‐ ‐ ‐ ‐  ‐ 
1PPE  1  1.38  1 2.32 2 1.21 1  1.03
1QA9  3  2.18  972 1.30 ‐ ‐ ‐  ‐ 
1QFW  1013  2.39  1247 2.21 16 2.46 ‐  ‐ 
1RLB  591  1.6  311 1.63 ‐ ‐ 3143  2.32
1SBB  962  1.72  ‐ ‐ ‐ ‐ ‐  ‐ 
1TMQ  18  2.27  1 2.32 8 1.79 1  1.52
1UDI  1  1.58  3 1.52 1 1.50 1  1.97
1VFB  73  1.06  8 1.50 ‐ ‐ ‐  ‐ 
1WEJ  897  2.04  496 1.25 1120 1.11 ‐  ‐ 
1WQ1  1  2.32  1 1.14 4 2.04 1  0.84
2BTF  2  1.45  4 1.13 21 1.21 137  1.82
2JEL  377  2.15  56 1.40 532 1.77 282  1.65
2MTA  469  1.64  21 1.45 1447 2.26 115  1.71
2PCC  5  2.28  ‐ ‐ ‐ ‐ ‐  ‐ 
2SIC  2  0.73  4 1.36 9 1.19 ‐  ‐ 
2SNI  1  1.78  2 1.27 4 2.50 13  2.10
7CEI  2  1.14  123 1.90 5 2.18 ‐  ‐ 

 

Summing up the results of Table V, the proposed approach failed to return a hit in 8 out of 84 cases, while Context 

Shapes failed in 13 cases, ZDOCK in 29 and PatchDock in 42 cases. In Table VI, the number of successful predictions for all 

methods is presented. It is clear from the results that the proposed method managed to return a hit in most of the cases, 

outperforming the other three methods. If we relax the RMSD cutoff threshold to 5Å, it is obvious that all methods achieve 

more successful predictions. Again, the proposed method outperforms the other three, since it fails only in three cases.   

Table VI: R-bound/L-bound: Number of test cases where a hit is found within the top 3600 predictions, for each 
method, and the number of test cases where all three methods fail. 
 

Proposed Me-
thod Context Shapes ZDOCK PatchDock All Fail 

RMSD  ≤  2.5Å 
76 71 55 42 7 

RMSD  ≤  5Å 
81 76 71 63 2 

 



24 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 

 

In Table VII, the 7 cases where all four methods failed are presented. It is worth to mention that in none of these cases 

could any of the above methods return a near-native solution among a set of 3600 predicted poses. These examples can 

really help towards improving existing docking approaches. Additionally, they provide an indication that geometric com-

plementarity is not always the dominant factor in protein-protein docking but other non-geometric parameters (desolva-

tion, hydrophobicity, electrostatics, etc.) should be also taken into account. 

Table VII: R-bound/L-bound: The 7 cases where all three methods fail. 
 

PDB IDs of the complexes where all methods failed (RMSD  ≤  2.5Å) 
1FQ1 1GHQ 1HE8 1IJK 
2HMI 2QFW 2VIS  

 

In Table VIII, the win-tie-loss-failure records for the proposed method versus Context Shapes, ZDOCK and PatchDock 

is presented. Comparing with Context Shapes, the proposed approach returns a better ranked hit in 39 cases, whereas 

Context Shapes returns a better hit in 25 cases. The methods tie in 13 cases, and both fail in 7 cases. Comparing against 

ZDOCK and PatchDock, the proposed method clearly outperforms them across all three scenarios; it has 56-17 win-loss 

record against ZDOCK and 52-13 win-loss record against PatchDock. 

Table VIII: R-bound/L-bound: the win-tie-loss-failure records for the proposed method versus Context Shapes, 
ZDOCK(PSC) and PatchDock. 
 

Proposed Method vs Win Tie Loss Both fail 
Context Shapes 39 13 25 7 

ZDOCK 56 4 17 7 
PatchDock 52 11 13 8 

 

In Table IX, the results for the first ranked and the 10 best ranked solutions, with RMSD < 5 Å, using the proposed me-

thod, are presented. It is obvious that in 51 out of the 83 cases, at least one almost correct prediction with RMSD < 5 Å is 

ranked among the top 10 solutions. 

Table IX: The numbers of solutions with RMSD < 5 Å, within the top-1 and top-10 ranked positions, using the pro-
posed method. 
 

PDB Top 1 Top 10 PDB Top 1 Top 10 PDB Top 1 Top 10 
1A2K  0 1 1F51 1 2 1KTZ 0 0 
1ACB  0 1 1FAK 0 0 1KXP 1 3 
1AHW  0 1 1FC2 0 1 1KXQ 0 2 
1AK4  0 0 1FQ1 0 0 1M10 0 2 
1AKJ  0 0 1FQJ 0 1 1MAH 1 1 
1ATN  0 0 1FSK 0 1 1ML0 0 0 
1AVX  0 2 1GCQ 1 2 1MLC 0 0 
1AY7  0 1 1GHQ 0 0 1N2C 0 1 
1B6C  0 2 1GP2 0 0 1NSN 0 0 
1BGX  1 2 1GRN 1 2 1NCA 0 1 
1BJ1  0 0 1H1V 0 1 1PPE 1 2 
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1BUH  0 1 1HE1 1 2 1QA9 0 1 
1BVK  0 0 1HE8 0 0 1QFW 0 0 
1BVN  1 3 1HIA 0 1 1RLB 0 0 
1CGI  1 2 1I2M 1 3 1SBB 0 0 
1D6R  0 1 1I4D 0 0 1TMQ 0 1 
1DE4  0 0 1I9R 0 0 1UDI 1 2 
1DFJ  1 2 1IB1 1 2 1VFB 0 1 
1DQJ  0 1 1IBR 1 1 1WEJ 0 0 
1E6E  0 1 1IJK 0 0 1WQ1 1 3 
1E6J  0 0 1IQD 0 0 2BTF 0 1 
1E96  0 0 1JPS 0 1 2HMI 0 0 
1EAW  1 1 1K4C 0 0 2JEL 0 0 
1EER  1 2 1K5D 0 1 2MTA 0 0 
1EWY  0 1 1KAC 0 1 2PCC 0 1 
1EZU  1 2 1KKL 0 0 2SIC 0 2 
1F34  1 3 1KLU 0 0 2SNI 1 2 
        2VIS 0 0 
        7CEI 0 1 

 

Median RMSD can also provide a useful performance measure. In Table X, the median/min/max RMSD and Rank for 

the 10 best ranked and 25 best ranked solutions, using the proposed method, are presented. These values were obtained 

over the entire test dataset.  

Table X: The median/min/max RMSD and Rank for the best solution, within the top-10 and top-25 ranked posi-
tions, using the proposed method. 
 

 Top 10 Top 25 
Median RMSD 3.29 2.34 
Minimum RMSD 0.72 0.6 
Maximum RMSD 21.03 13.91 
Median Rank 5 8 
Minimum Rank 1 1 
Maximum Rank 10 25 

 

The above experiments have been performed using the bound molecules of both the receptor and the ligand (R-

bound/L-bound). This is due to the fact that none of the above methods, including the one presented in this paper, is able 

to efficiently model the side-chain conformations during flexible docking. Experiments for the R-bound/L-bound case 

were performed to measure the efficiency of the geometric-only algorithms in the ideal case of rigid-body docking. A dis-

cussion about how to deal with flexible docking is given in Section 5.3. In order to measure the robustness of the proposed 

method with respect to conformational changes, a set of experiments were performed in Benchmark v2.4 for the R-

unbound/L-bound case. In this case, the receptor is taken from the unbound form of the protein, while the ligand is taken 

from the bound co-crystallized complex.  

In Table XI, the number of successful predictions for all methods, for the R-unbound/L-bound case, is presented. It is 

clear that the performance of all methods is significantly reduced, comparing with the R-bound/L-bound case. However, 
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the performance of the proposed method is still higher.   

Table XI: R-unbound/L-bound: Number of test cases where a hit is found within the top 3600 predictions, for each 
method, and the number of test cases where all three methods fail. 
 

Proposed Me-
thod Context Shapes ZDOCK PatchDock All Fail 

RMSD  ≤  2.5Å 
46 43 33 22 31 

RMSD  ≤  5Å 
54 52 52 50 18 

 

Similar conclusions can be drawn in the win-tie-loss-failure records (Table XII). Comparing with Context Shapes, the 

proposed approach returns a better ranked hit in 29 cases, whereas Context Shapes returns a better hit in 24 cases. Both 

methods fail in 31 cases. Comparing against ZDOCK and PatchDock, the proposed method outperforms them; it has 31-20 

win-loss record against ZDOCK and 34-12 win-loss record against PatchDock. For the R-unbound/L-unbound case, where 

both the receptor and the ligand are unbound, all four methods fail to return a hit in more than half of the complexes, 

which implies that a solution able to efficiently deal with flexibility is needed. 

Table XII: R-unbound/L-bound: the win-tie-loss-failure records for the proposed method versus Context Shapes, 
ZDOCK(PSC) and PatchDock. 
 

Proposed Method vs Win Tie Loss Both fail 
Context Shapes 29 0 24 31 

ZDOCK 31 0 20 33 
PatchDock 34 0 12 38 

 

5.2 Performance Analysis of the proposed method 
In Table XIIIII, the numbers of the ESPs (centered at convex and concave critical points) for the receptor and ligand, as well 

as the total number of  ESP pairs are presented for the 84 test cases of benchmark v2.4.  

Table XIII: Number of ESPs and ESP pairs for the receptor and ligand in benchmark v2.4. The numbers of atoms are 
also shown for completeness.  
 

   Number of Atoms  Number of ESPs 
Number of 
ESP pairs PDB  Receptor  Ligand  Receptor  Ligand 

      Convex Concave Convex Concave 
1A2K  1990  1570  542 780 447 628  689036
1ACB  1769  522  482 676 187 233  238718
1AHW  3304  1612  876 874 526 531  924880
1AK4  1266  1062  371 467 403 499  373330
1AKJ  3075  1814  905 916 524 528  957824
1ATN  2907  2035  771 843 505 579  872124
1AVX  1630  1286  418 477 394 404  356810
1AY7  746  720  252 342 231 290  152082
1B6C  831  2602  274 352 719 803  473110
1BGX  3245  6570  806 864 1452 1465  2435318
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1BJ1  3307  1522  906 939 507 588  1008801
1BUH  2311  605  634 714 200 285  323490
1BVK  1744  1001  454 549 318 376  345286
1BVN  3907  536  879 938 202 241  401315
1CGI  1799  440  463 528 195 206  198338
1D6R  1629  427  413 503 189 223  187166
1DE4  3063  10044  772 803 1949 1980  3093607
1DFJ  951  3411  316 423 815 893  626933
1DQJ  3244  1001  856 862 302 388  592452
1E6E  3518  859  960 1017 302 367  659454
1E6J  3275  1639  894 904 596 671  1138658
1E96  1419  1502  408 585 429 515  461085
1EAW  1864  2310  500 524 174 198  190176
1EER  1291  3328  456 581 661 751  726497
1EWY  2492  749  705 763 249 301  402192
1EZU  1656  2198  425 491 787 832  740017
1F34  2423  1074  622 772 405 502  624904
1F51  2993  940  873 927 277 296  515187
1FAK  2782  1495  722 732 468 513  712962
1FC2  354  1656  150 184 561 636  198624
1FQ1  1439  2402  450 572 693 751  734346
1FQJ  2611  1111  728 803 368 380  572144
1FSK  3347  1230  729 802 411 514  704328
1GCQ  468  558  199 226 192 243  91749
1GHQ  2417  987  590 632 367 453  499214
1GP2  2788  3021  859 926 768 771  1373457
1GRN  1494  1586  479 633 446 519  530919
1H1V  2875  2539  791 859 718 762  1219504
1HE1  997  1374  340 432 398 433  319156
1HE8  6070  1326  1501 1610 397 416  1263586
1HIA  1787  353  469 570 173 160  173650
1I2M  1346  2899  410 526 714 800  703564
1I4D  3004  1381  819 873 424 467  752625
1I9R  3276  3297  790 852 884 940  1495768
1IB1  3642  1404  1045 1192 438 488  1032056
1IBR  1371  3573  418 471 1036 1117  954862
1IJK  2071  1595  597 613 410 511  556397
1IQD  3089  1246  839 888 367 422  679954
1JPS  3247  1611  858 884 518 578  953836
1K4C  3252  765  887 980 322 381  653507
1K5D  2868  2698  790 871 716 732  1201916
1KAC  3805  625  396 461 304 341  275180
1KKL  1401  959  974 983 218 266  473378
1KLU  3028  1880  838 921 530 626  1012718
1KTZ  653  840  267 333 289 359  192090
1KXP  2736  3431  723 851 993 923  1512372
1KXQ  3910  916  803 844 187 301  399531
1M10  1601  2087  433 571 594 607  602005
1MAH  4116  460  940 1025 193 206  391465
1ML0  5706  515  2150 2169 302 332  1368838
1MLC  3290  1001  310 394 902 1090  693288
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1N2C  15926  4132  854 913 667 749  1248617
1NSN  3282  1108  920 991 337 426  725887
1NCA  3329  3075  873 901 669 747  1254900
1PPE  1629  222  410 503 125 101  104285
1QA9  846  776  305 406 351 278  227296
1QFW  1762  1476  504 580 478 581  570064
1RLB  3760  1453  997 1008 444 518  963998
1SBB  1826  1975  563 662 531 630  706212
1TMQ  3598  881  793 820 298 359  529047
1UDI  1818  654  489 594 241 302  290832
1VFB  1730  1001  459 561 312 381  349911
1WEJ  3340  868  901 1055 270 293  548843
1WQ1  2533  1322  719 873 418 528  744546
2BTF  2917  1044  780 885 292 333  518160
2HMI  7630  3264  1377 1346 869 877  2377303
2JEL  3297  640  883 1004 238 285  490607
2MTA  3853  807  938 1059 256 328  578768
2PCC  2371  847  622 712 292 395  453594
2SIC  1938  764  441 585 277 334  309339
2SNI  1938  513  442 560 187 242  211684
2VIS  3261  2076  895 993 548 652  1127704
7CEI  698  1026  248  331  365  499  244567 

 

The numbers of receptor and ligand atoms for each complex are also included for the sake of completeness. The table 

shows that the number of generated ESPs as well as the number of ESP pairs is almost proportional to the number of re-

ceptor and ligand atoms. In Fig. 11, the scatter-plot of the combined receptor+ligand size (number of atoms) versus the 

number of ESP pairs is depicted. It can be inferred that when the total number of receptor and ligand atoms increases, then 

the number of ESP pairs increases as well.  
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Fig. 11. Scatter-plot of receptor plus ligand size versus the total number of ESP pairs for each complex. When the 
total number of receptor and ligand atoms increases, then the number of ESP pairs increases as well. 

 

In Table XIV, the average computation times for various tasks of the proposed approach are presented. The average 

time required for extraction of the SID descriptor for an ESP is 0.6s. The SID descriptor extraction time, as well as the time 

for SES computation is not included in the average running time. These tasks belong to the pre-processing step and are 

computed off-line. Likewise, the times to calculate the context shapes in Context Shapes method, the SES for PatchDock 

method and surface residues for ZDOCK method, are also not included in the average running time.  

Table XIV: Average computation times for various tasks of the proposed approach 
 

Activity 
Average 

Computation 
Time 

SID Descriptor Extraction / ESP 0.6s 

SID matching of a pair of ESPs 0.019ms 
Scoring (distance grid) of a pair of ESPs 196ms 

 

The time required for SID-based matching between a pair of ESPs is less than 0.02ms, since it is based on simple histo-

gram matching. It is obvious that SID descriptor matching is 10000 times faster than the geometric scoring based on dis-

tance grid, which demonstrates the importance of the SID descriptor as a fast filtering stage, during the docking proce-

dure. This is made clearer in Table XV, where the average running times for the four methods across all 84 test cases are 

presented. In our approach, the running time is the sum of the time required for SID descriptor matching and the time 

needed for geometric scoring. Even though geometric scoring is applied to a much smaller set of ESPs (the 3600 first 
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ranked pairs), it lasts longer than SID matching. Comparing with the other methods, the proposed docking approach 

achieves faster computation time. It is more than two times faster than the Context Shapes approach, more than three 

times faster than ZDOCK and faster than PatchDock.  

The average pre-processing time for a protein in benchmark v2.4, using the proposed method, is about 720s and for a 

pair of interacting proteins is about 1440s. This results in a total pre-processing and running time of 2280s. This is still fast-

er than ZDOCK and comparable to ContextShapes, while PatchDock, which involves fewer steps in preprocessing, is still 

faster than the method presented in this paper. 

The times were obtained using a PC with a dual-core 2.4 GHz processor and 8GB RAM. The executable files of the pro-

posed method can be downloaded for testing from the authors’website (http://3d-test.iti.gr:8080/3d-

test/Images/ProteinDocking.zip).  

Table XV: Average running time over all 84 test cases  
 

Method 
Average Running 

Time  
(SID matching) 

Average Running Time  
(Geometric Scoring) 

Average 
Running 

Time 

Proposed Approach 135s 705s 840s 

Context Shapes   2031s 
ZDOCK   2914s 

PatchDock   1098s 
 

5.3 Extensions 
In some complexes of the Docking Benchark, described in the previous section, all methods fail to return a hit within 

the first ranking positions. This is due to the fact that geometric complementarity alone is insufficient for scoring protein-

protein complexes as it results in multiple possible complementing solutions. It is, therefore, common to include addition-

al physicochemical features for scoring, such as electrostatic complementarity, desolvation energy, amino acid contact pre-

ferences and Van-der-Waals potentials, by using a weighted potential function. Several approaches have been presented 

so far towards this direction [35]. The Shape Impact Descriptor has been introduced in this paper as a geometric method, 

but it could fit to non-geometric docking as well. The concept of resulting fields around a surface patch can be extended in 

order to describe electrostatic potentials, desolvation, Van-der-Waals potentials, etc., thus, provide an efficient descriptor 

incorporating additional non-geometric information. These extensions, which are planned for future research, are ex-

pected to improve the performance of the existing geometric-only solution. 

In this paper, it is assumed that proteins are static shapes, i.e., rigid-bodies. In fact, protein-protein docking involves 

conformational changes of side chains and backbone atoms. In order to model flexibility in a docking algorithm, a solution 
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would be to consider conformational changes as refinements after the initial rigid-body docking. This approach is known 

as an induced-fit process [38]. As an alternative, one can model flexibility as an ensemble of possible conformations of each 

protein and treat each conformation as a rigid-body [39]. The latter, also known as selected-fit process, seems to fit better 

to our proposed method, since geometric-only approaches, such as SID, are based on complementarity matching of rigid 

shapes. What would be of great interest is to combine the extensions of SID described in the previous paragraph with a 

selected-fit approach for flexible docking. If SID is extended so as to incorporate physicochemical features, it is expected 

that the multiple conformations of the selected-fit process might be avoided, since the influence of geometric complemen-

tarity will not be so strong. These thoughts are also included to our plans for further research. 

6 CONCLUSIONS 
In this paper, a new framework for fast geometric protein-protein docking was presented. After extraction of the Solvent 

Excluded Surface, a set of critical points is formed based on the local curvature of the surface. Then, for each critical point 

an Extended Surface Patch (ESP) is generated, centered at the critical point with radius 10Å. The shape complementarity of 

all pairs of ESPs between the receptor and the ligand is measured using the Shape Impact Descriptor (SID), which is a fast 

rotation-invariant shape descriptor. The complementarity matching between two patches is reduced to a simple histogram 

matching of their SID Descriptors, without the need for taking an exhaustive set of rotations for each pair of patches. For 

the final scoring step, only a very small subset of the most complementary ESP pairs is given as input, significantly reduc-

ing the computation time.  

The method reveals various innovative features. The most significant one is that it introduces a shape similarity de-

scriptor to measure surface complementarity. Since there is a wide variety of algorithms for similarity shape matching, it is 

easier to develop a method for partial surface complementarity by appropriately modifying a shape matching technique. 

Another interesting feature is the rotation invariance of SID descriptor. This obviates the need for an exhaustive search of 

relative orientations, during the pairwise complementarity matching of ESPs. 

The proposed approach was evaluated against three state-of-the-art methods for geometric docking. Not only it 

achieved more successful predictions in benchmark v2.4, but also reduced two or even three times the computation time, 

due to the efficiency of the Shape Impact Descriptor.  

Although it outperforms the other geometric docking approaches, in several cases, the proposed method failed to re-

turn a hit within the first ranked positions, for two reasons: the implementation of the final scoring step was based on the 

notion that the bigger the area of the interface between two proteins the more probable is to be the actual docking area. 

The second reason is that no consideration of non-geometric factors (electrostatics, hydrogen bonds, residue interface pro-
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pensity, etc.) was taken into account. An efficient scoring function able to integrate all non-geometric factors with geome-

tric complementarity is of significant importance and provides a challenging task for future work.  
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