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ABSTRACT
The goal of this work is to provide an overview of existing ap-
proaches regarding AI nutrition recommender systems. A break-
down of such systems into task-specific components is presented,
as well as methodologies concerned with each individual compo-
nent. The components of an idealized AI nutrition recommender
system are presented and compared to state-of-the-art approaches
in the corresponding area of research. Finally, identified issues in
some of these areas are also discussed.

CCS CONCEPTS
•General and reference→ Surveys and overviews; • Informa-
tion systems→Recommender systems; •Computingmethod-
ologies → Object recognition; Machine learning.
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1 INTRODUCTION
Eating is for some people just a necessary everyday activity, while
for others, a unique moment in their daily schedule that gives them
great enjoyment. No matter the side that each person has chosen,
it is becoming more and more evident that the role food plays in
our overall health is of utmost importance. From a superficial point
of view, our bodies need a specific amount of energy to function
properly and food provides just this. However, in reality, not all
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calories are created equal; the accompanying nutrients play a vital
role in the way food is processed by the human body, thus affecting
our overall health. To this end, the consumption of a wide variety of
food items is necessary in order for the human body to obtain the
right amounts of nutrients. Failing to follow such a well-balanced
diet, in combination with a generally unhealthy way of living,
has been shown to increase the risk for cardiovascular disease,
type II diabetes and some forms of cancer. Taking all these factors
into consideration, food intake monitoring can provide substantial
benefits in certain cases.

Traditional approaches towards food intake monitoring relied on
24-hour recalls and food frequency questionnaires in order to obtain
relevant information. Although effective to some extent, the margin
of error was high and the process was labour-intensive. In the last
few years, the convergence of several technological advances, both
from a hardware and software perspective, has made possible the
existence of automated systems that can analyze users’ eating habits
and preferences, and provide recommendations in order to achieve
specific goals (e.g., weight loss, muscle gain or eating healthy).

In the rest of this work, we provide an overview of such methods.
These have been classified into task-specific categories, as shown
in Figure 1. In section 2, methods concerned with food analysis
are presented, including methods about food category recognition,
food ingredient and cooking instructions recognition and food
quantity estimation. In section 3, an overview of methods regarding
eating behaviour analysis is presented. In section 4, an idealized
AI nutrition recommender system is presented, and each of the
needed components is compared to state-of-the-art methods in
the corresponding area of research. Additionally, an overview of
recent literature and EU-funded projects is provided regarding AI
nutrition recommender systems. Finally, in section 5 conclusions
are drawn.

2 FOOD ANALYSIS
Food analysis is a core component of AI nutrition recommender
systems, as it provides the prerequisites for obtaining a high-level
understanding of the type and the amount of food consumed by
the user. This category can broadly be divided into methods related
to food category recognition, food ingredient and cooking instruc-
tions recognition and food quantity estimation. In the next sections
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Figure 1: Categorization of AI nutrition recommender systems into task-specific components.

each category is further analyzed and the most important relevant
literature is presented.

2.1 Food Category Recognition
This category of food analysis is concerned with recognizing the
class that an item of interest belongs to. The majority of the exist-
ing literature regarding automated food analysis belongs to this
category, since the first data-sets that were made publicly available
only contained information regarding the class of the items. Due
to the same reason, the dominant focus area of existing methods is
image analysis, but approaches based on audio [30, 34, 45], motion
[30], colour [19] and odour [35] also exist. Technically, methods
concerned with multiple tasks at the same time (e.g., food recogni-
tion and calorie estimation) could also be included in this category,
but in order to avoid duplication, they will be described in sections
2.2 and 2.3. Regarding food categories, they can range from very
broad ones, like rice, to very specific, such as chicken feet with black
bean sauce. Another distinguishing factor for the methods of this
category is the setting under which the food categorization was
performed. On one hand, there are methods that operate on a com-
pletely unconstrained setting (no information about the food source
is known), while on the other hand, there are methods that have
confined the recognition setting to menu items of specific restau-
rants. Further analysis of some of the aforementioned methods, as
well as other important works is presented next. Additionally, some
of the most commonly used data-sets for this task are presented in
Table 1.

Regarding the image-based methods, there is a clear distinction
between earlier methods, which used traditional image represen-
tations, and methods developed during the last few years, and are
almost exclusively based on learned representations by convolu-
tional neural networks (CNNs). For instance, Chen et al. [10] used
representations based on color histograms and SIFT features, which
were then processed by a support vector machine (SVM) classifier.
Yang et al. [50] used an SVM classifier, trained on statistics of pair-
wise local features, such as the distance between 2 image pixels
and the orientation of the line connecting 2 pixels. In [20] a 2-layer
convolutional neural network (CNN) was used for the tasks of food
detection (food / non-food classification) and food recognition. In
both tasks the CNN outperformed an SVM classifier trained with

traditional features. Kawano and Yanai [22] used a CNN architec-
ture as a feature extraction mechanism. The features of the second
to last layer were used in order to train an SVM classifier to distin-
guish among 100 food classes. Traditional features were also used
for comparison. The authors noted that the learned CNN features
were the best single representation, but the combination of learned
and traditional features yielded the best overall result. Wu et al.
[48] proposed a multi-level loss function which guides the underly-
ing machine learning algorithm to classify the same object using
multiple semantic levels of the provided hierarchy. For example,
an image depicting chicken wings will simultaneously belong to
the chicken and meat or poultry categories, which the algorithm
must jointly optimize. The authors mentioned that this approach
improves classification performance, because the algorithm tends
to stay within the same semantic category, even if the fine-grained
category was incorrectly predicted. This loss function, when uti-
lized with the GoogLeNet CNN architecture, improved the baseline
accuracy in both Food-101 and 5-Chain data-sets. Martinel et al.
[25] adopted the wide residual networks architecture proposed in
[51] and combined it with a slice convolution and pooling branch
in order to arrive at their final architecture. Slice convolution is
a regular convolution operation performed using filters that are
as wide as the input image, instead of being square (e.g., 3 × 3).
When tested on the UEC-Food100, UEC-Food256 and Food-101
data-sets, this method achieved an accuracy of 89.6%, 83.2% and
90.3% respectively.

Regarding food recognition from sources other than images,
Shuzo et al. [45] used a bone conduction microphone in order
to capture the sounds produced while eating. One of their test
cases was to classify foods of different texture (hardness, springi-
ness and brittleness). In [34] microphones were employed that
simultaneously captured in-ear and environmental sounds. Using a
finite-state grammar decoder based on the Viterbi algorithm for the
recognition task, they were able to classify new samples into the
categories: potato chips, peanut, walnut, carrot, apple, chocolate,
pudding and drink with 66% accuracy. Kadomura et al. [19] used a
sensing fork with an embedded RGB sensor in order to classify 17
food types from Japanese, Chinese and Western cuisines with an
overall F-measure of 87.5%.
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Table 1: Commondata-sets used for the task of food category
recognition.

Name Classes Images Reference

Food-101 101 101,000 [4]
UEC-FOOD100 100 14,361 [26]
UEC-FOOD256 256 25,088 [21]

2.2 Food Ingredient and Cooking Instructions
Recognition

In the last few years, the emergence of data-sets with accompanying
information regarding the ingredients used in the recipe and the
necessary cooking instructions to reproduce it, has brought about
interesting new research ideas and directions. Methods belonging
to this category are mainly concerned with creating appropriate
representations for ingredients, cooking instructions and images
and combining them in such a way so as to be possible to transi-
tion from one representation to another. This is most commonly
employed for ingredient and cooking instructions recognition and
retrieval from food images. The distinction between methods that
perform recognition (classification) and retrieval is important, as
the end-goal in each case is different. In the case of classification,
a method predicts ingredients and instructions from a given im-
age. In the case of retrieval, on the other hand, a method searches
for and retrieves the closest ingredients and instructions from a
given data-set for an input image. It is worth mentioning that in
the case of retrieval, the opposite problem has also been studied; to
retrieve images based on instructions and ingredients. Also, since
this research direction is relatively recent, neural networks have
dominated the field as the method of choice. Below we present
some notable works in this field and list the most common data-sets
for this task in Table 2.

In [9] a single CNN architecture was proposed that takes as input
an image of a food item, extracts features at different resolution
levels in order to obtain fine-grained information, and predicts the
ingredients, cutting method and cooking method. This triplet is
then used for text-based recipe retrieval. The evaluation results
showed that the additional tasks of cutting and cooking method
prediction were beneficial to the ingredient prediction as well. This
methodwas also able to find the location of each detected ingredient
in the input image. Min et al. [29] proposed a deep belief network
(DBN) that is able to learn a joint representation for images and
ingredients. An interesting detail of this work is that visible in-
gredients in the image were modelled differently than non-visible
ingredients, and this proved to be beneficial for the performance
of the network. This method was then tested on cuisine classifica-
tion (e.g., Mediterranean), image retrieval (given the ingredients,
course and cuisine information, find the most relevant image) and
ingredient, course and cuisine prediction (given a food image). In
the work of Salvador et al. [43], a joint network architecture that
embeds images, ingredients, cooking instructions into a common
space was presented. Image representations were obtained using a
traditional convolutional architecture (ResNet-50). Ingredient repre-
sentations resulted from a bi-directional recurrent neural network

Table 2: Common data-sets used for food ingredient and
cooking instructions recognition.

Name Recipes Images Reference

Recipe1M 1,029,720 887,706 [43]
VIREO Food-172 65,284 110,241 [8]
Yummly-28K 27,638 [28]
Yummly-66K 66,615 [29]

(RNN) processing word2vec encodings [27] of the ingredients. Fi-
nally, instruction representations were the result of skip-thought
encodings [23] being processed by another RNN. This architecture
was then used for image to recipe and recipe to image retrieval,
where recipe is considered the pair of ingredients and cooking in-
structions. When compared to human performance on the image to
recipe task, their evaluation showed comparable results. Carvalho
et al. [6] adopted the network architecture presented in [43] and
proposed a new optimization objective in order to improve retrieval
performance. The new objective function combines the classifica-
tion and retrieval tasks at the same level, therefore eliminating the
need for an additional classification layer in the model architecture.
In a continuation of their previous work, Salvador et al. [42] pro-
posed a network architecture that predicts a list of ingredients from
a given image. Then, both the image and the predicted ingredients
are used in order to predict the cooking instructions for the recipe.
Compared to their previous work, where the network architecture
was used for retrieval, they showed that this method improves the
accuracy of the results.

2.3 Food Quantity Estimation
The purpose of methods included in this category is to obtain an
estimation of the quantity of consumed food or of its nutritional
content and calories. The problem of calorie estimation has been
approached in two different ways. One group of methods works by
first obtaining an estimation of the food volume, or of its ingredients,
and then translating this information into calories. The second
group performs a direct estimation of the calories without any
intermediate representation. Methods belonging to both groups
are presented next, while the available data-sets for this task are
presented in Table 3.

Puri et al. [39] employed a combination of color and texture fea-
tures at different scales, which were used for training an SVM-based
AdaBoost classifier for segmenting and classifying the food items
on a given image. To obtain an estimation of the volume, three
pictures of each dish were used (where a checker-board was also
visible for scale), for which key-points were detected and matched
using Harris corners and RANSAC. Finally, a dense 3D reconstruc-
tion was computed. Using a small data-set for evaluation, their
method achieved an average error of 6% in volume estimation. In
[36], an SVM classifier trained with color, texture, size, and shape
features is used for the task of food recognition. Then, the area that
each food item occupies is measured and a side photo of the same
dish is used in order to calculate depth and volume information. It
should be noted that users’ thumb is also visible in the images for
scale assessment. Finally, the calories for each item in the image are
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calculated using predefined tables for food density and caloric con-
tent. A similar architecture is presented in [11], with the difference,
however, that instead of calculating calories based on the whole
meal, the system estimates the leftover quantity and subtracts the
corresponding calories. In the work of Myers et al. [31], a CNN
architecture (GoogLeNet) was used for food recognition, both in an
unconstrained setting as well as a setting of menu items from 23
restaurants. Another network was used for segmenting the image
into individual items and a third network was employed for the
task of depth estimation. The last network was trained with pairs
of RGB and depth images in order to learn depth estimation. The
final step of translating the volume of each food item into calories
was performed using predefined tables from the USDA National
Nutrient Database [12]. Ege and Yanai [15] presented a multi-task
CNN architecture for simultaneous food recognition and calorie
estimation. The authors employed a VGG-16 network architecture,
which was shared between the two tasks up to the last two layers.
These last layers were independent and produced the class proba-
bilities on the one side, and calories on the other. Their evaluation
results showed a 28% relative error in the calorie estimation task.
Fang et al. [16] employed a Conditional Generative Adversarial
Network (CGAN) in order to learn an energy mapping (calories)
from a single input image. Given a noise vector, and conditioned
on the input RGB image, the network learns to produce an energy
distribution image, where the value of each pixel corresponds to
the caloric content of the displayed food item. The authors tested
two architectures for the network and concluded that the U-Net
produced the best results, with a relative energy estimation error
of 10.9%. In contrast to the image-based works presented so far,
Mirtchouk et al. [30] presented a method based on audio, motion
and high-level features for food category recognition and quantity
estimation. Six participants were instructed to eat foods of their
choice in any quantity they wanted, while wearing an earbud with
internal and external microphones, a smart-watch in each hand and
Google Glass smart-glasses. Random forest models were trained
using features extracted from these sensors, as well as high-level
annotation features such as the number of chews after an intake
and the duration of the intake window, in order to predict food
category and estimate weight for each intake.

3 EATING BEHAVIOUR ANALYSIS
This section is concerned with methods that analyze human eating
behaviour, and more specifically with chewing rate, mastication
count, overall meal duration estimation, as well as distinguish be-
tween eating events and non-eating-related events. Unlike food
category recognition, where most methods are based on image
analysis, a number of different approaches have been used in the
literature regarding eating behaviour analysis. These are based
on weight [7], audio [2, 45], hand motion [14], image [5] and jaw
motion [44] analysis, to name a few. Below we describe some of
the methods in more detail. Available data-sets for this task are
presented in Table 4.

Chang et al. [7] employed embedded RFID and weighing sensors
underneath a dining table. The RFID sensor is used for determin-
ing the presence of specific tabletop objects, while the weighting
sensors can detect changes to the food containers with half a gram

resolution. An eating event is recognized when there is a decrease
in the weight of the container corresponding to each individual.
The audio-based method proposed by Shuzo et al. [45], described
previously, was also able to estimate mastication count and meal
duration. Bi et al. [2] used a neck-wornmicrophone for recording au-
dio signals during eating. Initially, hidden Markov models (HMMs)
were used for identifying chewing and swallowing events based
on Mel frequency cepstrum coefficients (MFCCs). Then, features
such as the zero crossing rate, the energy of different frequency
bands and the fractal dimension were extracted and processed by a
decision tree for classifying food types. In [14] a wrist-worn device
with an embedded gyroscope sensor was used in order to estimate
the number of bites. The method is based on the observation that
a specific wrist motion takes place before each bite, as part of the
movement of bringing food to the mouth. Therefore, an event was
detected if the roll velocity surpassed a first threshold, then went
below another threshold and also satisfied two timing requirements,
put in place to reduce false detections. Cadavid et al. [5] used a
video-based approach for detecting chewing events. An active ap-
pearance model (AAM) was used in order to capture shape and
appearance information regarding a person’s face. Frequency anal-
ysis of the active appearance model parameters and dimensionality
reduction were used for obtaining the final representations, which
were then processed by an SVM classifier. The sensing fork de-
veloped by [19], besides food recognition, was also able to detect
biting events through the use of a conductive probe. Sazonov and
Fontana [44] investigated the use of a jaw motion sensor, placed
below a person’s ear, for the detection of chewing events. The au-
thors extracted a set of 25 time and frequency features, such as the
number of zero crossings and the peak frequency. Classification
was handled by an SVM model. This methodology is different from
[45] for example, since it uses voltage signals generated by jaw
motion through a piezoelectric film element sensitive to stress, not
audio. Finally, the recent works of Prioleau et al. [37] and Vu et al.
[47] provided a comprehensive review of the relevant literature.

4 AI NUTRITION RECOMMENDER SYSTEMS
This section initially provides a description of the components that
an idealized AI nutrition recommender system would have. Each
component is then compared to state-of-the-art methods and an
assessment of its feasibility with current technology is provided.
Finally, recent literature and EU-funded projects relevant to this task
are presented, including the approach followed by the PROTEIN
project, in which the authors of this work participate.

To begin with, an ideal AI nutrition recommender system would
be able to identify the type of food consumed by the user, providing
as detailed a description as possible. For example, identifying a
dish as Chicken Salad with Wild Rice instead of Salad. As described
previously in Section 2.1, this field of study has received the most at-
tention from the research community and is in a mature state, with
standardized large-scale data-sets being available for evaluation
purposes. Although recent approaches in food category recogni-
tion have reported results above the 90% mark in Food-101, good
evaluation results on a data-set equivalent in scale to ImageNet
[13], such as Recipe1M, would be needed in order to get closer in
fulfilling this requirement.
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Table 3: Data-sets regarding food quantity estimation.

Name Images Calories Macro-nutrients Micro-nutrients Reference

Food-pics 896 ✓ ✓ - [3]
Menu-Match 646 ✓ - - [1]
Yummly-28K * 27,638 ✓ ✓ ✓ [28]
Recipe1M ** 887,706 ✓ ✓ ✓ [43]

* Yummly-28K contains nutritional information for about 90% of the recipes.
** Recipe1M contains nutritional information for about 50k recipes [40].

Table 4: Available data-sets for eating behaviour analysis.

Name Description Reference

Food Intake Accelerometer and gyroscope [24]
Cycle data from wrist-worn smart-

watches. Hand micromovement
annotations during eating.

SPLENDID PPG, audio and acceleration [33]
chewing data from body-worn sensors.
detection Eating event annotations.

Next, an ideal recommender system would have to provide an ac-
curate estimation of the ingredients, calories and nutrients present
in the food. These three attributes constitute the building blocks of
the recommender system, as any attempt at creating personalized
nutrition plans depends on at least one of them. This requirement
is considerably harder to satisfy compared to the previous one,
because of the inherent difficulties of the task at hand. For example,
there is the issue of visually occluded ingredients. There are recipes
where some of the ingredients are not visible in the final form of
the dish, e.g., olive oil in Moussaka, or almost every ingredient in
Soup. As discussed in Section 2.2, an interesting approach towards
this problem was presented by Min et al. [29], where visible and
non-visible ingredients were modeled separately within their archi-
tecture, providing improved performance. Another issue is calorie
estimation based on predefined tables. As presented in Section 2.3,
most methods first identify the displayed food, then obtain a vol-
ume estimate and finally translate this information into calories
using predefined tables. Although this may be a good strategy in
the absence of any dish-specific information, such tables provide
food densities and calories for a ’typical’ interpretation of the dish,
which may be quite different from the one at hand. Another issue
related to this requirement is nutrient estimation without knowl-
edge of the cooking method. Since nutrients are affected by the
way the food is cooked, estimations that disregard this information,
and are based on raw ingredients instead, could still be far off the
actual value. In Section 2.2, the method of Chen et al. [9] headed
towards this direction by incorporating ingredient cooking method
estimation into their architecture. Regarding the state of each afore-
mentioned area, ingredient recognition is currently under active
development, after the recent introduction of large-scale data-sets
for this purpose (see Table 2). The methodologies presented in
Section 2.2 show promising results, but further improvements are

needed if such systems are to be deployed for everyday use. On the
other hand, it seems that the area of calorie and nutrient estimation
has not reached a mature state yet, as literature approaches are
often reporting evaluation results on small-scale private data-sets.
Although not advertised as such, the Yummly-28K and Recipe1M
data-sets could also be used for this task (see Table 3), providing
up to two orders of magnitude more samples than the traditional
data-sets.

Such a system would also be able to analyze the way food is
consumed by the user, extracting information regarding the time
of day the user eats, the duration of each meal, the chewing rate
and the response of the user to the specific food items (e.g., blood
glucose levels). As discussed previously in Section 3, approaches
targeting some of these areas already exist, providing promising
evaluation results as well. However, the lack of standardized data-
sets for this task makes it difficult to assess progress, as the reported
evaluation results are mostly in private data-sets. Public data-sets
that could be used for this task are presented in Table 4. Moreover,
as the challenges in these areas are much easier to deal with than
those in ingredient, calorie and nutrient estimation, standardization
would help these areas progress rapidly.

Finally, an ideal AI recommender systemwould be able to modify
its recommendations based on the behaviour, preferences and needs
of the user. This includes the omission or substitution of specific
ingredients from recipes and the re-calculation of nutrition and
activity plans based on the (changing) goals of the user (weight
loss, muscle gain or eating healthy), or on the deviation of the user
from the provided plans. As we will see next, current literature
approaches are already concerned with some of these requirements,
but there is still a lot of margin for improvement.

Regarding the relevant literature on this topic, Ge et al. [18]
presented a recommender system based on user preferences to-
wards recipes and ingredients. The system uses this information
to generate candidate recipes, which the user can select for cook-
ing or request that they be adjusted, such as make a recipe spicier.
When changes are requested, the system then provides updated
recommendations. The system statically estimates caloric needs
based on user profile data, such as weight, height and activities.
Finally, users have the ability to influence the recommendations
towards tasty or healthy foods. The recommender system proposed
in [49], initially asks the users about any dietary restrictions they
may have, such as Kosher, and about their nutritional expectations
towards calories, protein and fat (increase, decrease or maintain).
Then the system presents to the user a list of food images and the
user must select the most preferred ones. Based on the information
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gathered so far, an iterative process is then initiated with as many
as 13 repetitions, where the system presents food images to the
user, gathers the provided preferences and updates its state regard-
ing which items are more likely to appeal to the user. An online
learning framework is proposed for this task, with the food (image)
similarity sub-component being handled by a multi-task siamese
convolutional neural network. The provided results of a user study
showed a 73% acceptance rate for the proposed recommender, com-
pared to 51% for the baseline. Ribeiro et al. [41] proposed a meal
recommender that first estimates the nutritional requirements of
the user, then filters the available food items based on several rules
and finally scales the recipe ingredients to match the caloric needs
of the user. Nutritional requirements are calculated through user-
provided information, such as age, sex, weight, height and activity
level. The last one is measured using a Fitbit activity tracker. Food
items are selected for each meal based on criteria such as the food
and dietary preferences of the user, the avoidance of recipe repeti-
tion within the same week and promoting the consumption of meat
dishes for lunch and fish for dinner. The system also has the ability
to create shopping lists with the ingredients of the recommended
food items. Based on the results of a user study, 70% of participants
replied that they would follow the recommended weekly food plan.

EU-funded projects have also been concerned with the topic of
personalized nutrition recommendations. The FOOD4ME project
[17], which was completed in 2015, investigated the impact of var-
ious levels of personalized dietary recommendations on health
markers and weight. Personalization levels varied by the amount
and type of data taken into account by the system. The first level
included the current diet, weight, BMI and physical activity of the
person, the second level included the first level information plus
blood markers (e.g., glucose and total cholesterol), while the third
level included information from the previous levels plus genetic
markers. The results showed that personalized nutrition is effective,
but level two and three provided no additional benefit.

Regarding ongoing research projects, NUTRISHIELD [32] aims
at providing personalized nutrition by taking into account factors
such as phenotype, genome expression, microbiome composition
and health condition of the person. Stance4Health [46] aims to
develop personalized nutrition recommendations based on users’
health status, microbiota composition, food preferences, lifestyle
and budget. A wearable device that tracks body composition, phys-
ical activity and sleeping hours also provides information to the
platform. Among the target groups of the platform are people with
celiac disease, food allergies and people that are overweight. Fi-
nally, the PROTEIN project [38] intends to deliver a personalized
nutrition and activity recommender system, with early warning
functionality in case of suboptimal eating patterns, which will also
help users make healthier choices in supermarkets and restaurants.
A variety of sensors will be employed in order to fulfill these goals,
including smart-watches (physical activity and eating rate analy-
sis), smart food scales (eating rate, meal size and duration analysis),
volatile organic compounds sensors (health and nutritional status
analysis) and continuous glucose monitoring sensors.

5 CONCLUSION
This work provided an overview of existing AI nutrition recom-
mender systems, a field that has experienced substantial growth
in the last few years. A categorization of such systems into task-
specific components was presented, along with approaches con-
cerned with each component and relevant data-sets. An assess-
ment of the feasibility of implementing an ideal AI nutrition rec-
ommender system using current methods was also provided, with
the general conclusion being that some of the required components
have not reached a mature state yet.
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