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Abstract—This paper proposes a novel methodology for gener-
ating 3D point clouds of good accuracy from stereo pairs. Initially,
the methodology defines some conditions for the proper selection
of image pairs. Then, the selected stereo images are used to
estimate dense correspondences using the Daisy descriptor. An
efficient two-phase strategy to remove outliers is then introduced.
Finally, the 3D point cloud is refined by combining sub-pixel ac-
curacy correspondences estimation and the moving least squares
algorithm. The proposed methodology can be exploited by multi-
view stereo algorithms due to its good accuracy and its fast
computation.

Index Terms—3D content generation, Multi-view stereo

I. INTRODUCTION

The automatic and accurate 3D modeling of objects and
scenes, from multiple photographs or videos, constitutes an
important objective in the computer vision and graphics re-
search fields. The realistic 3D models can be exploited in
multiple applications, such as computer graphics, TV/film
special effects, robot navigation and computer games.

Research in 3D model reconstruction using multi-view
stereo algorithms has made signicant progress in the computer
vision community. Multi-view stereo (MVS) algorithms take
multiple images with pose information as input and produce
dense 3D models with increased accuracy. They can be divided
into two categories according to the scale of the considered
scenes. Small-scale methods include voxel-based approaches
[1], [2], which require the definition of a bounding box
that encloses the scene, and approaches based on deformable
polygonal meshes [3], which require a good estimation of a
visual hull to initialize the corresponding optimization proce-
dure. While being accurate, those methods do not scale up
to large scale scenes, since their memory and computational
requirements increase exponentially with the size of the scene.

On the contrary, depth map fusion methodologies [4] can
scale up to very large scenes, sometimes sacrificing some of
the accuracy and completeness of volumetric methods [5].

Other large scale methods generate and merge collections
of 3D points clouds, which may be then used to generate
a mesh surface [6]–[9]. Many of the methods that rely on
3D point clouds, put emphasis on the merging of the point
clouds that are generated from different stereo pairs by using
visibility constrains to filter erroneous points. Our proposed
methodology could foster these approaches by improving the
accuracy of the individual point clouds, which are generated
from each stereo pair, before point clouds from all stereo pairs
are merged.

The rest of this paper is organized as follows. In section
2 the proposed methodology is described. Section 3 provides
information on the parameters used, the experimental results
and the computational cost. Finally, the conclusions are drawn
in Section 4.

II. STEREO DENSE 3D POINT CLOUD GENERATION

In general, the first step of multi-view 3D reconstruction
is the computation of camera(s) poses that capture a scene.
The Structure-from-Motion (SfM) approach presented in [10]
provides an efficient way for computing robustly the camera
parameters from a set of user-generated images. In this paper,
an efficient methodology for generating an accurate 3D point
cloud from a stereo image pair, is presented. The approach
can be divided into three stages:

1) During the first stage, the stereo pairs to be used for the
generation of each stereo point cloud are appropriately
selected, based on specific conditions, in order to ensure
the accuracy of reconstruction.

2) The second stage includes the estimation of dense corre-
spondences between the images of the stereo pair, based
on fast DAISY [11] descriptor matching. Additionally, a
strategy for filtering outlier correspondences is presented.

3) The third stage involves refinement of the generated
3D point cloud. Refinement is accomplished by estimat-
ing the correspondences in sub-pixel accuracy and by
smoothing the resulting point cloud using the moving
least squares algorithm.

The innovation of this method lies mainly in the efficient
strategy for removing outliers and in the effective combination
of sub-pixel accuracy correspondences estimation with the
moving least squares algorithm to improve the accuracy of
the generated 3D point cloud. In the following, more details
are provided on what each of these stages comprises.

A. Stereo Pair Selection
Stereo images pair selection is a crucial step to acquire

stereo 3D point clouds with good accuracy. The images of
an “adequate” stereo pair should have significant overlap to
be easily matched, but also to be sufficiently separated, since
much closeness may result to point cloud estimation errors.
This is quantified, similarly to [8], by measuring the angle θ
between the camera principal rays of the stereo images. The
condition that θ should satisfy is: θmin < θ < θmax.

Afterwards, Quasi-Euclidean epipolar rectification [12] is
applied to each stereo images pair that satisfies the previous



Fig. 1: Correspondence in rectified stereo images.

condition. If the Quasi-Euclidean epipolar rectification error
Trect is below a threshold Tmax, the stereo pair is assumed
as suitable for proceeding to the estimation of its point cloud.
Consequently, this work, except for the condition based on
θ, defines a second condition based on Trect for selecting
adequate stereo pairs.

B. Dense correspondences estimation and outliers filtering
During the second step, the DAISY descriptor [11] is ex-

ploited to estimate dense correspondences between the images
of a stereo pair. Daisy has been selected for this scope, because
it has been proved to be very efficient for dense wide baseline
matching and at the same time DAISY outperforms the SIFT
[13] and SURF [14] descriptors regarding the accuracy of
matching.

More specifically, in order to find for a pixel on one image
its corresponding pixel to the other image, we search for the
pixel’s DAISY descriptor the pixel with the nearest DAISY
descriptor on the second image. The search is constrained
along horizontal epipolar lines, since the images have been
rectified. Fig. 1 depicts a pixel correspondence α − β on an
epipolar line, between a rectified stereo pair. The search for
the nearest descriptor is performed using approximate nearest
neighbor searching based on randomized kd-trees [15], where
trees are searched in parallel. The kd-trees search approach
significantly boosts the speed of searching, when compared to
exhaustive search.

The correspondence estimation is performed twice. Once
having as reference the first image of the stereo pair and once
having as reference the second image. Then, the Left-Right
consistency check [16] is used for detecting the correspon-
dence outliers.

Except for this common technique, an additional technique
to filter outliers in a segment level, and not in a pixel level, is
proposed. This technique helps to remove outliers that appear
in textureless regions. Initially, mean-shift segmentation is
used to partition the image into different segments that contain
groups of pixels (the segmentation map of the left image of
Fig. 1 is visualized in Fig. 2(a)).

Then for each segment, the percent of pixels that pass
the right-left consistency check to the total number of pixels
contained in the segment, is computed. If this percent is over
50%, then the correspondences in the segment are considered

Fig. 2: (a) Mean-shift segmentation map of an image and (b)
Generated stereo point cloud without using (upper part) and, when
using (bottom part) the proposed outliers filtering strategy.

Fig. 3: Sub-pixel accuracy correspondence using quadratic curve
fitting.

as inliers. Otherwise, all the correspondences in the segment
are considered as outliers.

This strategy assists in filtering numerous outliers. This fact
is evident in the visual example of Fig. 2(b). The upper part of
Fig. 2(b) shows the point cloud that is generated without using
the proposed outliers filtering strategy, while the bottom part
of Fig. 2(b) depicts the point cloud after applying the outliers
filtering strategy. Obviously, the second point cloud contains
less outliers.

C. Point cloud refinement
1) Correspondences estimation in sub-pixel accuracy
So far, the estimated correspondences have pixel accuracy.

However, correspondence estimation at sub-pixel accuracy can
significantly improve the quality of the generated 3D point
cloud, since pixel accuracy matching, results in discrete and
not continuous values of depth information.

In order to achieve sub-pixel accuracy the following process
is followed. Let us suppose that a pixel α on the left image
corresponds to a pixel β on the right image and their matching
cost C(α, β) has already been estimated. Then, the matching
cost C(α, β − 1) between the DAISY descriptors of pixels
α and β − 1 and the matching cost C(α, β + 1) between α
and β + 1 are estimated. The three points (C(α, β − 1), β −
1), (C(α, β), β) and (C(α, β + 1), β + 1) (these points are
visualized in Fig. 3) are used to estimate a quadratic function



Fig. 4: (a) Point cloud that corresponds to pixel accuracy (upper part)
and sub-pixel accuracy (bottom part) correspondences and (b) Point
cloud before (upper part) and after (bottom part) applying the Moving
Least Squares algorithm.

and estimate the minimum cost C(α, βm) of the quadratic
function’s curve, which corresponds to βm. Consequently, the
sub-pixel accuracy correspondence is assumed to be given by
the pair (α, βm), while the pixel accuracy correspondence was
given by the pair (α, β).

The upper part of Fig. 4(a) shows the point cloud that
corresponds to pixel accuracy correspondences, while the
bottom part of Fig. 4(a) depicts the point cloud that corre-
sponds to sub-pixel accuracy correspondences. It is evident,
by comparing these two parts, that the bottom point cloud is
more accurate, since depth information is continuous.

2) Point cloud smoothing
The 2D sub-pixel correspondences estimated in Section

II-C1 are converted into 3D point clouds using the projection
matrices that were estimated during the SfM process. After-
wards, a final step is applied to improve the reconstruction
quality.

More specifically, in order to resample and smooth the gen-
erated point cloud the Moving Least Squares (MLS) algorithm,
described in [17], is exploited. The upper part of Fig. 4(b)
shows the point cloud before applying the MLS algorithm,
while the bottom part of Fig. 4(b) after applying the MLS
algorithm.

III. EXPERIMENTAL RESULTS

A. Set of optimum parameters
The limits for the principal rays’ angles are set to θmin = 5◦

and θmax = 25◦. The rectification error threshold is set
to Tmax = 0.5 · (Dmax/640) pixels, where Dmax is the
maximum dimension of the images (width or height), which
constitute the image pair, in pixels. In this way, Tmax is set
proportional to the size of the stereo images to be rectified.

The selected parameters for computing the DAISY descrip-
tor are the radius of the descriptor R = 9, the number of rings

Q = 3, the number of histograms on each ring T = 4 and the
number of bins of the histograms H = 4.

The segmentation parameters are the segmentation spatial
radius, which is set to hr = 3 and the segmentation feature
space radius, which is set to hs = 3. The selection of these
strict values ensures that the segmentation map will be of high
reliability, meaning that most likely a segment will not overlap
a depth discontinuity, and this fact is verified in [18] and [19].

B. Experiments
A stereo pair of images, which has been derived from

the Herz-Jesu-P8 [5] (in specific images “0007.png” and
“0008.png”) is used to visually indicate the improvement intro-
duced by the proposed methodology, regarding the accuracy
of the estimated stereo point cloud. The images have been
downscaled with a factor of 3, so as to make more obvious
the accuracy improvement in visual data of lower resolution.
The generated stereo 3D point cloud using this approach is
visualized in Fig. 5(a).

In the following, the stereo point cloud, with or without
using the proposed refinement steps, is estimated. The point
cloud (observed from the upper viewpoint): (i) without using
sub-pixel accuracy nor MLS algorithm is visualized in Fig.
5(b), (ii) using only sub-pixel accuracy is visualized in Fig.
5(c), (iii) using only MLS algorithm is visualized in Fig. 5(d)
and (iv) using both sub-pixel accuracy and MLS algorithm
is visualized in Fig. 5(e). Evidently, Fig. 5(e) gives the more
accurate stereo point cloud.

In the second example, this approach is used to generate
individual stereo point clouds using images captured from the
Rotunda Ancient Monument in the city of Thessaloniki. Then,
the point clouds are finally concatenated to form the final 3D
point cloud. This 3D reconstruction example is depicted in
Fig. 6. The right part of Fig. 6, which depicts the overview of
the 3D reconstruction, indicates that individual point clouds
have satisfactory accuracy, so that they are well registered to
form a complete 3D representation of the captured object, even
without using any method for combining the individual point
clouds.

C. Computational cost
The proposed methodology has been implemented in C++

and it has been tested on a laptop PC with an Intel Core i5-
2430M 2.4GHz CPU. A pair of images with size 1024x682
is used to report on the processing time required for each
step of the methodology. In the parenthesis is also reported
the percentage of total time that is spent in each step. The
rectification step (subsection II-A) requires 4.1 sec (5.942%),
the dense Daisy computation and correspondence estimation
(subsection II-B) requires 20.5 sec (29.71%), the outliers
filtering (subsection II-B) requires 4.2 sec (6.087%), the sub-
pixel accuracy correspondence estimation (subsection II-C1)
requires 5.6 sec (8.116%) and finally the MLS algorithm
(subsection II-C2) execution requires 34.6 sec (50.145%). The
total processing time is 1.15 min and it is acceptable bearing in
mind the obvious improvement in the 3D point cloud accuracy



and that this methodology aims to be used by Multi-view
stereo algorithms, which are not real-time applications.

(a)

(b)

(c)

(d)

(e)

Fig. 5: (a) Colored stereo point cloud, Point cloud using: (b) neither
sub-pixel accuracy nor MLS, (c) only sub-pixel accuracy, (d) only
MLS, (e) sub-pixel accuracy and MLS.

Fig. 6: Rotunda 3D Reconstruction

IV. CONCLUSIONS

This approach aims at generating accurate stereo point
clouds using a time efficient and accurate methodology. The
outliers are removed using an efficient two-phase strategy,

while the accuracy of the generated 3D point cloud is im-
proved by combining sub-pixel accuracy estimation and the
MLS algorithm, which assist in achieving good reconstruction
accuracy even for stereo images of low resolution.

The proposed approach could be exploited by multi-view
algorithms, which attach great importance to the combination
of sets of stereo point clouds and not to the computation of
the individual stereo point clouds. For instance, the method in
[8] uses a complex methodology that verifies the accuracy of
each 3D point on more multiple depth maps and does not give
weight to the individual stereo point cloud computation.

Future work will examine the exploitation of this approach,
within a general framework that will also contain a method-
ology for the efficient combination of individual stereo point
clouds.
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