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Abstract
This paper deals with the Tobit Kalman filtering (TKF) process when the measure-
ments are correlated and censored. The case of interval censoring, i.e., the case of
measurements which belong to some interval with given censoring limits, is con-
sidered. Two improvements of the standard TKF process are proposed, in order to
estimate the hidden state vectors. Firstly, the exact covariance matrix of the censored
measurements is calculated by taking into account the censoring limits. Secondly, the
probability of a latent (normally distributed) measurement to belong in or out of the
uncensored region is calculated by taking into account the Kalman filter residual. The
designed algorithm is tested using both synthetic and real data sets. The real data
set includes human skeleton joints’ coordinates captured by the Microsoft Kinect II
sensor. In order to cope with certain real-life situations that cause problems in human
skeleton tracking, such as (self)-occlusions, closely interacting persons, etc., adap-
tive censoring limits are used in the proposed TKF process. Experiments show that
the proposed method outperforms other filtering processes in minimizing the overall
root-mean-square error for synthetic and real data sets.
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1 Introduction

Human skeleton motion tracking has been studied for several decades and remains
a highly active research field due to its importance in several diverse domains like
surveillance applications, medical applications, serious games, educational applica-
tions, high performance sports monitoring and others [27,41,44,45]. With the advent
of commercial RGB-D sensors [7,36], human skeleton motion tracking has attracted
a lot of attention due to the capacity of the sensors to reliably track skeletal joints.
However, regardless of the significant progress that has been achieved in both sen-
sors’ development and human skeleton motion tracking research, many applications
require more accurate tracking of the human skeleton position and motion. On the
sensors’ side, high performing sensors (such as the Vicon System), which are able
to accurately track at high rates, are very expensive and cumbersome to deploy.
On the other hand, affordable, commercial RGB-D solutions (i.e., the Microsoft
Kinect, the Xtion Pro and others) often produce low-quality human skeleton motion
tracking due to their inherent problems (low sampling frequency, moderate depth
resolution, UV light interferences, etc.), and also due to their simplistic setup (usu-
ally only one such sensor is deployed, resulting in occluding areas and human
self-occlusion).

To overcome these issues and provide an affordable and, at the same time, reli-
able solution to the human skeleton motion tracking task, research has been steered
towards two general categories of methods: methods that exploit multiple RGB-
D sensors [5,36] and methods that use various filters able to improve and smooth
the sensors’ measurements [6,9,10]. For the first category, two major flaws arise:
1) the increase in the cost for monitoring, capturing and processing, and 2) the
interferences between devices, which add more noise and restrictions to the prob-
lem at hand, thus, making it harder to solve. For the latter, the main drawback is
the lack of a framework able to provide reliable estimations of the human skeleton
joints.

In this paper, a new method is introduced, which belongs to the second category
of methods. The human skeleton motion tracking is improved by filtering the Kinect
skeleton joints’ measurements through a novel Kalman type filtering method adapted
to restrictive conditions concerning human skeleton movements. The measurements
that are corrected and filtered are the 25 Kinect’s V2 skeletal joints, which are time
series of 3D spatial coordinates in a 3D space centered in the physical center of the
Kinect’s infrared sensor.

In the literature, in order to filter spatial coordinates (or a signal), various
filters, e.g., Kalman Filter (KF) [20,28], Savitzky–Golay filter (SGF) [38], Par-
ticle Filtering [4] and others have been proposed. One of the most common
filters for signal filtering is KF, which provides optimal minimum mean square
error (MMSE) estimates under the assumption that the state-space model is linear
and the signal’s measurements are normally distributed. However, KF may per-
form a poor filtering when the noisy signal contains some extreme measurements
(outliers).

In the case where certain bounds of the denoised signal’s values are consid-
ered, the extreme measurements can be treated by providing this information in the
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KF process. In order to deal with that, the censored normal distribution in the KF
estimation procedure [15,37] is introduced. The use of censored probabilities the-
ory in data filtering was firstly introduced in [1], where the Tobit Kalman Filter
(TKF) was proposed aiming to estimate an unknown state vector, x, when censored
measurements, y, are present. In [29,30], TKF was utilized in order to filter spa-
tial coordinates of human skeleton; however, no proofs for the TKF process were
provided.

In this paper, a new filter is proposed, the so-called Adaptive Tobit Kalman Filter
(ATKF), which considers an occluded or self-occluded Kinect’s skeletal joint as a
censored measurement. This filter takes advantage of the approaches presented in
[1,30] and proposes a new proof. The proposed approach results in a more accurate
estimation of the probability of a measurement to fall into the censoring region and as
a consequence, it leads to a more accurate estimation of the state. The proposed ATKF
also adapts its censoring region at each time step by considering previous states. The
main contributions of this paper are:

1. A proof for accurately calculating the covariance matrix of the censored measure-
ments in Tobit Kalman filtering, by incorporating the censoring limits into the
equation of censored covariance.

2. A proof for accurately calculating the probabilities of a latent measurement, y∗,
to belong in or out of the uncensored region, by taking into consideration the KF
residual.

3. A new Adaptive Tobit Kalman Filter able to adapt the censoring limits at each
time step.

4. As an application of contributions 1,2 and 3, a new method, which improves the
human skeleton tracking in real-time applications is provided.

5. A new evaluation metric for human skeleton motion filtering to measure the per-
formance of a filtering technique, when no ground truth data are available.

The rest of the paper is organized as follows. In Sect. 2, related works are described,
while in Sect. 3, the proposed Adaptive Tobit Kalman Filter is presented in detail. In
Sect. 4, experimental results are drawn, using artificial data as well as real human
skeleton motion tracking data. Finally, Sect. 5, concludes the paper.

2 RelatedWork

Many approaches exist for filtering and motion tracking of the human skeleton either
from images, videos or depth information. In this paper, only methods that are most
relevant to the presentwork (based on data filtering) arementioned. For amore detailed
discussion, we refer to the books [12] and [35] for data filtering and human skeleton
motion, respectively.

Similar to the proposed method, Microsoft [22] proposed various filters for filtering
human skeleton motion data from Kinect devices. Two of them are the simple and the
exponential moving average [38,42], but there is not any reference on how the time
windows and the weights should be chosen, since these are application dependent.
Edwards et al. [10] denoised human skeleton motion data (obtained by a Kinect V2
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sensor) using four different filters: (1) the moving average, (2) KF, (3) the Holt double
exponential filter [19] and (4) their proposed filter, consisting of a Kalman filter with
a Wiener Process Acceleration (WPA) [43]. Both the averaging filter and KF had a
good filtering performance, but they introduced relatively large amounts of latency,
while the other two had good performance and low latency. Finally, the WPA Kalman
filter exhibited the best overall performance.

Regarding the filtering process per se, themost known andwell established filtering
method is KF. In order to overcome several drawbacks of KF (mainly due to its linear
nature), the extended Kalman Filter (EKF) was proposed in [23]. Although EKF
is not characterized as an optimal estimator, it is an extension of the linear-system
technique to a wider class of problems, which are nonlinear, as with most of the real-
life problems. However, EKF tends to be unstable in many applications due to its
local nature, leading to incorrect filtering of a signal that exhibits a high degree of
nonlinearities. To overcome these problems, the unscented Kalman Filter (UKF) was
proposed in [13,24]. UKFuses a deterministic sampling technique known as unscented
transform [18] to gather a minimal set of points around a local mean. By doing so, it
provides better results than EKF when the predict and the update functions are highly
nonlinear and EKF has typically poor performance. Finally, a very successful method
is the particle filtering [8], which is a Monte Carlo-based filtering method. Though
particle filtering is generally very adaptable, it requires a high computational burden,
making it practically unsuitable for many real-time applications.

In the area of censored statistics, all the above-mentioned methods have their draw-
backs. In Allik [1], it is stated that the formulation of a standard KF, as an estimator for
censored data, results in a biased estimation of the unknown state. EKF suffers from
an undefined Jacobian at the censored region, resulting in an ill-posed Jacobian and
thus exhibiting poor performance. On the other hand, UKF is a less computationally
expensive approach than particle filtering; however, it is proven to be non-robust when
the measurements are close to the censored region [1]. Furthermore, while particle fil-
tering is suitable for estimating the state values when the measurements are censored
in certain cases, it has a substantial computational cost. Finally, TKF provides unbi-
ased, recursive estimates of the latent state variables in/near the uncensored regions.
TKF is completely recursive and computationally inexpensive, making it a perfect
candidate for real-time applications such as the human skeleton motion tracking. Nev-
ertheless, TKF neither takes into account the censored area in calculating the censored
measurements variance nor it adapts the limits of the censored area [3].

Fei Han et al. [16] concerned TKF for a class of linear discrete-time system with
random parameters. The elements of the state space matrices are allowed to be random
variables in order to reflect the reality. Furthermore, they established a novel weighting
covariance formula to address the quadratic terms associatedwith the randommatrices.
Although their proposed method with only one censoring limit is coped.

In the area of human skeletonmotion tracking, several methods have been proposed
involving multiple RGB-D sensors, increasing the complexity and the cost of the
solution as mentioned before. In [36], Sungphil et al. proposed a new method for
human skeleton motion tracking using multiple Kinect V1 sensors. They determined
the reliability of each 3D joint’s position, by combining multiple observations based
on Kinect measurements confidence (a value gathered from the sensor). They used the
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variances of measurements noise in order to identify the contribution of an observation
(i.e., a weight) to create a series of fused measurements. Furthermore, they explained
how to estimate the variance of measurements noise for each joint through KF. Finally,
they presented the average 3D position error of ten activities produced by: (1) their
method, (2) a single Kinect and (3) a simple-average. In all activities but one (running),
their method appeared to give better results than other methods compared with other
methods provided in the paper.

3 ProposedMethod

In this section, the censoring data theory and the well-known TKF [1] are briefly
described in order to better highlight the proposed contributions. Then, an alternative
approach to the classical TKF is demonstrated, where the update function is generated
by taking into account the censoring limits in the measurements covariance matrix
calculation, and thus, resulting in a more accurate evaluation of the censored mea-
surements. Finally, ATKF for human skeleton motion tracking is introduced, where
the censored region limits (boundaries) are not constant, as is the case in the standard
TKF.

3.1 Censored and Truncated Data

Censoring is a condition in which the value of a measurement or observation is only
partially known [40]. Censoring occurs when a value falls outside the range of a
measuring instrument. For example, a bathroom scale might only measure up to 140
kg. If an 150 kg individual is weighed using that scale, the observer would only know
that the individual’s weight is at least 140 kg (partially known). Censoring should not
be confused with the related idea of truncation; while by censoring, observations result
either in knowing the exact value that applies or in knowing that the value lies into
an interval, in the truncation case, only observations in a given range are considered
by ignoring all the others. Different types of censoring exist [33], such as: left, right,
interval, Type I and Type II censoring, respectively. In real-life problems, censored
data are very frequent and to the best of our knowledge the concept of censoring in
human skeleton motion tracking has never been used before.

3.2 Tobit Kalman Filters

As has been already stated, KF does not provide optimal or unbiased estimates for the
states when themeasurements are censored. This is due to the fact that the assumptions
of KF [17] are not met when the noise measurements are censored. TKF [1,3,39]
provides a classification scheme for all aforementioned types of censoring. The state-
space model of TKF is defined as,

xk+1 = Akxk + wk (1)
y∗
k = Hkxk + vk , (2)
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yk,i =

⎧
⎪⎪⎨

⎪⎪⎩

y∗
k,i , ai < y∗

k,i < bi
ai y∗

k,i ≤ ai
bi , y∗

k,i ≥ bi ,

i = 1, 2, . . . ,m ∈ N, (3)

where xk is the state vector at discrete time step k, and wk and vk are random vectors
following N (0,Qk) and N (0,Rk), respectively, where N (μ,Σ) denotes the normal
distribution with mean μ and covariance matrix Σ . Qk and Rk are referred as the
covariance matrices of the process and observation noise, respectively. Ak and Hk

are the transition and the observation matrices, respectively, yk = {yk,i }mi=1, y
∗
k =

{y∗
k,i }mi=1 are the saturated observations (that are Left and Right censoring at the same

time), and the latent observations, respectively, while a = {ai }mi=1 and b = {bi }mi=1 are
the lower and upper limits of the uncensored region, respectively. Finally,m designates
the dimensionality of the process (which is three in the case of 3D human skeleton
motion data).

Next, the process of TKF is presented, where K in Algorithm 1 denotes the total
number of themeasurements. The vectors x̂−

k and x̂k denote the a priori and a posteriori
state estimates at time step k, respectively, whileP−

k andPk are the covariancematrices
of the errors of the a priori and a posteriori state estimates, respectively. The covariance
matrix, Cov(yk |yk−1), the mean vector, E(yk |yk−1) of the censored measurement, yk ,
and the cross-covariance matrix Cov(xk, yk |yk−1) are provided in [1–3]. As can been
stated by Algorithm 1, the process of TKF is recursive and evolves in two stages, the
predict and the update stage, respectively. The predict function is the same as in case
of standard KF [20], since the censored measurements are not used at this stage.

Algorithm 1 Standard Tobit Kalman Filter
1: x0 ← 0n
2: P0 ← 0n×n
3: for k=1:K do
4:
5: # Predict Stage
6: x̂−

k ← Ak x̂k−1

7: P−
k ← AkPk−1AT

k + Qk
8:
9: #Update Stage
10: Kk ← Cov(xk , yk |yk−1) · Cov(yk |yk−1)

−1

11: x̂k ← x̂−
k + Kk (yk − E(yk |yk−1))

12: Pk ← P−
k − Kk · Cov(xk , yk |yk−1)

T

13:
14: end for

3.3 CensoredMoments

In this section, the first moment, the second moment and the covariance of a censored
measurement y = {yi }mi=1 (not truncated) with censoring limits a = {ai }mi=1 and
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b = {bi }mi=1 are calculated. For that purpose, the following Proposition is needed
[31]:

Proposition 1 If the random variable y∗ = {y∗
i }mi=1 follows a m−dimensional normal

distribution with density function f (y∗), mean value μ = {μi }mi=1 and non-singular
covariance matrix Σ = {σi, j }mi, j=1, then the expected values of y∗

i and y∗
i · y∗

j given
that ak < y∗

k < bk, k = 1, . . . ,m, are:

E(y∗
i |ak < y∗

k < bk , k = 1, . . . ,m) = μi +
m∑

k=1

σi,k
(
Fk(ak) − Fk(bk)

)
, (4)

E(y∗
i y

∗
j |ak < y∗

k <bk , k = 1, . . . ,m)

= μi · μ j + σi, j +
m∑

k=1

σi,k
σ j,k(ak Fk(ak) − bk Fk(bk))

σk,k

+
m∑

k=1

σi,k
∑

q �=i

(
σ j,q − σk,qσ j,k

σk,k

)[(
Fk,q (ak , aq ) − Fk,q (ak , bq )

)

− (
Fk,q (bk , aq ) − Fk,q (bk , bq )

)]
.

(5)

The functions Fi (x) and Fi, j (x, y) are given by:

Fi (x) = 1

P(a j < y∗
j < b j , j = 1, . . . ,m)

·
∫ b1

a1
. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bm

am
f (x, y∗−i )dy

∗−i , (6)

Fi, j (x, y) = 1

P(a j < y∗
j < b j , j = 1, . . . ,m)

·
∫ b1

a1
..

∫ bi−1

ai−1

∫ bi+1

ai+1

..

∫ b j−1

a j−1

∫ b j+1

a j+1

..

∫ bm

am
f (x, y, y∗−i− j )dy

∗−i− j ,
(7)

where y∗−i = (y∗
1 ,..,y

∗
i−1,y

∗
i+1,.., y

∗
m) and y∗

−i− j
= (y∗

1 ,.., y
∗
i−1, y

∗
i+1,.., y

∗
j−1,

y∗
j+1,.., y

∗
m). Next, the following Lemma is provided in order to calculate the cen-

sored moments.

Lemma 1 Let x be a continuous randomvariable on a probability spaceΩ , z a discrete
random variable with outcomes {zi }ni=1 and f (x, z) the joint probability function of
(x, z). Then, the expected value of (x, z) can be given by
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E(x, z) =
n∑

i=1

zi E(x |z = zi )P(z = zi ). (8)

Proof

E(x, z) =
∫

Ω

n∑

i=1

zi x f (x, z)dx

=
∫

Ω

n∑

i=1

zi x f (x |zi )P(z = zi )dx

=
n∑

i=1

zi P(z = zi )
∫

Ω

x f (x |zi )dx

=
n∑

i=1

zi P(z = zi )E(x |z = zi ).

�	
Now, the following Proposition can be proved (see “Appendix A”) using Lemma 1
and Proposition 1:

Proposition 2 The mean value of the censored variable yi with censoring limits ai
and bi can be written as:

E(yi ) = μi P(ai < y∗
i < bi ) + σi,i ( fi (ai ) − fi (bi ))

+ai P(y∗
i ≤ ai ) + bi P(y∗

i ≥ bi ). (9)

It is noted that the mean value of the censored variable, yi , depends on the censoring
limits ai , bi , and not on the censoring limits of the others components y j for j �= i .
Furthermore, it can be proved (see “Appendix B”) that:

Proposition 3 The variance and the joint mean value of the censored variable yi and
yi , y j , respectively, with censoring limits {ai , bi } and {ai , bi , a j , b j }, respectively, are
given by:

Var(yi ) = μ2
i (1 − Pi

un)P
i
un + σi,i P

i
un + a2i (1 − Pi

a)P
i
a

+ b2i (1 − Pi
b)P

i
b − 2aibi P

i
a P

i
b − σ 2

i,i ( f (ai ) − f (bi ))

+ 2μiσi,i ( fi (ai ) − f (bi ))(1 − Pi
un)

+ σi,i
(
(ai − μi ) fi (ai ) − (bi − μi ) fi (bi )

)

− 2
(
μi P

i
un + σi,i

(
fi (ai ) − f (bi )

))(
ai P

i
a + bi P

i
b

)

(10)
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and

E(yi y j ) = aib j P(1) + bib j P(3) + aia j P(7) + bia j P(9)

+ b j E(y∗
i |ai < y∗

i < bi , y
∗
j ≥ b j )P(2)

+ ai E(y∗
j |a j < y∗

j < b j , y
∗
i ≤ ai )P(4)

+ E(y∗
i y

∗
j |ai < y∗

i < bi , a j < y∗
j < b j )P(5)

+ bi E(y∗
j |a j < y∗

j < b j , y
∗
i ≥ bi )P(6)

+ a j E(y∗
i |ai < y∗

i < bi , y
∗
j ≤ a j )P(8).

(11)

The probabilities Pi
un, P

i
a , P

i
b and P( j) j=1,...,9 are defined as follows:

Pi
un = P(ai < y∗

i < bi ), P
i
a = P(y∗

i ≤ ai ),

Pi
b = P(y∗

i ≥ bi ), P(1) = P(y∗
i ≤ ai , y

∗
j ≥ b j ),

P(2) = P(ai < y∗
i < bi , y

∗
j ≥ b j ),

P(3) = P(y∗
i ≥ bi , y

∗
j ≥ b j ),

P(4) = P(y∗
i ≤ ai , a j < y∗

j < b j ),

P(5) = P(ai < y∗
i < bi , a j < y∗

j < b j ),

P(6) = P(y∗
i ≥ bi , a j < y∗

j < b j ),

P(7) = P(y∗
i ≤ ai , y

∗
j ≤ a j ),

P(8) = P(ai < y∗
i < bi , y

∗
j ≤ a j ),

P(9) = P(y∗
i ≥ bi , y

∗
j ≤ a j ).

The truncated expected values E(y∗
i |·),E(y∗

i y
∗
j |·) in (11) are calculated in “Appendix

B”. Hence, the covariance matrix of the censored variable y can be calculated by
(9)-(11). It is noted that V (yi ) and E(yi y j ) depend on the censoring limits ai , bi and
ai , bi , a j , b j , respectively, and not on the censoring limits of the others components.
This property does not hold in the case of truncated moments (5).

3.4 Corrected Tobit Kalman Filter

In this paper, as in [1–3,16], the a posteriori estimation, x̂k , is calculated as a linear
combination of the a priori estimation, x̂−

k , and the censored measurement yk (see
Algorithm 1). Although these estimations are not optimal, it is proved that they mini-
mize the trace of state error covariance [32]. Next, the changes made by the proposed
TKF are provided .

The cross-covariance matrixRk,1 = Cov(xk, yk |yk−1) has been calculated in [2,3]
and takes the form

Rk,1 = P−
k H

T
k Pun,k, (12)



Circuits, Systems, and Signal Processing

where Pun,k is a m × m diagonal matrix, and its entries are the probabilities of a
measurement to be uncensored, at time step k. More specifically, the i th diagonal
element of Pun,k , is the probability that a latent measurement y∗

k,i belongs to the
uncensored region. Furthermore, the entries of the diagonal matrices Pa,k , Pb,k denote
the probabilities of a measurement to be censored from below or above, respectively,
at time step k. It is proved (see “Appendix C”) that:

Pun,k = diag

⎡

⎣
Φ(bk,1) − Φ(ak,1)

. . .

Φ(bk,m) − Φ(ak,m)

⎤

⎦ , (13)

Pa,k = diag

⎡

⎣
Φ(ak,1)

. . .

Φ(ak,m)

⎤

⎦ , (14)

Pb,k = diag

⎡

⎣
1 − Φ(bk,1)

. . .

1 − Φ(bk,m)

⎤

⎦ , (15)

where Φ stands for the cumulative function of N (0, 1). The amounts bk,i and ak,i are
calculated as (“Appendix C”)

bk,i = bi − mk,i√
s(i,i),k

(16)

ak,i = ai − mk,i√
s(i,i),k

, (17)

where Sk = HkP
−
k Hk + Rk = {s(i, j),k} and mk = Hx̂−

k = {mk,i }. In standard TKF
[1–3], these amounts are calculated as (which are denoted with ∗ to not confuse them
with the proposed)

b∗
k,i = bi − mk,i√

r(i,i),k
(18)

a∗
k,i = ai − mk,i√

r(i,i),k
, (19)

where Rk = {r(i, j),k} is the covariance matrix of observation (measurement) noise.
It is worth to mention that in (18) and (19) the information from the KF residual,

(y∗
k − mk), is omitted. More specifically, in (16) and (17), as opposed to (18) and

(19), the term (HkP
−
k Hk)i,i is incorporated in the denominator, which consequently,

adds information into (16) and (17), concerning the KF residual. By doing so, the
probability of a measurement to belong to the uncensored region is estimated more
accurately.

The mean vector of the censored measurement yk given the previous censored
measurement yk−1 can be written (in matrix notation) using (9) as:

E(yk |yk−1) = mk ·Pun,k + Sk · diag( fi (ai ) − fi (bi ))
m
i=1 + a·Pa,k + b·Pb,k . (20)
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The entries of the censored covariance matrix, Rk,2 = Cov(yk |yk−1), given the
last censored measurement, yk−1, are equal with

(Rk,2)i, j =
{
Var(yk,i |yk−1), i = j

E(yk,i yk, j |yk) − E(yk,i |yk)E(yk, j |yk), i �= j
. (21)

In particular, the diagonal elements of Rk,2 are calculated as Var(yi ) (10), where
the mean vector, μ, and covariance matrix, Σ , in the proposed model are equal with
mk = Hx̂−

k and Sk = HP−
k H+Rk , respectively, and the probabilities Pi

un,k, P
i
a,k, P

i
b,k

for i = 1, . . . ,m are given in (13)–(15). In the same way, the off-diagonal elements
of Rk,2 are calculated as E(yi y j ) (11). In what follows, TKFc denotes the proposed
method, where the censored moments are calculated through (12), (20) and (21).

In [2], the covariance matrix, R∗
k,2, of the censored measurement yk , is given by

R∗
k,2 = P∗

un,kHkP
−
k H

T
k P

∗
un,k + R∗

k , (22)

where R∗
k and P∗

un,k are diagonal matrices, where their entries are the truncated
variances of y∗

k,i (3) and the probabilities
(
Φ(b∗

k,i ) − Φ(a∗
k,i )

)
for i = 1, . . . ,m,

respectively.
The main difference between (21) and (22) is that in (22) the limits ai and bi appear

only in P∗
un,k . In the case where ai = 0 and bi is big enough (that is, only non-negative

measurements are considered), then (22) provides a satisfactory approximation of the
covariance matrix of the censored measurements. In order to clarify the notation and
illustrate the difference between Rk,2 and R∗

k,2, an illustrative example is provided
as follows: the censored covariance matrix for the random multidimensional Y∗ ∼
N (mk,Sk) is examined, with censoring limits a = (−1,−3, 1)t and b = (1, 7, 4)t .
The mean vector, mk , and the covariance matrix Sk are defined to be equal with,

mk = Hk · (2, 2, 3)T ,

and

Sk = Hk

⎡

⎣
4 3 4
3 4 4
4 4 4

⎤

⎦HT
k + Rk,

while, without loss of generality, Hk and Rk are defined to be equal with the 3 × 3
identity matrix. Then, the process is as follows: 1) 105 random measurements are
produced by N (mk,Sk) 100 times. 2) Each time, the sampling covariance matrix
derived from the censored measurements is calculated. 3) The arithmetic mean of Rs ,
of the 100 sampling covariancematrices is calculated. 4) The covariancematricesRk,2
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and R∗
k,2 are calculated by (21) and (22), respectively. As it can be seen by (23)-(25),

the proposed covariance matrix,Rk,2, is almost identical with the sampling covariance
matrix, Rs .

Rs =
⎡

⎣
0.4648 0.6962 0.5083
0.6962 4.7754 1.9195
0.5083 1.9195 1.4384

⎤

⎦ , (23)

Rk,2 =
⎡

⎣
0.4651 0.6962 0.5085
0.6962 4.7747 1.9189
0.5085 1.9189 1.4379

⎤

⎦ , (24)

R∗
k,2 =

⎡

⎣
0.2724 0.4719 0.5151
0.4719 5.0000 3.2744
0.5151 3.2744 3.2002

⎤

⎦ . (25)

The marginal probability function, f (yk,i |yk−1), of the i th component of the cen-
sored measurement yk given the last measurement, yk−1, is,

f (yk,i |yk−1) = 1√
s(i,i),k

φ

(
yk,i − mk,i√

s(i,i),k

)

u(yk,i − ai )u(bi − yk,i )

+ Φ(ak,i )δ(ai − yk,i ) + (1 − Φ(bk,i ))δ(bi − yk,i ),

(26)

where φ and Φ are the probability and the cumulative distribution functions of the
standard normal distribution, respectively, δ is the Kronecker delta function and u
stands for the Heavyside function, where u(x) = 1, when x > 0 and u(x) = 0,
otherwise.

The next step in our procedure is to calculate the likelihood function by taking into
consideration the censored data distribution. The likelihood function for the censored
measurements {yk,i }Kk=1 by (26), (14) and (15) can be calculated as:

Li (y1,i , . . . , yK ,i ) =
∏

yk,i=ai

Φ(ak,i ) ×
∏

yk,i=bi

(1 − Φ(bk,i ))

×
∏

ai< yk,i< bi

1√
s(i,i),k

φ

(
yk,i − mk,i√

s(i,i),k

)

.

(27)

In the case that the components of yk aremutually independent, the likelihood function
of the censored measurements {yk}Kk=1 takes the form:

L(y1, . . . , yK ) =
m∏

i=1

Li (y1,i , . . . , yK ,i ). (28)
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Fig. 1 Human skeleton’s joints map of the Kinect V2 sensor

In the case of [1], the likelihood function becomes

L∗
i (y1,i , . . . , yK ,i ) =

∏

yk,i=ai

Φ(a∗
k,i ) ×

∏

yk,i=bi

(
1 − Φ(b∗

k,i )
)

×
∏

ai< yk,i< bi

1√
r(i,i),k

φ

(
yk,i − mk,i√

r(i,i),k

)

.

(29)

Note that the denominator does not take into account the specific distribution of the
measurements.

3.5 Adaptive Tobit Kalman Filter used to Human Skeleton Tracking

In what follows, the Microsoft Kinect V2 sensor is utilized to record 3D point
sequences (human skeletons) of a human in motion [21]. In human skeleton tracking,
the body is represented by a number of joints (25 in total), corresponding to different
body parts such as head, neck, shoulders, etc (see Fig. 1). Each joint is represented by
the vector of its Euclidean 3D space coordinates (z1, z2, z3) and the aim is to denoise
the measurements for every joint in order to improve the representation of human
movements. Thus, each one of the joints’ coordinates is denoised separately; the input
is the vector of the joints’ coordinates, y∗

k = (y∗
k,1, y

∗
k,2, y

∗
k,3) (latent measurement),

and the output is the vector of the denoised states coordinates, xk = (xk,1, xk,2, xk,3).
To start tracking, the initial observation, Hk , and the transition, Ak , matrices are

defined to be equal to the identity matrix. Therefore, the covariance matrix of the noise
measurement, Rk is defined to be

Rk = 0.01 ·
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (30)

Rk is chosen to initialize in that way, under the assumption that Kinect exhibits signifi-
cant errors in human skeleton tracking. To support that claim, small scale experiments
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are conducted, proving that even if a person is at rest and in front of the Kinect, the
error in the displacement estimation between measurement and ground truth data is
almost 0.02 m [11,34], thus a variance of 0.01 m2 seems to be a valid choice.

In KF [6,10], no restrictions in joints’ movements have been taken into account, as
opposed to the proposed method. To that end, beyond the Kinect V2 sensor, the state-
of-the-art Vicon tracking system has been used as a ground truth reference. In Vicon
data, for various recordings, it is observed that the velocity of the spatial coordinates
z1 and z3 did not exceed 34 cm per frame, for every joint, and the z2 coordinate did
not exceed 18 cm per frame. In what follows, these restrictions are used in order
to correct the data produced by the Kinect sensor. By applying these restrictions,
ATKF is constructed with limits l1k and l2k for the vector of the spatial coordinates,
(y∗

k,1, y
∗
k,2, y

∗
k,3), as follows:

l2k = Hk x̂k−1 + c, (31)

and

l1k = Hk x̂k−1 − c, (32)

where the observationmatrix,Hk , is the identitymatrix, l1k and l
2
k are the limits ofATKF

at time k, which depend on the previous estimation of spatial coordinates, x̂k−1, and
the vector c, which for human skeleton tracking is experimentally found to be

c = (0.34, 0.18, 0.34). (33)

Thus, for the latent measurement y∗
k = (y∗

k,1, y
∗
k,2, y

∗
k,3) at time k, it arises

yk,i =

⎧
⎪⎪⎨

⎪⎪⎩

y∗
k,i , l1k,i < y∗

k,i < l2k,i

l1k,i , y∗
k,i ≤ l1k,i

l2k,i , y∗
k,i ≥ l2k,i .

i = 1, 2, 3. (34)

In Algorithm 2, the ATKF procedure for human skeleton tracking is summarized.
This model corrects Kinect measurements, when they have high abnormal velocity.

It should be noted that, if l1k,i → −∞ and l2k,i → ∞ (i.e., the range of ATKF
limits becomes very large), ATKF tends to the standard KF, because in this case
the Kinect measurements belong to the uncensored region and consequently they are
known. Due to this fact, in some recordings, which do not include big or fast joints’
movements, (thus, the Kinect measurements always belong to the uncensored region)
are expected to get almost the same results concerning RMSE for KF as well as for
ATKF.

In order to create a general model for filtering Kinect V2 measurements without
having to estimate the matrixQk for every time-window (because this is time consum-
ing), it is assumed that this matrix is constant. Substituting for Rk in the likelihood
function (27), the covariance matrix of the noise process, Qk , can be estimated. By
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Algorithm 2 ATKF for Human Skeleton Tracking
1: x0 ← 0n
2: P0 ← 0n×n
3: for k=1:K do
4:
5: if k==1 then
6: Use the standard K F
7: else if then
8: #Calculate the censoring limits
9: l2k ← Hk x̂k−1 + c

10: l1k ← Hk x̂k−1 − c
11:
12: #Censored measurements
13: yk ← l1k · (y∗

k ≤ l1k ) + l2k · (y∗
k ≥ l2k ) + y∗

k · (l1k < y∗
k < l2k )

14:
15: # Predict Stage
16: x̂−

k ← Ak x̂k−1

17: P−
k ← AkPk−1AT

k + Qk
18:
19: #Update Stage
20: Rk,1 ← (12)
21: E(yk |yk−1) ← (20)
22: Rk,2 ← (21)

23: Kk ← Rk,1 · R−1
k,2

24: x̂k ← x̂−
k + Kk (yk − E(yk |yk−1))

25: Pk ← P−
k − Kk · RT

k,1
26:
27: end if
28: end for

experimenting on various joints’ movements, it is derived that the values of Qk are
smaller than those of matrix Rk and generally they depend on the speed of the human
skeleton’s joints. Regarding slow joints’ movements, the entries of Qk are smaller
than 10−4 and for faster joints’ movements they lie between 10−3 and 10−2. In some
cases, where the entries of Qk appeared to be quite large (in the order of 10−2), the
human skeleton moved too quickly in an abnormal manner due to occlusions and/or
self-occlusions. Thereafter, the covariance matrix of the noise process is assumed to
be equal with:

Qk = 0.0025 ·
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , (35)

otherwise, if smaller or larger values are defined, ATKF will be either over-smoothed
or will not denoise the Kinect measurements. Therefore, the matrix Qk given in (35),
seems to be an appropriate choice for filtering the Kinect V2 sensor measurements of
human skeleton tracking.
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4 Experiments

In this section, three sets of experiments are conducted to evaluate TKFc and ATKF
compared to other methods. 1) TKF and 2) TKFc are utilized in the first experimental
set (oscillator), which is employed in [2]. Next, 1) SGF, 2) KF, 3) TKF, 4) TKFc and 5)
ATKF are used in order to denoise data for two different experimental sets: a) Real-life
data captured by a Kinect sensor, b) Real-life data captured by both a Kinect sensor
and a Vicon system.

4.1 Oscillator

In the first experimental set, a motivating example of tracking a sinusoidal model by a
TKF and TKFc is presented, when the measurements are saturated. Let the state space
equations have the form of (3), with state space matrices

A = c ·
[
cos(w) −sin(w)

sin(w) cos(w)

]

, (36)

and

H = [
1 0

]
, (37)

where c = 0.999 and w = 0.005 · 2π . The disturbance wk is assumed to be normally
distributed, i.e., wk ∼ N (0,Q), where

Q =
[
0.052 0
0 0.052

]

, (38)

while, the measurement noise, vk , is normally distributed, vk ∼ N (0, 0.5). The initial
state vector is equal to x0 = [5 0]T with covariance matrix P0 = I2, the censored
limits area = −0.5 andb = 0.5.Therefore, by the above example censored (saturated)
measurements, yk , are produced where k = 1, . . . , K = 1000.

Next, the above process is repeated Ms = 100 times and the filters’ RMSEs are
calculated for each iteration. The means of filterer’s RMSEs for 100 iterations are
presented in Table 1, where separate RMSEs for the two estimated coordinates of the
state vector, xk , are provided. It can be observed that the corrected TKFc outperforms
TKF in state estimation (Fig. 2). This is due to the fact that in TKF some important
terms are ignored when calculating R∗

k,2 (22), while these terms are included in TKFc

process (21).
In addition to the RMSE assessment, the proposed method is evaluated by the

noncredibility index (NCI) [25]. In [25,26], it has been shown that NCI is free of
serious drawbacks of other metrics such as the average normalized estimation error
squared [26] (ANESS). Furthermore, it is concluded that an estimator is not credible
if NCI is significantly greater than 1. Finally, NCI for Ms Monte Carlo simulations at
time index k is defined as
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Table 1 The mean of RMSEs
for the filters TKF and TKFc ,
respectively

Filter Mean RMSE of x̂1 Mean RMSE of x̂2

TKF 0.4434 0.5464

TKFc 0.4066 0.5192

NC I (k) = 10

Ms

Ms∑

j=1

∣
∣
∣
∣
∣
log10

(
xk( j) − x̂k( j)

)TP−1
k ( j)

(
xk( j) − x̂k( j)

)

(
xk( j) − x̂k( j)

)TP∗−1
k (

(
xk( j) − x̂k( j)

)

∣
∣
∣
∣
∣

(39)

where x̂k( j) and Pk( j) are the a posteriori estimate of xk( j) and the covariance matrix
of the error of the a posteriori estimate at j-th Monte Carlo simulation, respectively,
while the matrix P∗

k is given by

P∗
k = 1

Ms

Ms∑

j=1

(
xk( j) − x̂k( j)

)(
xk( j) − x̂k( j)

)T
. (40)

The arithmetic average of filters’ NCI for all estimates is presented in Table 2. It
can been observed that the proposed method outperforms TKF in state estimation. As
it can be seen in Fig. 3, the NC I (k) indices are in most cases smaller for TKFc than
for TKF.

4.2 Recordings by the Kinect Sensor

In the second experiment set, various human movements are recorded by a single
Kinect V2 sensor. In some of the recordings, the human skeleton motion exhibits an
important error on the z2 axis (practically, the human skeleton seems to “fall down”)
for one or two frames. The above-mentioned filters are applied to correct this specific
error.

In order to evaluate the performance of the different filters, a novel metric, mi , is
proposed to better examine the result of filtering the joints’ movements. Let us denote
by gk,i the filtering of the i th component of the measurement yk,i at time k. Then,

mi = average
[
(dgk,i )

2
]n−1

k=1
, (41)

where dgk,i = gk+1,i − gk,i and n is the number of measurements.
In the case of TKFc and TKF, the device limits are used. For instance, the ranges

of Kinect spatial coordinates z1 (width), z2 (height) and z3 (depth) are approximately
[−3m, 3m], [−1.5m, 3m] (if the Kinect V2 sensor is located 1.5m over the ground)
and [0.5m, 5m], respectively. Thus, these limits for the Kinect measurements are
used in order to test TKF and TKFc. The covariance matrices of TKFc and TKF for
the noise measurement,R, are defined as in ATKF (30), while the covariance matrices
for the noise process,Q, can be estimated using the likelihood functions (29) and (28),
respectively. By experimenting on various joints’ movements, it results that the entries
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Fig. 2 The difference between TKF’s and TKFc’s RMSE for each iteration

Table 2 The mean of RMSEs
for the filters TKF and TKFc ,
respectively

Filter Mean of NCI

TKF 1.1760

TKFc 0.9898

of Q are the same as in the case of ATKF; therefore, the same matrix Q is used given
by (35). In the case of KF, the covariance matrix,R, is defined as in ATKF (30) and the
covariance matrix for the noise process,Q, is estimated by the log-likelihood function
given in [14]. The results showed (in the same experiments as it is mentioned earlier),
that the entries ofQ are almost the same as in the case of ATKF; thus, the matrixQ is
defined as in (35).

In the experiments, the overall average M of the metrics mi for various recordings
is calculated. The results showed that ATKF achieves better performance in noise
reduction than the other filters (see Table3), especially in the cases where the skeleton
seems to collapse, while KF, TKFc and TKF have almost the same overall average M
andSGFhas a poor performance.As can be seen inFig. 4 for twodifferent experiments,
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Fig. 3 NCI for the filters TKF and TKFc , respectively

Table 3 The overall average M
of the recordings for the Kinect
V2 sensor and the filters

Filter Overall Average M

SGF 0.790 × 10−3

KF 0.436 × 10−3

TKF 0.433 × 10−3

TKF c 0.433 × 10−3

ATKF 0.362 × 10-3

Kinect V2 1.70 × 10−3

the head’s spatial coordinates z2 of the human skeleton resulted from ATKF do not
(correctly) follow the error produced by the Kinect sensor. It can be seen (Fig. 4)
that although KF, TKFc and TKF improve the human skeleton motion, they provide
inferior results than the ones produced byATKF,while SGF has theworst performance
among all. In the first experiment illustrated in Fig. 4a, the ATKF skeleton followed
the sharp “fall” for almost 5 cm, while KF, TKFc and TKF skeletons for 12 cm, and
the SGF skeleton for 20 cm. The joint-based average mi as opposed to the overall
experiments average M of ATKF in this experiment is 0.350 × 10−3, while in KF,
TKFc and TKF are 0.409 ∗ 10−3 and in SGF is 0.797 × 10−3.

To better illustrate the superiority of ATFK, the motion of the human skeleton
(obtained by Kinect) under heavy occlusion is illustrated in the first row of subfigures
in Fig. 5 for four consecutive frames. The first subfigure shows the human skeleton
one frame before “collapsing,” the next two show the human skeleton under heavy
occlusion and the last one shows a better performance of human skeleton. In the next
five rows of Fig. 5, the motion of human skeleton is illustrated as it is resulted by SGF,
KF, TKF, TKFc and ATKF, respectively. All filters had a delay of 1–2 frames due to
the occluded area, but ATKF clearly outperforms all other methods (see the last row
in Fig. 5)

4.3 Recording by Kinect Sensor andVicon System

In this subsection, the proposed method with respect to ground truth data is evaluated.
To that end, an athlete throwing a ball with his right hand is monitored, and this motion
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Fig. 4 The head’s spatial coordinates yk of Kinect V2 sensor, Savitzky–Golay, KF, TKF, TKF
c and ATKF

is recorded by a Kinect V2 sensor and the Vicon system at the same time. Vicon is
used as the ground truth in order to compare results using the proposed method on
Kinect measurements. The number of Kinect’s and Vicon’s frames are 266 (almost
8.8667 s) and 139 (4.4480 s), respectively. The Kinect time-stamp is almost 0.033 s
per frame, while Vicon time-stamp is constantly 0.032s. Vicon data are interpolated
in order to deal with the time-stamp problem; after interpolation, the new Vicon data
include 133 frames. Therefore, the two sensors are temporally synchronized to start
together. To do so, initially the angles of knees and elbows obtained by Kinect and
Vicon data are calculated and then, the RMSEs between these angles for different
delays are calculated. The results show that the minimum values of RMSE for every
angle appeared for delays of 92–95 frames. The different delays between the angles
in some cases are somewhat expected because Kinect records fast movements with
delay (i.e., after some frames).

It is noticed that KF filters the spatial coordinates without affecting the movement
(see Fig. 6). TKFc and TKF perform exactly the same filtering in all joints as KF, while
SGF does not perform a satisfactory filtering in some points where the measurements
have a significant error. Table 4 gives the RMSEs for the angles as they arise for
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Fig. 5 Each row represents the human skeleton motion for four consecutive frames as it is obtained by (1)
Kinect V2 sensor, (2) SGF, (3) KF, (4) TKF, (5) TKFc and (6) ATKF, respectively

Table 4 RMSEs for the angles by Kinect V2, SGF, KF, TKF, TKFc and ATKF for time delay 92, 93, 94
and 95

Angles Kin. v2 SGF KF TKF TKFc ATKF

Right elbow 39.31 37.44 36.60 36.60 36.60 36.32

Left elbow 31.58 30.65 27.98 27.98 27.98 26.50

Right knee 16.70 16.79 15.79 15.79 15.79 14.90

Left knee 26.25 25.81 25.14 25.14 25.14 25.11

Right elbow 38.76 36.86 35.90 35.90 35.90 35.57

Left elbow 32.18 31.27 28.43 28.43 28.43 27.02

Right knee 17.03 17.12 15.75 15.75 15.75 14.93

Left knee 26.38 26.01 24.85 24.85 24.85 24.82

Right elbow 38.43 36.63 35.40 35.40 35.40 35.06

Left elbow 32.99 32.09 29.08 29.08 29.08 27.75

Right knee 17.77 17.79 16.04 16.04 16.04 15.26

Left knee 26.67 26.46 24.90 24.90 24.90 24.89

Right elbow 38.39 36.64 35.25 35.25 35.25 34.93

Left elbow 33.96 33.06 29.92 29.92 29.92 28.70

Right knee 18.78 18.78 16.58 16.58 16.58 15.77

Left knee 27.14 27.02 25.24 25.24 25.24 25.23
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(a) The xk coordinates of the right hand.
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(b) The yk coordinates of the right hand.

0 20 40 60 80 100 120 140
Frame

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

M
et

er
s

Kinect
SGF
KF

TKFc

TKF
ATKF
Ground truth

(c) The zk coordinates of the right hand

Fig. 6 The right hand’s coordinates by Kinect V2 sensor, SGF, KF, TKFc , TKF, ATKF and Ground truth
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delays t = 92, 93, 94, 95 frames, respectively. In all cases, the RMSEs are big enough
because of the occlusion of some joints during the recording.

In Fig. 6, the right hand’s coordinates resulted by KF, TKF, TKFc and ATKF are
almost the same, because all measurements belong to the uncensored region, while
SGF coordinates are almost the same with Kinect’s coordinates. However, as can be
seen in Table 4 , in all cases concerning RMSEs, better results are achieved via ATKF
compared to those of standard KF, TKFc and TKF. The RMSEs of SGF are almost
the same as the Kinect RMSEs.

5 Conclusion and Discussion

The aim of this paper is to improve (1) the well-known TKF process [1] and (2)
the human skeleton motion tracking using a single Kinect V2 sensor, which often
generates noisy measurements due to occlusion, lighting conditions, etc. To that end,
a novel filtering method, called ATKF, was proposed which relies on the censored data
statistics theory for human skeleton motion tracking in real-time. In order to estimate
the hidden state vector by the censoredmeasurement, firstly, the probabilities of a latent
measurement to belong in or out of the uncensored region were evaluated (“Appendix
C”) and secondly, the accurate covariance matrix of the censored normal distribution
(“Appendix B”) was evaluated. In this approach, the limits of the uncensored region
had to be defined for the Kinect’s measurements, in a reasonable manner for every
time step k. To do so, many data with various joints movements were tested, which
were obtained by ground truth sensor, such as the Vicon tracking system.

Theproposedmethodwas evaluated against (1) standardKF, (2)TKF, (3)TKFcwith
constant limits and 4) SGF in three different setups: (1)Artificial data (2)Kinect and (3)
Kinect plus Vicon human skeleton motion data. A new metric was introduced in order
to evaluate results when no ground truth is available. Finally, the covariance matrix,
Q, of the noise process was calculated under a specific experimental methodology
as opposed to previous methods where random or simple experimental covariance
matrices were used. Among the five approaches, ATKF gave better results in all the
different setups for human skeleton tracking.

In a future work, it would be interesting to use the proposed filtering method for
action recognition tasks in the wild, where uncontrolled environments and situations
where RGB-D sensors may have poor performance often occur. Moreover, as a step
beyond, it would be interesting to consider the state vector x as a censored state, aiming
at achieving a more accurate filtering of the human skeleton motion data.

Acknowledgements This work was supported by the European Project (Horizon2020) ICT4Life under GA
690090.

Appendix A: The CensoredMean Value

In what follows, the proof of Proposition 2 is provided:
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Proof of Proposition 2, Sect. 3.3 For a discrete random variable zi ∼ B(pi ) (Bernoulli
distribution) in Lemma 1, it is derived that

E(x, zi ) = E(x |zi = 1) · pi . (42)

The censored measurement, yi , can be written in terms of Bernoulli distributions;
therefore, the censored mean value is written by (42) as,

E(yi ) =
3n−1
∑

j=1

E(y∗
i |ai < y∗

i < bi , R j )P((ai , bi ), R j ) + ai P(y∗
i ≤ ai ) + bi P(y∗

i ≥ bi ), (43)

where the first term is the sum of all possible mean values ofE(yi |ai < yi < bi ) given
that the rest variables lie in a region R j = [(L1,U1), . . . , (Li−1,Ui−1), (Li+1,Ui+1),

. . . , (Ln,Un)], where

(Lk,Uk) =

⎧
⎪⎨

⎪⎩

(−∞, ak) or

(ak, bk) or

(bk,∞)

where j=1,…,3n−1. P((ai , bi ), R j ) denotes the probability of variable y∗ to lie in a
region [(ai , bi ), R j ]. It is derived by (5) that

E(yi ) =
3n−1
∑

j=1

(
μi +

n∑

k=1

σi,k
(
Fk(Lk) − Fk(Uk)

)

R j

)
P(R j ) + ai P(y∗

i ≤ ai )

+ bi P(y∗
i ≥ bi )

=
n∑

k=1

3n−1
∑

j=1

σi,k
(
Fk(Lk) − Fk(Uk)

)

R j
P(R j ) + μi P(ai < y∗

i < bi )

+ ai P(y∗
i ≤ ai ) + bi P(y∗

i ≥ bi ),

(44)

where
(
Fk(Lk) − Fk(Uk)

)

R j
is the difference of functions (6) given that the variable

y∗ lies in the region R j ∪ (ai , bi ). In the case where k �= i , it is derived that:

3n−1
∑

j=1

σi,k
(
Fk(Lk) − Fk(Uk)

)

R j
P(R j ) =

3n−2
∑

j=1

σi,k
(
Fk(−∞) − Fk(ak)

)

Vj
P(Vj )

+
3n−2
∑

j=1

σi,k
(
Fk(ak) − Fk(bk)

)

Vj
P(Vj )

+
3n−2
∑

j=1

σi,k
(
Fk(bk) − Fk(∞)

)

Vj
P(Vj ) = 0,

(45)
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where Vj is the region

[(L1,U1), . . . , (Lk−1,Uk−1), (Lk+1,Uk+1), . . . , (ai , bi ), . . . , (Ln,Un)].

In the case where k = i , it is derived that,

N∑

j=1

σi,k
(
Fk(Lk) − Fk(Uk)

)

R j
P(R j )

=
N∑

j=1

σi,i
(
Fi (ai ) − Fi (bi )

)

R j
P(R j )

= σi,i
(
fi (ai ) − fi (bi )

)
,

(46)

where fi (y∗
i ) is the normal distribution of y∗

i ∼ N (μi , σi,i ). Thus, by (44)-(46) arises

E(yi ) = μi P(ai < y∗
i < bi ) + σi,i ( fi (ai ) − fi (bi )) + ai P(y∗

i ≤ ai ) + bi P(y∗
i ≥ bi ).

(47)

�	

Appendix B: The Censored CovarianceMatrix

In what follows, the proof of Proposition 3 is provided:

Proof of Proposition 3, Sect. 3.3 In the same way as for the censored mean (“Appendix
A”), it is proved that the second moment of yi depends on the censoring limits {ai ,
bi}. Therefore, it is derived by Lemma 1 that

E
(
y2i

) = E(y∗2
i |ai < y∗

i < bi )P(ai < y∗
i < bi ) + a2i P(y∗

i ≤ ai ) + b2i P(y∗
i ≥ bi ),

where the first term [31] is equal with

E(y∗2
i |ai < y∗

i < bi ) = σi,i + μ2
i + 2μiσi,i

fi (ai ) − f (bi )

P(ai < y∗
i < bi )

+ σi,i
(ai − μi ) fi (ai ) − (bi − μi ) fi (bi )

P(ai < y∗
i < bi )

.

(48)

Therefore, it is derived by (48) that,

E
(
y2i

) = (σi,i + μ2
i )P(ai < y∗

i < bi )

+ σi,i
(
(ai − μi ) fi (ai ) − (bi − μi ) fi (bi )

)

+ 2μiσi,i ( fi (ai ) − f (bi )) + a2i P(y∗
i ≤ ai ) + b2i P(y∗

i ≥ bi ).

(49)
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Finally, the censored variance is given by

Var(yi ) = μ2
i (1 − Pi

un)P
i
un + σi,i P

i
un + a2i (1 − Pi

a)P
i
a

+ b2i (1 − Pi
b)P

i
b − 2aibi P

i
a P

i
b − σ 2

i,i ( f (ai ) − f (bi ))

+ 2μiσi,i ( fi (ai ) − f (bi ))(1 − Pi
un)

+ σi,i
(
(ai − μi ) fi (ai ) − (bi − μi ) fi (bi )

)

− 2
(
μi P

i
un + σi,i

(
fi (ai ) − f (bi )

))(
ai P

i
a + bi P

i
b

)
,

(50)

where Pi
un = P(ai < y∗

i < bi ), Pi
a = P(y∗

i ≤ ai ) and Pi
b = P(y∗

i ≥ bi ).
The expectation value of yi · y j is written by Lemma 1 as:

E(yi y j ) = aib j P(1) + bib j P(3) + aia j P(7) + bia j P(9)

+ b j

3n−2
∑

k=1

E(y∗
i |ai < y∗

i < bi , y
∗
j ≥ b j ,Gk)P(Gk)

+ ai

3n−2
∑

k=1

E(y∗
j |a j < y∗

j < b j , y
∗
i ≤ ai ,Gk)P(Gk)

+
3n−2
∑

k=1

E(yi y
∗
j |ai < y∗

i < bi , a j < y∗
j < b j ,Gk)P(Gk)

+ bi

3n−2
∑

k=1

E(y∗
j |a j < y∗

j < b j , y
∗
i ≥ bi ,Gk)P(Gk)

+ a j

3n−2
∑

k=1

E(y∗
i |ai < y∗

i < bi , y
∗
j ≤ a j ,Gk)P(Gk),

(51)

where

P(1) = P(y∗
i ≤ ai , y

∗
j ≥ b j ), P(3) = P(y∗

i ≥ bi , y
∗
j ≥ b j ),

P(7) = P(y∗
i ≤ ai , y

∗
j ≤ a j ), P(9) = P(y∗

i ≥ bi , y
∗
j ≤ a j ),

and Gk for k = 1, . . . , 3n−2 denote a region (as in the case of the censored mean)
where the multi-variable, y∗−i− j , lies on.

Concerning the last five terms of (51), it is proved (as in case of second moment)
that they depend only on the censoring limits {ai , bi , a j , b j}; thus, (51) can be written
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as

E(yi y j ) = aib j P(1) + bib j P(3) + aia j P(7) + bia j P(9)

+ b j E(y∗
i |ai < y∗

i < bi , y
∗
j ≥ b j )P(2)

+ ai E(y∗
j |a j < y∗

j < b j , y
∗
i ≤ ai )P(4)

+ E(y∗
i y

∗
j |ai < y∗

i < bi , a j < y∗
j < b j )P(5)

+ bi E(y∗
j |a j < y∗

j < b j , y
∗
i ≥ bi )P(6)

+ a j E(y∗
i |ai < y∗

i < bi , y
∗
j ≤ a j )P(8),

(52)

where

P(2) = P(ai < y∗
i < bi , y

∗
j ≥ b j ),

P(4) = P(y∗
i ≤ ai , a j < y∗

j < b j ),

P(5) = P(ai < y∗
i < bi , a j < y∗

j < b j ),

P(6) = P(y∗
i ≥ bi , a j < y∗

j < b j ),

P(8) = P(ai < y∗
i < bi , y

∗
j ≤ a j ).

At this point, it should be noted that the truncated moments E(y∗
i |·) and E(y∗

i y
∗
j |·) in

(52) are calculated by (5) and (5), respectively. Although the functions (6), (7) in our
case (censoring measurements) are defined only for the variables y∗

i and y∗
j , i.e.,:

Fi (x) =
∫ b j
a j

fY ∗
i ,Y ∗

j
(x, y∗

j )dy
∗
j

P(a j < y∗
j < b j , ai < y∗

i < bi )
,

and

Fi, j (x, y) =
fY ∗

i ,Y ∗
j
(x, y)

P(a j < y∗
j < b j , ai < y∗

i < bi )
.

Therefore, the covariance matrix can be defined by the terms (47), (50) and (52). �	

Appendix C: Evaluation of the Probabilities of the Latent Measure-
ment to Belong to the Censored or Uncensored Region

In what follows, the proofs for (13)–(15) are provided.
The mean of the latent measurement y∗

k given the saturated measurement yk−1 is

mk = E(Hkxk + vk |yk−1) = Hk E(xk |yk−1) = Hk x̂
−
k . (53)
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The covariance matrix of y∗
k − Hk x̂

−
k is

Sk = Cov(y∗
k − Hk x̂

−
k ) = Cov(Hkxk + vk − Hk x̂

−
k )

= Cov
(
Hk(xk − x̂−

k )) + Cov(vk)

thus,

Sk = HkP
−
k H

T
k + Rk . (54)

By (53) and (54), it is clear that y∗
k |yk−1 ∼ N (mk,Sk). The probability Pi

a,k of the
i th component of the latent measurement y∗

k to be equal or less than ai is

Pi
a,k = P(y∗

k,i ≤ ai ) = P

(
y∗
k,i − mk,i√
s(i,i),k

≤ ai − mk,i√
s(i,i),k

)

= Φ

(
ai − mk,i√

s(i,i),k

)

. (55)

Following the same procedure, the probability Pi
b,k of the i th component of the latent

measurement y∗
k to be equal or bigger than bi is

Pi
b,k = 1 − Φ

(
bi − mk,i√

s(i,i),k

)

. (56)

Finally, the probability of the i th component of the latent measurement y∗
k to lie in

the uncensored region (ai , bi ) is

Pi
un,k = 1 − Pi

a,k − Pi
b,k . (57)

�	
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