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Abstract—Integral imaging is a three dimensional imaging
technique that allows the displaying of full color images with
continuous parallax. Its commercial potential has been increased,
due to its ability of presenting to the viewers smooth 3-D images,
with full parallax, in a wide viewing zone. Being able to extract
the inherent 3-D information from the planar integral images
and produce 3-D reconstructions, offers advantages in various
applications of immersive entertainment and communications.
On this scope, this paper addresses the problem of accurate depth
estimation in integral images. The proposed method, relying on
the assumption that a pixel is the projection of a 3-D imaging
ray, aims to specify the first intersection of each pixel’s projection
ray with the 3-D scene in order to assign to it the corresponding
depth value. This task is formulated as an energy optimization
problem and the graph cuts approach is utilized to solve it. The
energy term is twofold; its first part aims to restrict the desired
solution to be close to the observed data, i.e the integral image,
while the second one enforces regional smoothness in the depth
estimation. This combination offers an accurate and spatially
smooth scene structure. The novelty of the paper lies on the
framework’s formulation as one single optimization procedure
and on the way that this optimization is constrained by a set
of reliably estimated 3-D surface points, called the “anchor
points”. Anchoring the optimization results in enhanced depth
estimation accuracy, while decreasing the optimization processing
burden. The proposed algorithm is evaluated in both synthetic
and real integral images consisting of complicated object scenes.
A comparison against other state-of-the-art algorithms proves the
superiority of the proposed method in terms of depth estimation
accuracy.

Index Terms—Integral imaging, holoscopic imaging, depth
estimation, anchor points, self-similarity, graph cuts, energy op-
timization, microlenses, cylindrical lenses, unidirectional integral
imaging, elemental images, viewpoint images.

I. INTRODUCTION

THREE dimensional (3-D) imaging systems have attracted
both commercial and scientific interest in different dis-

ciplines over the last few decades, with the main applications
of them being in 3-D TV, computer games, virtual reality,
immersive environments, etc. The goal of all those applications
is to offer to the consumer rich, immersive experiences. One of
the most important aspects on such research is how to produce
free viewing 3-D displaying technologies.There are several
types of 3-D imaging technologies (i.e. capturing, processing
and displaying), which are broadly divided in two categories,
the stereoscopic and the autostereoscopic. While in the past
years most of the research in the area of 3-D imaging systems
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has concentrated on the stereoscopic technology [32], [10],
[51], the fact that the viewer had to wear special headgear
(e.g. stereoscopic glasses) in order to feel the 3-D effect,
has limited the acceptance and the application of them. The
autostereoscopic display systems are more comfortable for
the viewer as they do not require the use of special glasses
[9]. Holography [45], [43], volumetric displays [4], multi-view
[56] and integral imaging are some types of autostereoscopic
technology. Holographic technology offers full parallax in all
directions but the need for coherent light sources and dark
room conditions during recording, reduces its practical utility.
Volumetric display systems often have large field of view but
the difficulty to design them has limited their application. In
recent years, many 3-D recording and display systems have
focused on multi-view techniques. However, in the case of
multi-view displays, the viewing effect depends heavily on the
number of viewpoints, and capturing many views in real-time
along with the use of low cost equipment is quite difficult.

Integral imaging, or holoscopic imaging, based on the
Integral Photography concept proposed in 1908 by Gabriel
Lippmann [23], recently re-attracted researcher interest, due to
its desired properties. Integral imaging offers many advantages
as opposed to the other existing 3-D sensing techniques
as it uses natural light, can offer full parallax in real-time
without the need of calibration and does not cause eye
strain [14]. Therefore, it constitutes a promising technology
for the production of real-time 3-D image capturing and
displaying systems. In the past few years, as the microlens
manufacturing is progressing, offering further flexibilities to
integral imaging, much effort has been devoted in order to
overcome some significant problems of integral imaging. Such
shortcomings are the limited depth of field [27], [30], [7] and
the low quality of the displayed images [16]. Researchers
have focused on increasing the viewing angle of integral
imaging [29], [17], [34] and on the generation of orthoscopic
integral images [28] since until recently, the integral imaging
systems provided pseudoscopic images (i.e reversed in depth).
Having advanced the image generation procedure [31], integral
imaging technology is about to become ready for massive
commercialization in the next decades. However, in order this
technology to be established, apart from the hardware issues,
a number of image processing issues should be addressed
to overcome the inherited restrictions of integral images. In
terms of applications, probably the most important issue, is 3-
D reconstruction, through depth estimation. Depth knowledge
would benefit both coding and transmission of integral images,
as already does in multi-view imaging [59], and further video
games developing by appropriate mixing of real and synthetic
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integral images. Moreover, it would be really beneficial on
interactive 3-D displays, since depth would be essential to
build the interaction field. Further, integral imaging seems
capable of providing promising applications on other fields as
well, where depth information is essential, such as biometrics,
medical imaging, robotic vision, etc.

The concept of integral imaging is to utilize an array of
lenses, instead of just one lens, over a film sheet or an
electronic image sensor. This configuration captures a special
2-D recording of the viewed scene [1]. Neighboring lenses
capture overlapping regions of the scene and each one of
them records an elemental image. The set of all the recorded
elemental images constitutes an integral image. The integral
image can be displayed by an optical device, such as an
LCD, with a microlens array placed in front of it, in order to
reconstruct the 3-D scene. Integral images are divided in two
categories, the unidirectional and the omnidirectional ones.
This subdivision is due to the shape of the lenses, which can
be either cylindrical or spherical. Cylindrical lenses provide
the viewers with horizontal parallax, while spherical lenses
further offer vertical parallax. Re-arranging the pixels of the
integral image leads to the formation of the viewpoint images,
each of them being a rotated orthographic projection of the
scene, which depicts the scene from a different direction (Fig.
3). 3-D information is embedded in integral images as each
viewpoint image depicts a different perspective of the 3-D
scene. Although integral images are 2-D, their rich information
contains 3-D characteristics that can be replayed on specialized
displays to reconstruct a true 3-D scene. Thus, extracting this
inherent depth information, becomes both challenging and
necessary for further processing of the integral images (e.g.
for feature extraction, coding, etc.).

Reconstructing the geometry of a 3D scene, based on
correspondences between several pictures depicting the same
scene from different viewpoints, has been extensively studied
in the multi-view stereo field [39]. The goal of multi-view
stereo is to recover the geometry of the scene from a collection
of images taken from scattered cameras. To achieve the latter,
some approaches compute a cost function on a 3-D volume,
and then extract the volume’s outer surface [40], [47]. Other
algorithms define a volumetric Markov random field and use
max-flow [35], [42], [11] to extract the surface. Space carving
[21], [3], [55], and surface evolving techniques [57], [15], [13],
[53] have also been employed. All these approaches iteratively
deform an initial volume by deleting some of its voxels, or
even add some if needed, based on the formulated energy
that is to be minimized. Other methods try to compute a set
of depth maps [44], [58], [12], [37], [20] and produce the
final result by either enforcing consistency constraints between
them, or by merging them. Lately, graph cuts were employed
to solve the multi-view stereo problem [20], [52], [48]. A
related survey [39] opted for two graph cuts based methods
to be among the best in this field. Graph cuts were originally
used to establish correspondence between stereo image pairs
[6], [18] , [5] while another survey [38] demonstrated that a
method based on graph cuts was at the top of other existing
stereo correspondence algorithms.

Despite the fact that extracting depth information from an

integral image resembles the multi-view stereo problem, there
are some basic distinctions that differentiate them. This is
evident by the fact that, contrary to the plethora of multi-
view stereo algorithms, the literature on depth extraction from
integral images is quite limited. The multi-view framework
is composed of multiple high resolution cameras, scattered
at different locations observing the same scene. Difficulties
arise from both the calibration of the cameras and the different
light reflection on the scene’s objects, which depends on the
cameras’ position. On the other hand, in integral imaging
there is only one camera, which produces several very low
resolution images of the scene, each capturing just a region
of the scene from slightly different perspective. Establishing
correspondences from close positioned cameras, requires sub-
pixel accurate disparity estimation, which is not a trivial task
when the given images are of very low resolution, as in the
case of integral images.

Early works on depth estimation from integral images were
based on the Point Spread Function (PSF) of the optical
recording, which formulated the problem of depth extraction as
an inverse problem; given the “effect”, i.e the integral image,
find the “cause”, i.e the 3-D scene that produced it [26], [25].
However, inverse problems in imaging are ill-posed [2] and
even though they work well on simulated data they are not
applicable in real integral images. More recently, Cirstea et al.
[8] in order to cure this ill-posedness, used two regularization
methods able to provide realistic reconstructions. The first one
was the Landweber method [22]. while the second was a
constrained version of the Tikhonov’s regularization method
[46]. The two developed algorithms provided approximate
solutions of the scene reconstruction and estimations of the
depth of the scene.

Recently, Saavedra et al. [36] handled integral images in a
novel and interesting way. The periodic nature of the integral
images, due to multiple micro-lens capturing, is exploited
through a Fourier filtering. After a filtering and a back-
projection procedure, a 3-D image, i.e. a 3-D color function
I(x, y, z) is constructed. Image I(x, y, ) has sharp colors on
coordinates (x, y, z), that belong onto the objects’ surfaces,
while it is blurry elsewhere. However, the extraction of the
3-D surface requires a further processing step; to segment the
sharp voxels out of I(x, y, z), which is a problem of its own.

Lately, the majority of latest works indicates a preference
to depth-through-disparity approaches since the relation be-
tween depth and disparity estimation is straightforward. After
viewpoint image extraction the disparity field between pairs
of them is calculated. The first reported work in this direction
was that of Wu et al. [49] where a number of correlation
metrics was tested for the disparity estimation. A multi-
baseline technique was also adopted taking advantage of the
information recurrence between different viewpoint images. In
their subsequent work [50], the authors tried to improve the
accuracy of the algorithm by taking into consideration that
the depth is piecewise continuous in the space, thus an ad-
ditional neighborhood constraint was included. Experimental
validation on both synthetic and real integral images showed
the efficiency of the modified algorithm. Park et al. [33]
worked along similar lines and proposed the use of a lens
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array consisting of vertically long rectangular lens elements.
Following the viewpoint image formation, they applied a
modified correlation based technique that reduces the depth’s
quantization error and achieves accurate depth estimation
in the case of scenes with extremely periodically patterned
objects.

Another way of facing the problem is by first extracting
and matching a set of feature points and then trying to fit a
surface to the reconstructed features that aims to optimally
connect them. On this basis, in the author’s previous work
[54], two depth extraction methods were presented that both
used an extracted set of “strong” correspondences. Then, in
order to fit a surface on them, the first method uses the 3-
D integral imaging grid and tries to find surface points as a
subset of the intersections between the pixels’ projection rays.
The disadvantages of the above method is that it produces
non-smooth solutions, since it samples the 3-D scene on the
imaging grid’s intersections, which is a non-uniform sampling
of the 3-D space, and that it neglects the piecewise nature of
depth. The second method, motivated by the depth-through-
disparity concept, decomposed the problem to multiple stereo
problems, each composed of a pair of consecutive viewpoint
images. Graph cuts were employed to fit a surface on the
features set, by estimating the disparities between pixels of
the given pair of viewpoint images. By doing so, multiple
optimizations (i.e. one for every pair) need to be solved. In
the end, all depth-maps had to be merged to produce a final
depth-map. The difference among the two above techniques is
that the first one treats the depth estimation problem as one
3-D optimization problem, while the second one as a merging
of multiple stereo-like problems.

After thorough analysis of the advantages and disadvan-
tages of the two methods in [54], the proposed framework
was derived, which takes the advantages of both previous
methods while allows for solving the disadvantages of both.
As such, it proposes one surface fitting optimization that is
implemented through graph cuts [6], which is constrained
by a set of pre-extracted reliable features, called “anchor
points”. Anchor points serve for constraining the optimization
procedure, which otherwise can easily get stuck to local
extrema, due to the high complexity of the optimization.
Anchoring the optimization results in enhanced estimation
accuracy along with reduction in the optimization complexity.
In the proposed formulation, graph cuts are trying to find
the optimized solution of the depth of the 3-D points that
correspond to each pixel, instead of the disparities between
pixels of adjacent viewpoint images. The 3-D scene is scanned
uniformly along the emanating projection rays of the integral
image, instead of the non-uniform ray correspondences on the
imaging grid. Furthermore, the proposed framework enables
the modelling of the piecewise nature of depth by introducing a
twofold regularization term among adjacent pixels on both the
elemental and viewpoint images, contrary to none regulariza-
tion term of the first method in [54], while for the second one,
regularization could only be applied on viewpoint images. This
twofold neighborhood handling leads to reconstructed scenes
with high spatial smoothness. Moreover, measuring surface fit-
ness in the optimization procedure utilizing the self-similarity
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Fig. 1. (a) Lens set-up for integral image generation using a cylindrical
microlens array and the local coordinate systems associated with viewpoint
images. (b) The local coordinate system of the central viewpoint (l denotes
the pixel pitch and H the vertical pixel resolution of the microlens).

descriptor [41], instead of a simple correlation metric, imposed
valuable photo-consistency in the optimization procedure.

In order to evaluate the performance of the proposed al-
gorithm a database of 28 synthetic integral images depicting
3-D scenes was constructed and a comparison with other
state-of-the-art algorithms [50], [54] is presented. Additional
experiments were performed on a small set of real integral
images.

The rest of the paper is organized as follows. Section II
provides a brief description of integral imaging concepts, the
extraction of the viewpoint images and the derivation of the
projection equation. Section III presents the proposed algo-
rithm for depth estimation. Experimental results and evaluation
of the proposed method are presented in Section IV, where
comparative results against [50] and [54] are also provided.
Finally, conclusions are drawn in Section V.

II. INTEGRAL IMAGING PROJECTION EQUATIONS

The principle of integral imaging is the simultaneous cap-
turing of multiple views of the 3-D scene using an array of
microlenses (Fig. 1(a)). To simplify the following analysis we
refer to a cylindrical microlens array and by consequence to
unidirectional integral images, though the analysis is easily
expandable to the omnidirectional case too. Behind each mi-
crolens an image is formed, obtained from a slightly different
point of view. This image is called elemental image and is of
very low resolution due to the size of the microlens.

A re-arrangement of the columns of the elemental images
leads to the formation of the viewpoint images (Fig. 2).
The first viewpoint image is formed by the first column of
each elemental image, the second by the second and so on.
As parallel rays are recorded at the same position under
each microlens, each viewpoint image contains information
recorded from one particular direction. The resolution of the
viewpoint images is equal to the resolution of the microlens
array, making the intensity matching between them easier
relative to elemental images. Suppose that the integral image
has (N1 x N2) dimensions, and is produced by a lens array
of M microlenses. Thus, there will be M elemental images,
each being (K x N2), where K = N1/M is the horizontal
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Fig. 2. Viewpoint image generation from a unidirectional integral image.

Fig. 3. A synthetic omnidirectional integral image that consists of seven
viewpoint images. The viewpoint images are scaled for illustration purposes.
Note the slight relative shifting from the left to the right, of the girl with
respect to the bed.

pixel resolution of the microlens. Decomposing the integral
image to its viewpoint images, results to K viewpoint images,
each being (M x N2). It should be noted that viewpoint
images are different from common 2-D images. They are
parallel projections, recording the 3-D scene from a different
angle rather than perspective projection in the traditional 2-
D recording. Orthographic projection is a type of parallel
projection with rays perpendicular to the projection plane.
Similarly, viewpoint images are orthographic projections of
the 3-D scene in planes rotated, with respect to the image
plane (Fig. 1(a)), by angle θ specified by the lens parameters.
This angle depends on the pitch of each microlens and f
(the focal length), and is ranging from −pitch2f to pitch

2f (Fig.
1(a)). Figure 3 shows an example of a synthetic unidirectional
integral image and the extracted viewpoint images.

The proposed algorithm involves comparison between the
candidate areas of projections of scene’s 3-D points onto the
different parts of the integral image, i.e. the different elemental
and viewpoint images. Analyzing the recording process of
integral imaging, the connection between a 3-D point and its
projections is established. A local coordinate system for each
viewpoint image is used (Fig. 1) that is rotated by angle θ
around the local coordinate system of the central viewpoint,
which is the one that has zero angle with the image plane.
If (i, j) are the coordinates of a pixel belonging to the k-th
viewpoint image, then its position (x, y), with respect to the
local coordinate system of the k-th viewpoint image, is given

by the following equations:

xk =

(
i−
⌊
M

2

⌋)
· pitch · cos θk (1)

yk = −
(
j − H

2

)
· l (2)

where H is the vertical pixel resolution of the microlens and l
is the height of a pixel. If pixels are considered to be squared,
then l = pitch

K . Viewpoint image planes are derived from the
image plane with a rotation by θ rads around the y axis. The
projection of a 3-D point on the k-th viewpoint image plane
includes a rotation around the y-axis and a mapping from 3-D
to 2-D. Using homogeneous coordinates:

xkyk
1

 =

1 0 0 0
0 1 0 0
0 0 0 1




cos θk 0 sin θk 0
0 1 0 0

− sin θk 0 cos θk 0
0 0 0 1



X
Y
Z
1


(3)

Denoting the first and second matrix of the right side of the
projection equation as P and Rk, k = 1, . . . ,K, respectively,
P is the orthographic projection matrix, while Rk is the k-th
rotation matrix. Each 3-D object point is projected on several
viewpoint planes and these projections can be used inversely
to calculate the exact 3-D coordinates of the object point.
Any pair of projections of the same 3-D point is sufficient
to calculate its 3-D coordinates (X,Y, Z). Assuming that
(x1, y1), (x2, y2) are the projections on the planes with angles
θ1 and θ2 respectively, (X,Y, Z) is given by:XY

Z

 =


x2 sin θ1−x1 sin θ2

sin(θ1−θ2)
y1

x1 cos θ2−x2 cos θ1
sin(θ1−θ2)

 (4)

Obviously, the above formula assumes a unique correspon-
dence between (x1, y1), (x2, y2), thus the depth estimation
accuracy depends on the exactness of the specific correspon-
dence. In order to produce a more reliable depth estimate, one
would want to include any available correspondence pair. All
pairs should contribute on the estimation procedure, thus the
coordinates of the true 3-D point (X, Y, Z) is the minimizer
of the following system of equations in a least squares sense:

x1
y1
1
...
xK
yK
1


=

PR1 0 . . .

0
. . . 0

. . . 0 PRK



X
Y
Z
1

 (5)

III. DEPTH ESTIMATION

The proposed algorithm’s workflow is depicted in Fig. 4.
First, the integral image is decomposed to the more meaningful
viewpoint images, by appropriate sampling. Local descriptors
are calculated in every viewpoint image, and as explained in
section III-A, by matching the local features, correspondences



ZARPALAS et al.: ANCHORING GRAPH CUTS TOWARDS ACCURATE DEPTH ESTIMATION IN INTEGRAL IMAGES 5

among the viewpoint images are established. Stable correspon-
dences offered through a number of viewpoint image pairs, are
gathered to form the anchor points set, i.e. a sparse set of 3-D
points, with highly accurate depth estimates. In the next step,

Fig. 4. Schematic representation of the proposed procedure for depth
estimation.

as described in section III-B, the viewpoint images’ features
are provided in a 3-D surface fitting optimization procedure.
The optimization problem involves assigning a label to each
integral image pixel, where the label represents a depth value
for the captured 3-D point. The optimization procedure is
constrained by the anchor points, as explained in section III-C.

In the energy formulation two terms are used, the one
provided by the data and the other by prior knowledge. The
data term restricts the solution to be close to the observa-
tions, i.e the integral image, and the prior knowledge term
enforces smoothness among neighboring pixels. However, the
smoothness constraint is able to preserve discontinuities in
order to avoid over-smoothing, especially at object boundaries
where abrupt depth changes exist. The accurately estimated 3-
D coordinates of anchor points contribute to the right handling
of discontinuities as they lie mainly on edges. Graph cuts
are utilized to solve this optimization problem, due to their
capability of solving NP-hard problems efficiently and fast.
The outcome of the algorithm is a reconstructed 3-D surface
with high spatial smoothness. Projecting the reconstructed
surface on the several viewpoint image planes, depth maps
depicting the scene from a different viewpoint angle can be
obtained. In the rest of this section, the three major steps
of the algorithm, i.e. the anchor points detection, the energy
formulation and the anchoring procedure are described in
detail.

A. Anchor points detection

By construction, integral images are characterized by in-
formation abundance as multiple microlenses record the same
scene’s objects from slightly different angle. This captured
abundant information should be exploited for depth extrac-
tion. Once an accurate correspondence between two or more
viewpoint images is identified, then (5) provides an actual 3-
D scene point. Several image correlation metrics are widely
used for establishing correspondences between image pairs.
However, in the case of viewpoint images, simple correlation
metrics failed to indicate true correspondences in spite of
the existence of high viewpoint images cross correlation.

Instead of the deficient correlation metrics, in this work two
more sophisticated local descriptors were tested, the well
known SIFT descriptor [24] and the self-similarity descriptor
[41]. Shechtman and Irani were the first to use local self-
similarity patterns as a descriptor in the context of image and
video matching. Local self-similarity descriptors have been
successfully used for object detection and retrieval, while
in the proposed work they are employed to extract robust
correspondences, which will lead to the reliable estimation
of 3-D anchor points, since they proved superior than SIFT
features.

Fig. 5. A series of successive viewpoints. Correspondences, among the
reference viewpoint image with the rest, are evaluated to produce the chain
of pixels that share the same origin.

The anchor points detection procedure starts with the com-
putation of the local self-similarity descriptors for the whole
set of viewpoint images. Non-informative descriptors, which
either correspond to large homogeneous image areas or they do
not capture any self-similarity, are discarded. Then, a matching
procedure is used between the remaining informative pixels
of a reference viewpoint image, which is selected to be the
central one, with pixels of the rest viewpoint images. For the
matching procedure the sigmoid on the L1 distance between
the descriptors is used. For each informative pixel of the
reference viewpoint image, a set is formed that contains only
the strong correspondences with pixels of the rest of viewpoint
images. Each correspondence pair provides the coordinates of
its 3-D origin by solving equations (4). In case the set contains
correspondence pairs that agree on the same origin, then these
pixels are regarded as a chain. Each chain corresponds to
an anchor point. Forcing the correspondence set to be from
successive viewpoints, eliminates any chance of false positive
anchor points. The final 3-D coordinates of the anchor point
are computed by least squares fitting in that region according
to (5).

The above procedure results in a dense set of points (Fig.
6) whose 3-D position estimation is of high accuracy and thus
they can be considered as true scene points. As figure 6 shows,
anchor points lie mainly on edges and textured regions and
therefore their density depends, to a great extent, on the scene’s
texture. The fact that the estimated anchor points cover a wide
area of the actual scene, significantly simplifies the problem
of the overall scene reconstruction.

B. Energy formulation

Having a set of 3-D points whose depth estimate is very
reliable, the next step is to try to fit a surface to connect them
based on the information provided by the rest pixels of the
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Fig. 6. Illustration of anchor points detection. (a) Anchor points depth-map
of the synthetic scene “Bedroom” depicted in Fig. 3, and (b) its actual depth-
map. (c) The estimated depth of the anchor points of the real integral image
“horseman” (actual depth map is not available), (d) the integral image and (e)
one viewpoint image.

integral image. The constrained surface fitting optimization
was implemented through graph cuts [6], hence the name
Anchored Graph Cuts. Anchoring the optimization boosts the
estimation accuracy, while reduces the optimization complex-
ity. In the proposed formulation, the whole integral image is
fed into one optimization. To accomplish the latter, the label
that was assigned to each pixel was set to be its depth, rather its
disparity relative to another picture, as is defined in the stereo-
like concept. Thus, graph cuts are trying to find the optimized
solution of the depth of the 3-D points that correspond to each
pixel.

The 3-D scene is scanned uniformly along the emanating
projection rays of the integral image, as depicted in figure 7.
Each integral image’s pixel is the projection of a scene’s point
along a specific ray. The rays are uniformly sampled and graph
cuts evaluate those points whether they are true scene points.
To facilitate this procedure we define a set of depth planes and
confine the total amount of candidate 3-D scene points to the
rays-planes intersections. If P = {p1, p2, . . . , pn} is the set of
all pixels of the integral image and L = {l1, l2, . . . , lm} is a
discrete set of labels, each one of them corresponding to m
predefined depth values, a mapping f : P → L that assigns
each pixel a label is sought. Such a mapping should take
into account during evaluation the depth value of neighboring
pixels. In integral images a pixel’s actual neighbors are the
ones that the same microlens has produced. However, in the
viewpoint image concept, a pixel has neighbors that belong to
different microlenses. Both these sets of neighboring pixels are
important and need to be taken under consideration in order
to find the optimum solution for a pixel’s depth value.

Graph cuts were employed to solve this problem, due to
their efficiency of approximating NP-hard problems that try
to find a labelling f which minimizes a given energy, as long
as it is defined in a standard way [19]. This standard way
suits the desired surface fitting optimization energy, which is
defined as:

E(f) = Edata(f) + Esmooth(f) (6)

where f is a vector with a label for each pixel of P. The data
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Fig. 7. For pixel’s p ray, the candidate 3-D points are defined by uniformly
sampling the ray with a constant depth step. Each successive depth step
corresponds to the next label.

term Edata(f) measures how well the certain depth values of f
fit the integral image, while the smoothness term Esmooth(f)
measures how similar depth values neighboring pixels have.
Those two terms are modelled as:

E(f) =
∑
∀pi∈P

Dpi(f(pi)) +
∑

∀pi,pj∈Q

Vpi,pj (f(pi), f(pj)) (7)

where Dpi(f(pi)) represents the cost for assigning the la-
bel f(pi) to pixel pi, while Vpi,pj (f(pi), f(pj)) penalizes
different labels f(pi) 6= f(pj), on neighboring pixels pi,
pj . Q defines the set of all pairs of neighboring pixels:
Q ⊂ {{pi, pj} | pi, pj ∈ P}. Before adding the two
energy terms, they are normalized to be in the same order
of magnitude.

The data term is responsible for the evaluation of candidate
3-D points, and assigns heavy cost if labelling f disagrees
with the data (i.e the integral image), and small otherwise.
The only restriction for this term is to be non-negative [6].
Taking into account that the projections of actual 3-D scene
points on the several viewpoint image planes, according to
(3), should lie on viewpoint image areas with similar color
configurations, a photo-consistency matching cost is devel-
oped. Instead of the frequently used correlation metrics a
more sophisticated approach of measuring photo-consistency
is adopted. The self-similarity descriptor is again employed,
due to its discriminative efficiency and the fact that descriptors
have already been calculated. The descriptors that stemmed
from the anchor points detection procedure are now used to
form the data term of the energy function. To measure how
well a certain pixel’s label matches the image, the data term
matches the descriptors of the pixels in the different viewpoint
images that correspond to that 3-D point. Consider a pixel pi
which belongs to the i-th viewpoint and that the current label
under investigation implies that pi is the projection of P3D (the
3-D point on the intersection of pi’s ray with the l-th depth
plane). Projecting P3D to the k-th viewpoint image, through
(4), produces a candidate correspondence pk. Having the set
of K − 1 candidate correspondences pk with k = 1, . . . ,K
and i 6= k, the cost of assigning label l to pi is then given by:

Dpi(l) = 1−median(S(SDpi , SDpk)), k = [1, . . . ,K], k 6= i
(8)
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where S(SDpi , SDpk) is the similarity between the descrip-
tors SDpi and SDpk corresponding to pixels pi and pk
respectively, and is in the range {0,1}. The overall similarity is
selected to be the median over the K−1 calculated similarities
to eliminate errors due to noise or occluded pixels. The cost
Dpi(l) is thus low if the similarity between SDpi and SDpk

is high and vice versa.
Furthermore, the proposed framework enables the modelling

of the piecewise nature of depth by introducing a twofold reg-
ularization term among adjacent pixels on both the elemental
and viewpoint images. This twofold neighborhood handling
leads to reconstructed scenes with high spatial smoothness.

Without underestimating the importance of the data term
it is a fact that the smoothness term is really important for
the algorithm’s success. The design of this term is much
more difficult than the data term, as it tries to enforce
smoothness constraints on the labelling, which is needed
when the quantity corresponding to the labelling has to be
naturally smooth. However, on the object boundaries abrupt
label changes occur and thus, in order the smoothness term
to be efficient, it has to handle those discontinuities properly.
The smoothness term includes the notion of neighborhood Q

Fig. 8. The 10-neighborhood system used in the proposed algorithm.

that determines which pixels interact and probably have the
same label. The neighborhood is reasonable to be assumed
on the direct neighbors of a pixel in the viewpoint images.
However, in this way the smoothness is achieved only in
each separate viewpoint image but the whole reconstructed
scene fails to be smooth. The advantage of the proposed
energy formulation and the fact that labels correspond to depth
values, instead of disparities among viewpoint images (as in
stereo like formulation), is that it can define neighbors in the
context of viewpoint and elemental images as well. Thus, a 10-
neighborhood system (Fig. 8) composed of the 10 immediate
neighbors, in the integral imaging context is incorporated.
In this way, since neighboring pixels in elemental images
correspond to neighboring viewpoint images, extra smoothing
is achieved between them.

The smoothness energy is modelled through the truncated
L1 distance between the labels of the neighbors. This choice
is made because the truncated L1 distance is a discontinuity
preserving penalty function. For a pair of neighboring pixels
pi and pj with labels lpi and lpj , respectively, the smoothness
energy is calculated by

Vpi,pj (lpi , lpj ) = u{pi,pj}min(T, |lpi − lpj |) (9)

T is a small constant, experimentally set to be in the range
{2, 5} and u{pi,pj} is a weight depending on the intensities
Ipi and Ipj of the two involved pixels. The value of u{pi,pj}
should be higher if the two neighbors have similar color and
smaller, otherwise. The choice of u{pi,pj} is the one proposed
in [6].

C. Anchoring Graph Cuts

As already mentioned, the set of anchor points is used as a
reliable initialization of the optimization procedure. Another
advantage is that they also propagate their reliable depth
estimates to their neighbors through the smoothness term. In
order to avoid unnecessary re-estimation of the anchor points’
depth, anchor points are excluded form the optimization by
setting their corresponding data term equal to zero for their
known depth label, and infinite otherwise:

Dpα(f(pα)) =

{
0, if f(pα) = lpα
∞, if f(pα) 6= lpα

(10)

where lpα is the closest label to an anchor point’s depth, and
pα is any of the pixels that correspond to that anchor point α.

Setting to zero the data cost for known depth labels while
assigning an infinite cost for the rest labels prevents from
changing the correctly estimated depths of anchor points.
Besides, it offers faster convergence of the algorithm while
the known pixel labels spread over neighboring pixels, which
leads to a robust solution.

IV. EXPERIMENTAL RESULTS

In order to be able to quantitatively evaluate the performance
of the proposed algorithm and its components, a synthetic
database was created which offered the advantage of knowing
the ground truth, thus being able to measure the efficiency
of the method and its intrinsic variations. The specifications
and characteristics of the synthetic database are provided in
section IV-A. Sections IV-B and IV-C describe the evaluation
performed on the anchor points detection accuracy and on
the graph cut efficiency, respectivelly. The overall method’s
accuracy and efficiency on depth estimation is provided on
section IV-D, where the method’s effectiveness on real appli-
cation was further validated, on a small number of examples
on real integral images.

A. Synthetic integral image database

To evaluate the performance of the proposed method, a
virtual camera was built in order to capture a set of synthetic
integral images. A database of 28 uni-directional integral
images was constructed, each one of them depicting a 3-
D scene with multiple objects. The objects were collected
as 3-D models from the world wide web. The 3-D scene
was transformed in order to fit to the field of view of the
virtual array of microlenses. The texture of the objects in the
scenes varies from rich to quite poor. The foreground is easily
extracted, thus a foreground mask is also available for every
image, in order to calculate depth only on the foreground.
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Fig. 9. Comparison of the mean relative error of the detected anchor points
in the synthetic integral image database for SIFT and self-similarity. The bars
show the standard deviation of the error.

For the database construction, the lens pitch of the virtual
camera was selected as pitch = 0.5mm, the lens height l ·
H = 50mm and the focal length f = 4mm. Further, the
microlens array consisted of 99 cylindrical lenses with 7×700
pixels resolution. Using these parameters the resolution of the
extracted integral images was 693× 700 pixels.

Figure 15 shows few of the scenes captured with the virtual
camera. The virtual camera and the complete dataset are
publicly available at ftp://ftp.iti.gr/pub/Holoscopy/.

B. Anchor Points evaluation

For the anchor points detection procedure another descriptor
was also tested before deciding to use the self-similarity
descriptor; the well-known SIFT [24] that is widely used to
detect local features in images. SIFT [62] detected on average
420 anchor points for every image in the database while
the self-similarity was capable of producing 8500. Figure 9
demonstrates the mean relative error of the detected anchor
points for both cases. The number of the anchor points
increases as the restrictions in the generation procedure of the
associated descriptor are relaxed. The mean relative error is
defined as the absolute difference between the estimated and
the actual depth over the actual depth. For the maximum num-
ber of potential SIFT based anchor points, the error is 3.27%
for SIFT contrary to 3.07%, with much less variance, for the
same amount of self-similarity based anchor points. However,
the self-similarity is further capable of producing 8500 anchor
points on average per image, with a slight increase of error to
3.98%. Although there is not a notable difference in the error,
there is indeed in the error variance and in the density of the
detected anchor points. Being able to produce a large number
of reliable anchor points (8500 contrary to 420 on average),
helps on the overall depth estimation, especially on images
poor in gradients and texture.

In order to reveal and quantify the contribution of the
anchor points to the depth estimation, the mean relative
error, with respect to the amount of anchor points used to
constrain the optimization procedure, was calculated. Figure
10 illustrates how the error decreases dramatically once APs
are incorporated in the energy optimization procedure (figure
12 visualizes this error difference) and that the more the
anchor points used the less the overall error. This is because
the smoothness term propagates the APs’ depth estimation
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Fig. 10. Mean relative error in the synthetic integral image database with
respect to the number of anchor points (AP) used per image for the proposed
method. Higher density of used anchor points leads to more accurate depth
estimates.

reliability to their neighbors, thus more APs produces more
reliable depth estimates.

The diagram in figure 10 also shows that in the synthetic
database, the mean relative error falls very smoothly for large
AP percentages. In real images though (where only visual
inspection of depth accuracy is available), it becomes obvious
that one would prefer to use all the available APs, as seen in
figure 11.

(a) (b) (c) (d)

Fig. 11. Influence of the amount of anchor points in depth estimation or the
real integral image “horseman”. (a) Result without using anchor points, (b)
25% of the anchor points used, (c) 50% of the anchor points used, (d) 100%
of the anchor points used.

In order to better understand the importance of APs and
visualize the error decrease when anchoring the optimization
procedure, depth estimation results in the form of depth maps
are depicted in figure 12. As it can be seen without APs dif-
ferent objects are confused while they get more distinctive and
detectable when APs constrain the optimization. Furthermore,
with a close inspection, the un-anchored depth maps are more
“flat” (e.g. the female figure and the handbag in the middle row
and the table in the bottom row), while in the anchored ones
the depth demonstrates more variations, showing that more
depth details were captured. Undoubtedly, the proposed depth
estimation algorithm benefits, to a great extent, from anchor
points and its success is mainly attributed to the accurate
estimation of their 3-D coordinates.

C. Data term evaluation

Apart from matching the self-similarity descriptor, the Pear-
son correlation was also investigated for formulating the data
term of the energy function. The correlation between patches
around the involved pixels was used in (8) instead of the
self-similarity. Several sizes of patches were tested with the
11×3 producing the best results. Comparative results of using
correlation and self-similarity to impose photo-consistency in
the depth estimation are shown in figure 13. Obviously, this
diagram suggests the use of the self-similarity descriptor for
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Fig. 12. Influence of the anchor points selection in the optimization procedure. The results of three integral images are shown. (a) Actual depth. (b) Obtained
depth map without the use of anchor points with correlation. (c) Obtained depth map without the use of anchor points with self-similarity. (d) Depth map
using constraints from anchor points (proposed method) (e) Estimated depth of anchor points. The circles depict the regions where the un-anchored cases
produce obvious errors that the proposed method successfully handles.
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Fig. 13. Comparative results for the proposed algorithm using a correlation
metric instead of self-similarity matching in the data term calculation.
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Fig. 14. Comparison of the proposed algorithm to the ones of [54] and [50].
The accuracy of anchor points is also displayed in the diagram.

the data term calculation. This choice is also computationally
efficient, since the self-similarity descriptor has been already
calculated for the whole integral image in the anchor point
detection step. Columns (b) and (c) of figure 12, give a further
insight of the differences produced in depth estimation for both
cases, when it is solely based on the data term.

D. Depth accuracy

The proposed algorithm was compared against other state-
of-the-art algorithms, in the synthetic database, which provides

ground truth measurements, thus a reliable way for quantifying
the effectiveness of each method. The proposed algorithm
produces a reconstructed scene that can be projected onto any
viewpoint image plane in order to obtain a depth-map. The
depth-map produced for the central viewpoint image can be
directly compared to the outputs of the algorithms in [50] and
in [54]. The results are depicted in figure 14. Depth estimates
have been calculated on the foreground only. The mean relative
error is 6.13% for the proposed algorithm, 11.74% for the
algorithm of [54] and 38.23% for [50]. It is obvious that the
proposed method clearly outperforms the other two methods.

The results of the proposed algorithm for some integral
images are illustrated in figure 15 where the estimated depth-
map is shown in contrast with the scene’s actual depth-map,
both being estimated from the central’s viewpoint angle. In
all cases, the different objects are correctly perceived and
differentiated from their neighboring, based on their estimated
depth values. However, fine details in objects contours are
not always obtained with high accuracy. This happens mainly
for objects that are small, or on their narrow parts, since
the distinction between them and the surrounding objects is
not clear, even for the human eye in those low resolution
viewpoint images. However, even in such cases, a satisfactory
approximation of the object contour is obtained that makes
perceivable the kind of the object.

The proposed algorithm was also tested in real integral
images. The first one is the “horseman” image, captured with
a cylindrical lens array, that produces an integral image of size
equal to 1280×1264, has 160 cylindrical lenses, thus offering
160 elemental images of 8 × 1264 pixels, and 8 viewpoint
images of 160× 1264 pixels. As a foreground mask was not
directly available for them, and since it is hard to calculate
depth on large non-informative and homogeneous regions,
a simple color blob segmentation technique [63] could be
applied in order to separate the objects from the background.
Figure 16(c) shows the foreground mask obtained for the
integral image “horseman”. The bigger part of the foreground
area is successfully detected but a part of the object with
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Fig. 15. Results of the proposed algorithm on synthetic integral images. (a) Integral images. (b) Corresponding viewpoint images. (c) Actual depth map of
the scene. (d) Depth map estimation using the proposed method.

(a) (b)

(c) (d)

Fig. 16. (a) The central viewpoint of the real integral image “horseman”, (b)
obtained depth-map using the proposed method, (c) foreground mask extracted
by [63], (d) corrected foreground mask.

similar color with the background is missed as it is considered
as background. Since foreground detection is out of the scope
of this work, the foreground mask was corrected to include
that region too, as in figure 16(d). Figure 16(b) illustrates
the estimated “horseman” depth-map, when incorporating the
foreground mask. Despite that the actual depth-map of the
image is not available, it is obvious that the objects’s relative
positions are correctly estimated. The head of the horse is
estimated to be near the camera while the tail far, with smooth
depth transitions in between, which match with the horse’s
actual shape. In general, the depth-map is sufficiently smooth
and the existing errors are limited. In [50], the result on this
image is also presented.

Figure 17 shows another example of a real integral image
depicting a palm, captured from another cylindrical lens array
than the one utilized in the “horseman” capturing. This con-
figuration contains 84 cylindrical lenses, of 67 pixels width
each, offering 84 elemental and 67 viewpoint images. The
size of the integral image is 5628 × 3744, while the size
of each elemental and viewpoint image is 67 × 3744 and

84×3744, respectively. The depth values’ range is very narrow
in this case, considering how flat the palm appears in front of
the camera. Nonetheless, the proposed algorithm was capable,
even in this case, to produce a smooth surface and to recognize
correct depth transitions along each finger and between them.

(a) (b)

(c) (d)

(e)

Fig. 17. Results on the real integral image “hand”. (a) Integral image, (b)
viewpoint image, (c) anchor points, (d) foreground mask, (e) extracted depth-
map using the proposed method.

V. CONCLUSIONS

In this paper an algorithm for estimating depth from integral
images was presented. Depth extraction is formulated as one
energy optimization problem that is solved by anchoring the
graph cuts technique. The algorithm successfully overcomes
the integral imaging difficulties and produces a smooth scene
structure. The use of the self-similarity descriptor both for
the detection of anchor points and the imposition of photo-
consistency in the optimization procedure along with the
smoothness constraints was proved to be the key to success.
Experiments with a ground-truth dataset showed that the
proposed method clearly outperforms other state-of-the-art
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algorithms, while experiments with real data further verified
its efficiency on producing accurate depth-maps.
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