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Abstract: AI technologies can play an important role in breaking down the communication barriers
of deaf or hearing-impaired people with other communities, contributing significantly to their social
inclusion. Recent advances in both sensing technologies and AI algorithms have paved the way for
the development of various applications aiming at fulfilling the needs of deaf and hearing-impaired
communities. To this end, this survey aims to provide a comprehensive review of state-of-the-art
methods in sign language capturing, recognition, translation and representation, pinpointing their
advantages and limitations. In addition, the survey presents a number of applications, while it
discusses the main challenges in the field of sign language technologies. Future research direction
are also proposed in order to assist prospective researchers towards further advancing the field.

Keywords: sign language recognition; sign language representation; sign language capturing; applications

1. Introduction

Sign language (SL) is the main means of communication between hearing-impaired
people and other communities and it is expressed through manual (i.e., body and hand
motions) and non-manual (i.e., facial expressions) features. These features are combined
together to form utterances that convey the meaning of words or sentences [1]. Being able
to capture and understand the relation between utterances and words is crucial for the Deaf
community in order to guide us to an era where the translation between utterances and
words can be achieved automatically [2]. The research community has long identified the
need for developing sign language technologies to facilitate the communication and social
inclusion of hearing-impaired people. Although the development of such technologies
can be really challenging due to the existence of numerous sign languages and the lack of
large annotated datasets, the recent advances in AI and machine learning have played a
significant role towards automating and enhancing such technologies.

Sign language technologies cover a wide spectrum, ranging from the capturing of
signs to their realistic representation in order to facilitate the communication between
hearing-impaired people, as well as the communication between hearing-impaired and
speaking people. More specifically, sign language capturing involves the accurate extrac-
tion of body, hand and mouth expressions using appropriate sensing devices in marker-less
or marker-based setups. The accuracy of sign language capturing technologies is currently
limited by the resolution and discrimination ability of sensors and the fact that occlusions
and fast hand movements pose significant challenges to the accurate capturing of signs.
Sign language recognition (SLR) involves the development of powerful machine learning
algorithms to robustly classify human articulations to isolated signs or continuous sen-
tences. Current limitations in SLR lie in the lack of large annotated datasets that greatly
affect the accuracy and generalization ability of SLR methods, as well as the difficulty in
identifying sign boundaries in continuous SLR scenarios.
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On the other hand, sign language translation (SLT) involves the translation between
different sign languages, as well as the translation between sign and speaking languages.
SLT methods employ sequence-based machine learning algorithms and aim to bridge
the communication gap between people signing or speaking different languages. The
difficulties in SLT lie in the lack of multilingual sign language datasets, as well as the
inaccuracies of SLR methods, considering that the gloss recognition (performed by SLR
methods) is the initial step of the SLT methods . Finally, sign language representation
involves the accurate representation and reproduction of signs using realistic avatars or
signed video approaches. Currently, avatar movements are deemed unnatural and hard to
understand by the Deaf community due to inaccuracies in skeletal pose capturing and the
lack of life-like features in the appearance of avatars.

Sign language technologies are connected in a way that affect each other as seen in
Figure 1. The accurate extraction of hand and body motions as well as facial expressions
plays a crucial role to the success of the machine learning algorithms that are responsible
for the robust recognition of signs. Moreover, the accurate sign language recognition signif-
icantly affects the performance of sign language translation and representation methods.
The breakthroughs in sensorial devices and AI have paved the way for the development of
sign language applications that can immensely facilitate hearing-impaired people in their
everyday life.

Figure 1. Sign language technologies.

Previous literature reviews mainly concentrate on specific sign language technologies,
such as video-based and sensor-based sign language recognition [3–7] and sign language
translation [8,9]. Lately, with the development of sign language applications, there are
also reviews that presented sign language systems to facilitate hearing-impaired people in
teaching and learning, as well as in voice and text interpretation systems [10,11]. However,
there is no systematic review that presents all sign language technologies and their relations
with each other. This review aims to fill this gap by presenting the advances of AI in all
sign language technologies, ranging from capturing and recognition to translation and
representation and concludes by describing recent sign language applications that can
considerably facilitate the communication among hearing-impaired and speaking people.
The main purpose of this review is to demonstrate the importance of using AI technologies
in sign language to facilitate deaf and hearing-impaired people in their communication
with other communities. In addition, this review aims at familiarizing researchers with the
state-of-the-art in all sign language technologies and propose future research directions
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that can facilitate the development of even more accurate approaches that can lead to
mainstream products for the Deaf community. More specifically, the objectives of this
review can be summarized as follows:

• A comprehensive overview of the use of AI technologies in various sign language
tasks (i.e., capturing, recognition, translation and representation), along with their
importance to their field, is provided.

• The advantages and limitations of modern sign language technologies and the rela-
tions between them are discussed and explored.

• Possible future directions in the development of AI technologies for sign language are
suggested to facilitate prospective researchers in the field.

The rest of this survey is organized as follows. In Section 2, the literature search
guideline is presented. Sign language capturing sensors are described in Section 3. In
Section 4, sign language recognition methods are categorized and discussed. Sign language
representation approaches and applications are presented in Sections 5 and 6, respectively.
Finally, conclusions and potential future research directions are highlighted in Section 7.

2. Literature Search

A systematic literature search was performed by adopting the PRISMA guidelines [12].
The articles were extracted in June 2021 from three academic databases, namely Scopus
(https://www.scopus.com/home.uri), (link, accessed on 28 May 2021), ProQuest (https://
www.proquest.com/), (link, accessed on 28 May 2021) and IeeeXplore (https://ieeexplore.
ieee.org/Xplore/home.jsp), (link, accessed on 28 May 2021). The articles that were not peer-
reviewed or written in English were discarded. Since this review deals with AI technologies
for sign language, the search was based on the following condition:

TITLE-ABSTRACT-KEYWORDS ( sign AND language AND ( recognition OR application(*)
OR avatar(*) OR representation(*) OR translation OR captur(*) OR generation OR production
) ) AND PUBLISH YEAR > 2018 AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO (
DOCTYPE , "cp" ) OR LIMIT-TO ( DOCTYPE , "ch" ) ) AND ( LIMIT-TO ( LANGUAGE
, "English" ) ) AND ( LIMIT-TO ( PUBSTAGE , "final" ) ) AND ( LIMIT-TO ( SUBJAREA
, "COMP" ) OR LIMIT-TO ( SUBJAREA , "ENGI" ) )

The aforementioned search condition describes the existence of the above words (i.e.,
recognition, translation, etc.) in the title, abstract or keywords of the literature works. In this
context, (*) allows for variations in the search terms (i.e., captur(*) allows the existence of
words, such as capture, capturing, etc.). In addition, the search is performed for papers
published after 2018 since the field is evolving with fast pace and older methods are
rendered quickly obsolete. To this end, this review aims to present only the latest and best
works related to sign language technologies. Finally, the papers included in this review
have been published as journal articles, conference proceedings and book chapters (i.e.,
DOCTYPE) in the fields of computing and engineering (i.e., SUBJAREA).

The number of the records retrieved from the three databases is 2368. From this
number, 331 duplicate records are removed, leading to 2037 unique records. After screening
title, abstract and finally the full text with various criteria to discard irrelevant records,
106 records remain and are included in this review. The selection procedure is depicted in
Figure 2.

https://www.scopus.com/home.uri
https://www.proquest.com/
https://www.proquest.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
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Figure 2. Flowchart of the systematic literature search process.

3. Sign Language Capturing

Sign language capturing involves the recording of sign gestures using appropriate
sensor setups. The purpose is to capture discriminative information from the signs that will
allow the study, recognition and 3D representation of signs at later stages. Moreover, sign
language capturing enables the construction of large datasets that can be used to accurately
train and evaluate machine learning sign language recognition and translation algorithms.

3.1. Capturing Sensors

The most common means of recording sign gestures is through visual sensors that
are able to capture fine-grained information, such as facial expressions and body postures,
that is crucial for understanding sign language. Cerna et al. in [13] employed a Kinect
sensor [14] to simultaneously capture red-green-blue (RGB) image, depth and skeletal
information towards the recording of a multimodal dataset with Brazilian sign language.
Similarly, Kosmopoulos et al. in [15] captured realistic real-life scenarios with sign language
using the Kinect sensor. The dataset contains isolated and continuous sign language
recordings with RGB, depth and skeletal information, along with annotated hand and
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facial features. Contrary to the previous methods that use a single Kinect sensor, this work
additionally employs a machine vision camera, along with a television screen, for sign
demonstration. Sincan et al. in [16], captured isolated Turkish sign language glosses using
Kinect sensors with a large variety of indoor and outdoor backgrounds, revealing the
importance of capturing videos with various backgrounds. Adaloglou et al. in [17], created
a large sign language dataset with RealSense D435 sensor that records both RGB and depth
information. The dataset contain continuous and isolated sign videos and is appropriate
for both isolated and continuous sign language recognition tasks.

Another sensor that has been employed for sign language capturing is Leap Mo-
tion, which has the ability to capture 3D positions of hand and fingers at the expense
of having to operate close to the subject. Mittal et al. in [18], employed this type of
sensor to record sign language gestures. Other setups with antennas and readers of
radio-frequency identification (RFID) signals have also been adopted for sign language
recognition. Meng et al. in [19], extracted phase characteristics of RFID signals to detect
and recognize sign gestures. The training setup consists of an RFID reader, an RFID tag
and a directional antenna. The recorded human should stand between the reader and the
tag for a proper capturing. Moreover, the recognition system is signer-dependent.

On the other hand, wearable sensors have been adopted for capturing sign language
gestures. Galea et al. in [20], used electromyography (EMG) to capture electrical activity
that was produced during arm movement. The Thalmic MYO armband device was used
for the recording of Irish sign language alphabet. Similarly, Zhang et al. [21] used a
wearable device to capture EMG and inertial measurement unit (IMU) signals, while they
used a convolutional neural network (CNN) [22] followed by a long short-term memory
(LSTM) [23] architecture to recognize American sign language at both word and sentence
levels. One disadvantage of the method is that its performance has not been evaluated
under walking condition. Hou et al. in [24], proposed Sign-Speaker, which was deployed
on a smartwatch to collect sign signals. Then, these signals were sent to a smartphone
and were translated into spoken language in real-time. In this method, a very simple
capturing setup is required, consisting of a smartwatch and a smartphone. However,
their system recognizes a limited number of signs and it cannot generalize well to new
users. Wang et al. in [25], employed a system with two armbands using both IMU and
EMG sensors in order to capture fine-grained finger and hand positions and movements.
How et al. in [26], used a low-cost dataglove with IMU sensors to capture sign gestures that
were transmitted through Bluetooth to a smartphone device. Nevertheless, the employment
of a single right-hand dataglove limited the number of signs that could be performed by
this setup.

Each of the aforementioned sensor setups for sign language capturing has different
characteristics, which makes it suitable for different applications. Kinect sensors provide
high resolution RGB and depth information but their accuracy is restricted by the distance
from the sensors. Leap Motion also requires a small distance between the sensor and the
subject, but their low computational requirements enable its usage in real-time applications.
Multi-camera setups are capable of providing highly accurate results at the expense of
increased complexity and computational requirements. A myo armband that can detect
EMG and inertial signals is also used in few works but the inertial signals may be distorted
by body motions when people are walking. Smartwatches are really popular nowadays
and they can also be used for sign language capturing but their output can be quite noisy
due to unexpected body movements. Finally, datagloves can provide highly accurate sign
language capturing results in real-time. However, the tuning of its components (i.e., flex
sensor, accelerometer, gyroscope) may require a trial and error process that is impractical
and time-consuming. In addition, signers tend to not prefer datagloves for sign language
capturing as they are considered invasive.
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3.2. Datasets

Datasets are crucial for the performance of methodologies regarding sign language
recognition, translation and synthesis and as a result a lot of attention has been drawn
towards the accurate capturing of signs and their meticulous annotation. The major-
ity of the existing publicly available datasets are captured with visual sensors and are
presented below.

3.2.1. Continuous Sign Language Recognition Datasets

Continuous sign language recognition (CSLR) datasets contain videos of sequences of
signs instead of individual signs and are more suitable for developing real-life applications.
Phoenix-2014 [27] is one of the most popular CSLR dataset with recordings of weather
forecasts in German sign language. All videos were recorded with 9 signers at a frame
rate of 25 frames per second. The dictionary has 1081 unique glosses and the dataset
contains 5672 videos for training, 540 videos for validation and 629 videos for testing. The
same authors created an updated version of Phoenix-2014, called Phoenix-2014-T [28],
with spoken language translations, which makes it appropriate for both CSLR and sign
language translation experiments. It contains 8257 videos from 9 different signers perform-
ing 1088 unique signs and 2887 unique words. Although all recordings are performed in a
controlled environment, Phoenix-2014 and Phoenix-2014-T are both challenging datasets
with large vocabularies and varying number of samples per sign with a few signs having a
single sample. Similarly, BSL-1K [29] contains video recordings from British news broad-
casts, along with automatically extracted annotations from provided subtitles. It is a large
database with 273,000 samples from 40 signers that is also used for sign language segmen-
tation. Another notable dataset is CSL [30,31] that contains Chinese words widely used
in daily communication. The dataset has 100 sentences with signs that were performed
from 50 signers. The recordings are performed in a lab with predefined conditions (i.e.,
background, lighting). The vocabulary size is 178 words that are performed multiple times,
resulting in high recognition results achieved by SLR methods. GRSL [15] is another CSLR
dataset of Greek sign language that is used in home care services, which contains multiple
modalities, such as RGB, depth and skeletal joints. On the other hand, GSL [17] is a large
Greek sign language dataset created to assist communication of Deaf people with public
service employees. The dataset was created with a RealSense D435 sensor that records both
RGB and depth information. Furthermore, it contains both continuous and isolated sign
videos from 15 predefined scenarios. It is recorded on a laboratory environment, where
each scenario is repeated five consecutive times.

3.2.2. Isolated Sign Language Recognition Datasets

Isolated sign language recognition (ISLR) datasets are important for identifying and
learning discriminative features for sign language recognition. CSL-500 [31,32] is the
isolated version of CSL but it contains 500 unique glosses performed from the same
50 signers. CSLR methods usually adopt this dataset for feature learning prior to finetuning
on the CSL dataset. MS-ASL [33] is another widely employed ISLR dataset with 1000 unique
American sign language glosses. It contains recordings collected from YouTube platform
from 222 signers with a large variance in background settings, which makes this dataset
suitable for training complex methods with strong representation capabilities. Similarly,
WASL [34] is an ISLR dataset with 2000 unique American sign glosses performed by
119 signers. The videos have different background and illumination conditions, which
makes it a challenging ISLR benchmark dataset. On the other hand, AUTSL is a Turkish
sign language dataset captured under various indoor and outdoor backgrounds, while
LSA64 [35] is an Argentinian sign language dataset that includes 3200 videos, in which
10 non-expert subjects execute 5 repetitions of 64 different types of signs. LSA64 is a
small and relatively easy dataset, where SLR methods achieve outstanding recognition
performance. Finally, IsoGD [36] is a gesture recognition dataset that consists of 47,933
RGB-D videos performed by 21 different individuals and contains 249 gesture labels.
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Although IsoGD is a gesture recognition dataset, its large size and challenging illumination
and background conditions allows the training of highly accurate ISLR methods.

3.2.3. Discussion

A discussion about the aforementioned datasets can be made at this stage, while a
detailed overview of the dataset characteristics is provided on Table 1. It can be seen
that over time datasets become larger in size (i.e., number of samples) with more signers
involved in them, as well as contain high resolution videos captured under various and
challenging illumination and background conditions. Moreover, new datasets usually
include different modalities (i.e., RGB, depth and skeleton). Recording sign language
videos using many signers is very important, since each person performs signs with
different speed, body posture and face expression. Moreover, high resolution videos
capture more clearly small but important details, such as finger movements and face
expressions, which are crucial cues for sign language understanding. Datasets with videos
captured under different conditions enable deep networks to extract highly discriminative
features for sign language classification. As a result, methodologies trained in such datasets
can obtain greatly enhanced representation and generalization capabilities and achieve high
recognition performances. Furthermore, although RGB information is the predominant
modality used for sign language recognition, additional modalities, such as skeleton and
depth information, can provide complementary information to the RGB modality and
significantly improve the performance of SLR methods.

Table 1. Large-scale publicly available SLR datasets.

Datasets
Characteristics

Language Signers Classes Video Instances Resolution Type Modalities Year

Phoenix-2014 [27] German 9 1231 6841 210 × 260 CSLR RGB 2014
CSL [30,31] Chinese 50 178 25,000 1920 × 1080 CSLR RGB, depth 2016
Phoenix-2014-T [28] German 9 1231 8257 210 × 260 CSLR RGB 2018
GRSL [15] Greek 15 1500 4000 varying CSLR RGB, depth, skeleton 2020
BSL-1K [29] British 40 1064 273,000 varying CSLR RGB 2020
GSL [17] Greek 7 310 10,295 848 × 480 CSLR RGB, depth 2021

CSL-500 [30,31] Chinese 50 500 125,000 1920 × 1080 ISLR RGB, depth 2016
MS-ASL [33] American 222 1000 25,513 varying ISLR RGB 2019
WASL [34] American 119 2000 21,013 varying ISLR RGB 2020
AUTSL [16] Turkish 43 226 38,336 512 × 512 ISLR RGB, depth 2020
KArSL [37] Arabic 3 502 75,300 varying ISLR RGB, depth, skeleton 2021

4. Sign Language Recognition

Sign language recognition (SLR) is the task of recognizing sign language glosses from
video streams. It is a very important research area since it can bridge the communication
gap between hearing and Deaf people, facilitating the social inclusion of hearing-impaired
people. Moreover, sign language recognition can be classified into isolated and continuous
based on whether the video streams contain an isolated gloss or a gloss sequence that
corresponds to a sentence.

4.1. Continuous Sign Language Recognition

Continuous Sign Language Recognition aims at classifying signed videos to entire sen-
tences (i.e., ordered sequence of glosses). CSLR is a very challenging task as it requires the
recognition of glosses from video sequences without any knowledge of the sign boundaries
(i.e., lack of ground truth annotations regarding the start and end of glosses). Most works
adopt 2D or 3D-CNNs for feature extraction followed by temporal convolutional networks
or recurrent neural networks (RNNs) for sequential information modelling. To measure
CSLR performance, word error rate (WER) [38] is commonly adopted. WER measures the
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number of operations (i.e., substitutions, deletions and insertions) required to transform
the predicted sequence into the target sequence.

Cui et al. [39] adopted a 2D-CNN followed by temporal 1D convolutional layers for
feature extraction. The extracted spatio-temporal features were fed to a bidirectional long
short-term memory (BLSTM) network for modelling the context of the entire sequence.
The feature extractor was extended with a classifier and trained in a fully-supervised setting
on isolated glosses for video to gloss alignment, while the BLSTM was used for CSLR. This
two-step optimization process was conducted iteratively with Connectionist Temporal
Classification (CTC) [40] and Cross-Entropy losses, until the network converged. Besides,
the recognition model fused RGB with optical flow modalities and achieved a WER of
22.8% on the Phoenix-2014 dataset. Similarly, Koishybay et al. in [41], adopted a residual
2D-CNN with cascaded 1D convolutional layers for feature extraction, while for CSLR
experiments, BLSTM was utilized. Their method generated gloss-level alignments using
the Levenshtein distance in order to fine-tune the feature extractor. However, the authors
stated that during the early iterations the model predicted poor alignment proposals, which
hinders the training process and requires several iterations to converge. Cheng et al. in [42],
proposed a 2D fully convolutional network with a feature enhancement module that did
not require iterative training. Instead, it provided extra supervision and assisted the CSLR
network to learn better gloss alignments. Niu et al. in [43], proposed a 2D-CNN followed
by a Transformer network for CSLR. They used three stochastic methods to drop frames
of the input video, to randomly stop gradients of back-propagation and to model glosses
using hidden states, respectively, which led to better CSLR performance. Nevertheless,
the randomness ratio of these stochastic processes must be tuned carefully to achieve good
recognition rates. Generally, CSLR methods based on 2D-CNNs achieve great recognition
performance. More specifically, 2D-CNNs extract descriptive features from the frame
sequences, while the sequence modelling mechanisms align efficiently the input video and
the output predictions. However, they usually require complex training strategies, such as
iterative optimization techniques, to achieve strong feature extraction capabilities.

On the other hand, some works chose to incorporate attention mechanisms for CSLR.
Pan et al. in [44], used a key-frame sampling technique to extract the most descriptive
frames of the video. Then, a vector representation was constructed from the skeletal data
of the key-frames, which was fed to an attention-based BLSTM to model the temporal
information. Huang et al. [45] proposed an adaptive encoder-decoder architecture to
learn the temporal boundaries of the video. Furthermore, a hierarchical BLSTM with
attention over sliding windows was used on the decoder to weigh the importance of the
input frames. Li et al. in [46], used a pyramid structure of BLSTMs in order to find key
actions of the video representations, which were produced from the 2D-CNN. Moreover,
an attention-based LSTM was used to align the input and output sequences and the whole
network was trained jointly with Cross-Entropy and CTC losses.

Recently, the self-attention mechanism has been introduced in a variety of models,
such as the Transformer, and has also been adopted by CSLR methods. Slimane et al. in [47],
proposed two data streams with cropped hand images and full images. The two modalities
were passed through two 2D-CNNs to extract the spatial features. Then, the modalities
were synchronized by a self-attention module to obtain better contextual information and
generate efficient video representations for CSLR. Zhou et al. [48], adopted a fully-inception
architecture with 2D and 1D convolutional layers along with a self-attention to further
improve the feature extraction capabilities of the inception layers.

Reinforcement techniques have also been applied for CSLR, along with Transformer
networks. Zhang et al. in [49], adopted a 3D-CNN followed by a Transformer network
that was responsible for recognizing gloss sequences from input videos. Instead of training
the model with cross-entropy loss, they used the REINFORCE algorithm [50] to directly
optimize the model by using WER as the reward function of the agent (i.e., the feature
extractor). Wei et al. in [51], used a semantic boundary detection algorithm with reinforce-
ment learning to improve CSLR performance. A spatio-temporal feature extractor learned
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the video representations. Then, the detection algorithm used reinforcement learning to
detect gloss timestamps from video sequences and refine the final video representations.
The evaluation metric was used again as the reward function. The major limitation of this
method is the need for a careful selection of the pooling size, which defines the action
search space for the reinforcement learning agent.

Papastratis et al. [52] constructed a cross-modal approach in order to effectively model
intra-gloss dependencies by leveraging information from text. This method extracted
video features using a video encoder that consisted of a 2D-CNN followed by temporal
convolutions and a BLSTM, while text representations were obtained from an LSTM. Fi-
nally, these embeddings were aligned in a joint latent space. The improved representations
led to great CSLR performance, achieving WERs of 24.0% and 3.52% on Phoenix-2014
and GSL SI, respectively. Papastratis et al. in their latest work [53], employed a gener-
ative adversarial network to evaluate the predictions of the video encoder. In addition,
contextual information was incorporated to improve recognition performance on sign
language conversations.

Due to their efficient feature extraction capabilities, 3D-CNNs have also been adopted
by many researchers for CSLR. Wei et al. in [54], used a 3D residual CNN along with
a BLSTM, while they applied grammatical rules sign language. The text was split into
isolated words and n-grams, which are modelled using two classifiers. The two classifiers
aimed to recognize each word independently and based on the context in contrast to
CTC, which models the whole sequence. Pu et al. in [55], employed a 3D-CNN with
an LSTM decoder and a CTC decoder that were jointly aligned with a soft dynamic
time warping (soft-DTW) [56] alignment constraint. The network was trained recursively
with the proposed alignments from soft-DTW. The method achieved WERs of 6.1% and
32.7% on CSL Split 1 and CSL Split 2, respectively. Guo et al. in [57], developed a fully
convolutional approach with a 3D-CNN followed by 1D temporal convolutional layers.
The 1D CNN block had a hierarchical structure with small and large receptive fields to
capture short- and long-term correlations in the video, while the entire architecture was
trained with CTC loss. 3D-CNNs are computationally expensive methods that require pre-
training on large-scale datasets and cannot be tuned directly for CSLR. To this end, sliding
window techniques are adopted to create informative features. To tackle this problem,
some works incorporated pseudo-labelling, which is an optimization process that adds
predicted labels on the training set. Pei et al. in [58], trained a deep 3D-CNN with CTC
and generate clip-level pseudo-labels from the alignment of CTC to obtain better feature
representations. To improve the quality of pseudo-labels, Zhou et al. in [59], proposed a
dynamic decoding method instead of greedy decoding to find better alignment paths and
filter out the wrong pseudo-labels. Their method applied the I3D [60] network from the
action recognition field along with temporal convolutions and bidirectional gated recurrent
units (BGRU) [61]. Moreover, the proposed method achieved a WER of 34.5% on the
Phoenix-2014 dataset. However, pseudo-labelling required many iterations, while initial
labels affected the convergence of the optimization process.

In Table 2, several methods are compared on the test set of the most commonly adopted
datasets for continuous sign language recognition. From the experimental results it is
shown that multi-modal methods achieve the lowest WERs. More specifically, STMC [62]
has the best recognition rates on Phoenix-2014, CSL Split 1 and CSL Split 2 datasets using
RGB, hands and skeleton modalities, while SLRGAN [53], employing the RGB and text
modality, achieves superior performance on the GSL SI and GSL SD datasets.
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Table 2. Performance comparison of CSLR approaches categorized by dataset measured in WER (%).
The best performance for each dataset appears in bold.

Method Input Modality Dataset Test Set (WER)

PL [58] RGB

Phoenix-2014

40.6
RL [49] RGB 38.3
Align-iOpt [55] RGB 36.7
DenseTCN [57] RGB 36.5
DPD [59] RGB 34.5
CNN-1D-RNN [41] RGB 34.4
Fully-Inception Networks [48] RGB 31.3
SAN [47] RGB 29.7
SFD [43] RGB 25.3
CrossModal [52] RGB 24.0
Fully-Conv-Net [42] RGB 23.9
SLRGAN [53] RGB 23.4
CNN-TEMP-RNN [39] RGB+Optical flow 22.8
STMC [62] RGB+Hands+Skeleton 20.7

DenseTCN [57] RGB

CSL Split 1

14.3
Key-action [46] RGB 9.1
Align-iOpt [55] RGB 6.1
WIC-NGC [54] RGB 5.1
DPD [59] RGB 4.7
Fully-Conv-Net [42] RGB 3.0
CrossModal [52] RGB 2.4
SLRGAN [53] RGB 2.1
STMC [62] RGB+Hands+Skeleton 2.1

Key-action [46] RGB

CSL Split 2

49.1
DenseTCN [57] RGB 44.7
Align-iOpt [55] RGB 32.7
STMC [62] RGB+Hands+Skeleton 28.6

CrossModal [52] RGB GSL SI 3.52
SLRGAN [53] RGB 2.98

CrossModal [52] RGB GSL SD 41.98
SLRGAN [53] RGB 37.11

4.2. Isolated Sign Language Recognition

Isolated sign language recognition refers to the task of accurately detecting single sign
gestures from videos and thus it is usually tackled similar to action and gesture recognition,
as well as other types of video processing and classification tasks with the extraction and
learning of highly discriminative features [63–65]. In the literature, a common approach to
the task of isolated sign language recognition is the extraction of hand and mouth regions
from the video sequences in an attempt to remove noisy backgrounds that can inhibit
classification performance. Liao et al. in [66], proposed a video-based SLR method that was
based on hand region extraction and classification using 3D ResNet networks and BLSTM
layers. Similarly, Aly et al. in [67], developed an ISLR method that segmented hand regions
from images using DeepLabv3+ algorithm [68], extracted features from these regions using
a Convolutional Self-Organizing Map and classified the features using a deep recurrent
neural network consisting of 3 BLSTM layers. Gökçe et al. in [69], proposed 3D-CNN
networks for the processing of hand, upper body and face image regions and the fusion
of these streams in the score level to accurately classify isolated signs. The authors stated
that their method performs comparatively worse on mono-morphemic signs performed
with a single hand, rather than on temporally more complex signs with two-handed
gestures. On the other hand, Zhang et al. in [70], proposed the Multiple extraction and
Multiple prediction (MEMP) network that consists of alternating 3D-CNN networks and
Convolutional LSTM layers that extracted spatio-temporal features from video sequences
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multiple times, enabling the network to achieve 99.06% and 78.85% accuracy in the LSA64
and IsoGD datasets, respectively. Li et al. in [71], proposed a SLR method that was based
on the transferring of cross-domain knowledge of news signs to a base model and improve
its performance using domain-invariant features.

To further improve the accuracy and robustness of SLR methods, several researchers
proposed the extraction of other types of features, such as optical flow and skeletal joints
from visual cues. These multi-stream networks are more computationally expensive than
their single stream counterparts, but they have the advantage of overcoming confusing
cases regularly met when a single type of features is employed. Sarhan et al. in [72],
proposed a two-stream network architecture that received as input RGB and optical flow
data, extracted features using I3D networks and performed late fusion at the score level for
accurate sign language recognition. Rastgoo et al. in [73], proposed a multi-stream SLR
method that utilized as input hand image regions, hand heatmaps and 2D projections of
hand skeletal joints to images. These input data were processed using 3D-CNN networks,
concatenated and fed to LSTM layers for sign recognition. Konstantinidis et al. in [74],
proposed a SLR methodology that was based on the processing and late fusion of body and
hand skeletal features using LSTM layers. Apart from the raw joint coordinates, the authors
also utilized joint-line distances, which led to a significant improvement in the performance
of the method, reaching 98.09% accuracy in the LSA64 dataset. In a later work [75], the same
authors introduced additional streams that processed RGB video sequences and optical
flow data, enhancing even more the performance of their method, ultimately achieving
99.84% accuracy in the LSA64 dataset. Similarly, Papadimitriou et al. in [76], proposed
a multi-stream SLR method that processes hand and mouth regions, as well as optical
flow and skeletal features for the accurate classification of signs. These features were
concatenated and fed to a temporal deformable convolutional attention-based encoder-
decoder that predicts the sign class. Gündüz et al. in [77], employed a multi-stream
SLR approach that received as input RGB video sequences, optical flow sequences and
body and hand skeletal features and performed a late fusion to accurately classify Turkish
signs. Bilge et al. in [78], proposed a SLR method that can generalize well on unseen
signs. To achieve this, the authors employed two 3D-CNN networks followed by BLSTM
layers for the extraction of short-term and long-term feature representations from body
and hand video sequences. In addition, the authors employed a BERT model [79] for the
extraction of textual sign representations from text descriptions of how the signs were
performed. Finally, they used a bi-linear compatibility function to associate video and
text representations.

In an effort to derive more discriminative features, Rastgoo et al. in [63], proposed a
multi-stream SLR method that gets as input hand regions, 3D hand pose features and Extra
Spatial Hand Relation features (i.e., orientation and slope of hands). These features were
concatenated and fed to an LSTM layer to derive the sign class. In this way, the authors
managed to achieve a really high accuracy of 86.32% in the challenging IsoGD dataset.
Kumar et al. in [64], proposed Spatial 3D Relational Features for sign language recognition.
These features were computed from the area and perimeter of polygons formed by quadru-
ples of skeletal joints. Then, the class of a test sign was predicted by comparing the sign
with the training set using global alignment kernels. In another work [80], Kumar et al.
introduced two novel features for accurate sign language recognition that were named
colour-coded topographical descriptors. These descriptors were formed as images from
the computation of joint distances and angles. Finally, these descriptors were processed by
2D CNNs and merged to derive the class of the sign.

Recently, the advances in deep learning led several isolated SLR methods to leverage
attention mechanisms, transformer networks and graph convolutional networks. Attention
mechanisms in particular enable a deep network to pay more attention on features that are
important for a classification task and are widely employed by most state-of-the-art SLR
methods. Parelli et al. in [81], proposed a multi-stream SLR method that processes hand
and mouth image regions as well as 3D hand skeletal data. All streams were concatenated
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and fed to an attention CNN network that accurately predicts the class of the sign. Attention
LSTM, attention GRU and Transformer networks were also tested but they led to inferior
performance. De Amorim et al. in [82], proposed an American SLR method that extracts
skeletal data from video sequences and then processes them using a Spatio-Temporal
Graph Convolutional Network (GCN) [83]. Tunga et al. in [84], proposed a SLR method
that extracts skeletal features from video sequences and then employs a GCN network to
model spatial dependencies among the skeletal data, as well as a BERT model to model
temporal dependencies among the skeletal data. The two representations were finally
merged to derive the class of the sign. A limitation of this approach is that the model
cannot differentiate in-plane and out-of-plane movements due to the use of only 2D spatial
information. In a similar fashion, Meng et al. in [85], proposed a GCN with multi-scale
attention modules to process the extracted skeletal data and model their long-term spatial
and temporal dependencies. In this way, the authors achieved a really high accuracy of
97.36% in the CSL-500 dataset. GCNs are computationally lighter than the image processing
networks, but they often cannot extract highly enriched features, thus leading to inferior
performance, as noted in [82].

Finally, the wide adoption of RGB-D sensors for action and gesture recognition has
led several researchers to adopt them for multi-modal sign language recognition as well.
However, the performance of such multi-modal methodologies is currently limited by the
small number of large publicly available RGB-D datasets and the mediocre accuracy of
depth information. Tur et al. in [86], proposed a Siamese deep network for the concurrent
processing of RGB and depth sequences. The extracted features were then concatenated
and passed to an LSTM layer for isolated sign language recognition. Ravi et al. in [87],
proposed a multi-modal SLR method that was based on the processing of RGB, depth
and optical flow sequences. Each stream employed CNN layers to process the sequences
and then, all features were fused together and fed to a CNN model for classification.
Rastgoo et al. in [88], proposed a multi-modal SLR method that leverages RGB and depth
video sequences to achieve an accuracy of 86.1% in the IsoGD dataset. More specifically,
the authors extracted pixel-level, optical flow, deep hand and hand pose features for
each modality, concatenated these features across both modalities and classified them to
sign classes using an LSTM layer. The authors stated that there were signs with similar
appearance and motion features that led to misclassification errors and thus they proposed
the use of augmentation strategies, high capacity networks and more data samples.

Huang et al. in [89], proposed the use of RGB, depth and skeletal data as input to
attention-based 3D-CNNs and attention-based BLSTMs in order for the proposed SLR
method to pay attention to spatio-temporal dependencies in the input data and fuse the
input streams in an optimal way. Huang et al. in [90], proposed a sequence-to-sequence
approach that detects key frames to remove noisy information from video sequences.
Then, they extracted CNN features from these key frames, histogram-of-gradients (HOG)
features from depth motion maps and trajectory features from skeletal data. These features
were finally concatenated and fed to an encoder-decoder LSTM network that predicted
sub-words that form the signed word. Zhang et al. in [91], proposed a highly accurate
SLR method that initially selected pairs of aligned RGB-D images to reduce redundancy.
Then, the proposed method computed discriminative features from hand regions using a
spatial stream and extracted depth motion features using a temporal stream. Both streams
were finally fused by a convolutional fusion layer and the output feature vector was used
for classification. The authors reported that occlusions and the surface materials can
significantly affect the quality of depth images, degrading the performance of their model.
Common failure cases among most ISLR methodologies are the difficulty in differentiating
signs when performed differently by users and the inability to accurately classify signs
with similar hand shapes and positions. An overview of the performance of ISLR methods
on well-known datasets are presented in Table 3.
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Table 3. Performance of ISLR methods on well-known datasets. The best performance for each
dataset appears in bold.

Method Dataset Accuracy (%)

Konstantinidis et al. [74]

LSA64 [35]

98.09
Zhang et al. [70] 99.06
Konstantinidis et al. [75] 99.84
Gündüz et al. [77] 99.9

Huang et al. [89]
CSL-500 [31,32]

91.18
Zhang et al. [91] 96.7
Meng et al. [85] 97.36

Sarhan et al. [72]

IsoGD [36]

62.09
Zhang et al. [91] 63.78
Zhang et al. [70] 78.85
Rastgoo et al. [88] 86.1
Rastgoo et al. [63] 86.32

4.3. Sign Language Translation

Sign Language Translation is the task of translating videos with sign language into
spoken language by modeling not only the glosses but also the language structure and
grammar. It is an important research area that facilitates the communication between the
Deaf and other communities. Moreover, the SLT task is more challenging compared to
CSLR due to the additional linguistic rules and the representation of spoken languages.
SLT methods are usually evaluated using the bilingual evaluation understudy (BLEU)
metric [92]. BLEU is a translation quality score that evaluates the correspondence between
the predicted translation and the ground truth text. More specifically, BLEU-n measures the
n-gram overlap between the output and the reference sentences. BLEU-1,2,3,4 are reported
to provide a clear view of the actual translation performance of a method. Camgoz et al.
in [28], adopted an attention-based neural machine translation architecture for SLT. The en-
coder consisted of a 2D-CNN and an LSTM network, while the decoder consists of word
embeddings with an attention LSTM. The authors stated that the method is prone to errors
when spoken words are not explicitly signed in the video but inferred from the context.
Their method set the baseline performance on Phoenix-2014-T with a BLEU-4 score of 18.4.
Orbay et al. in [93], compared different gloss tokenization methods using either 2D-CNN,
3D-CNN, LSTM or Transformer networks. In addition, they investigated the importance
of using full frames compared to hand images as the first provide useful information
regarding the face and arms of the signer for SLT. On the other hand, Ko et al. in [94],
utilized human keypoints extracted from the video, which were then fed to a recurrent
encoder-decoder network for sign language translation. Furthermore, the skeletal features
were extracted with OpenPose and then normalized to improve the overall performance.
Then, they were fed to the encoder, while the translation was generated from the atten-
tion decoder. Differently, Zheng et al. in [95], used a preprocessing algorithm to remove
similar and redundant frames of the input video and increase the processing speed of
the neural network without losing information. Then, they employed an SLT architecture
that consisted of a 2D-CNN, temporal convolutional layers and bidirectional GRUs. Their
method was able to deal with long videos that have long-term dependencies, improving
the translation quality. Zhou et al. in [62], proposed a multi-modal framework for CSLR
and SLT tasks. The proposed method used 2D-CNN, 1D convolutional layers and several
BLSTMs and learned both spatial and temporal dependencies between different modalities.
The proposed method achieved a BLEU-4 score of 23.65 on the test set of Phoenix-2014-T.
However, due to the multi-modal cues, this method is very computationally heavy and
requires several hours of training.
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Recently, Transformer networks have also been employed for sign language trans-
lation due to their success in natural language processing tasks. Camgoz et al. in [96],
introduced a joint architecture for CSLR and SLT with a Transformer encoder-decoder net-
work. The network was trained with CTC and Cross-Entropy losses, while the gloss-level
supervision improved the SLT performance. The authors evaluated various configurations
of their method and stated that directly translating from video representations can improve
the translation quality. A limitation of this approach was in translating numbers as there
was no such context available during training. In their latest work, Camgoz et al. in [97],
adopted additional modalities and a cross-modal attention to synchronize the different
streams and model both inter- and intra-contextual information. Kim et al. in [98], used
a deep neural network for human keypoint extraction that were fed to a transformer
encoder-decoder network, while the keypoints were normalized based on the neck location.
A comparison of existing methods for SLT that are evaluated on the Phoenix-2014-T dataset,
is shown in Table 4. Overall, Transformer-based SLT methods achieve slightly better perfor-
mance than RNN-based methods, which indicates the importance of attention mechanism
for SLT. In addition, using multiple modalities can also improve the translation quality.

Table 4. Reported results on sign language translation on Phoenix-2014-T. The best performance appears in bold.

Method
Validation Set Test Set

BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Sign2Gloss2Text [28] 42.88 30.30 23.02 18.40 43.29 30.39 22.82 18.13
MCT [97] - - - 19.51 - - 18.51
S2(G+T)-Transformer [96] 47.26 34.40 27.05 22.38 46.61 33.73 26.19 21.32
STMC-T [62] 47.60 36.43 29.18 24.09 46.98 36.09 28.70 23.65

5. Sign Language Representation

The automatic and realistic sign language representation is vital for each sign language
system. The representation of a sentence in sign language instead of a plain text can make
the system friendlier and more accessible to the members of the deaf community. Signs are
commonly represented using avatars or synthesized videos of a real human. The challenges
of this task include the difficulty in creating realistic representations due to complex hand
shapes and rapid arm movements.

5.1. Realistic Avatars

A common approach to sign language representation is the use of 3D avatars that with
a high degree of accuracy and realism can reproduce facial expressions and body/hand
movements in a way that represent signs understandable by deaf or hearing-impaired
people. Balayn et al. in [99], developed a virtual communication agent for sign language
to recognize Japanese sign language sentences from video recordings and synthesize sign
language animations. Their system adopted a deep LSTM encoder-decoder network to
translate sign language videos to spoken text, while a separate encoder-decoder network
used as input the sign language glosses and extracted specific encodings, which were then
used to synthesize the avatar motion. However, the network employed for the generation
task does not have enough parameters to learn complete sentence expressions, lacking
an attention module that could assist in learning longer-term dependencies. Shaikh et al.
in [100], employed a system to generate sign animations from audio announcements in
railway stations. At first, language rules and grammar was applied in the input text to
transform it into a specific format. Then, inverse kinematics were applied to calculate
the avatar target positions for each word and render the final video representation. Mel-
chor et al. in [101], used a speech recognition system that translates Mexican spoken text
into sign language. Then, the signs were represented through an avatar that was digitally
animated on a mobile device. Uchida et al. in [102], developed an application to automati-
cally produce sign language animations for sports games and was able to operate on live
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game broadcasts. A disadvantage of the application is that the delay time between the
video occurrence and the video display is large.

Das et al. in [103], developed a 3D avatar to convert Indian text or speech into sign
language. The input was translated to English and then to the corresponding Indian sign
language using Natural Language Processing (NLP) rules and techniques. The final avatar
movements were generated using a predefined sign vocabulary and Blender. A limitation
of the system is that it was developed for a limited corpus and that the avatar had no
facial expressions. Mehta et al. in [104], introduced a system in order to translate online
videos into Indian Sign Language (ISL) and produce sign animations with a 3D cartoon-like
avatar. The audio from the videos was captioned using NLP algorithms and mapped to
signs that were finally rendered with the avatar. Nevertheless, due to the limited resources
available for ISL, the performance of the system may degrade when dealing with complex
grammatical structures and interactions. Patel et al. in [105], developed an application
for animation generation. The input speech was recognised and translated with Google
Cloud Speech Recognizer. Then, the translated text was converted to Hamburg notation
system (HamNoSys) [106] and sign gesture markup language (SigML) [107] notations to
effectively generate animations. Kumar et al. in [108,109] developed a mobile application
to translate English text into ISL. HamNoSys was used for sign representation, SigML for
its conversion to an XML file, and an avatar was employed to generate signs. A weakness
of the developed system is that it struggles to represent complex animation and facial
expressions of ISL signs. Moreover, the proposed system does not index the signs based on
its context and this can cause confusion on directional signs that require different handling
based on the context. Brock et al. in [110], adopted deep recurrent neural networks to
generate 3D skeleton data from sign language videos. Subsequently, inverse kinematics
were applied to calculate joints angles and positions that were mapped to a sign language
avatar for animation synthesis.

5.2. Sign Language Production

Sign language production (SLP) has gained a lot of attention lately due to the huge
advances in deep learning that allows the production of realistic signed videos. Sign
language production techniques aim to replace the rigid body and facial features of an
avatar with the natural features of a real human. To this end, these techniques usually
receive as input sign language glosses and a reference image of a human and synthesize a
signed video with the human performing signs in a more realistic way than the one that
could have been achieved by an avatar.

Stoll et al. in [111], proposed an SLP method using a machine translation encoder-
decoder network to translate spoken language into gloss sequences. Then, each gloss was
assigned to a unique 2D skeleton pose, which were extracted from sign videos, normalized
and aligned. Finally, a pose-guided generative adversarial network handled the skeleton
pose sequence and a reference image to generate the gloss video. However, this methods
fails to generate precise videos when the hand keypoints are not detected by the pose
estimation method or the timing of the glosses is not predicted correctly. In their latest
work, Stoll et al. in [112], used an improved architecture with additional components.
The NMT network directly transforms spoken text to pose sequences, while a motion graph
was adopted to generate 2D smooth skeletal poses. An improved generative adversarial
network (GAN) was used in order to produce videos with higher resolution. The motion
graph and the GAN modules improved significantly the quality of the generated videos.
Stoll et al. in [113], adopted an auto-regressive gloss-to-pose network that can generate
skeleton poses and velocities for each sign language gloss. In addition, a pose-to-video
network generated the output video using a 2D-CNN along with a GAN. This approach
resulted in smooth transitions between glosses and refined details on hand and finger
shapes. Saunders et al. in [114], employed Transformers to automatically generate 3D
human poses from spoken text using a multiple-level configuration. A text-to-gloss-to-pose
(T2G2P) network with Transformer layers translated text sentences to sign language glosses
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and finally to 3D poses, while a text-to-pose (T2P) network directly transformed text into
human poses. Furthermore, a progressive Transformer decoder was used to generate con-
tinuous and smooth human poses one frame at a time. Furthermore, the method achieved
superior performance compared to NMT-based and GAN-based methods. Xiao et al.
in [115] developed a bidirectional system for SLR and SLP. A deep RNN was used to jointly
recognize sign language from input skeleton poses and generated skeleton sequences that
were responsible to move an avatar or generate a signed video. The generated sequences
were also used for SLR and improved the robustness of the system.

Cui et al. in [116], used a pose predictor network, which contains an LSTM and an
autoencoder to generate the future human poses given a reference pose and the gloss label.
Moreover, an image synthesis module accepted as input the current frame and the next
pose to predict the next frame of the video using a U-Net based architecture with a CNN
and an LSTM. Furthermore, it extracted regions of interest to improve details, such as the
hands, which were crucial for generating high-quality sign language videos. This approach
was able to synthesize realistic signs with naturally evolving hand shapes.

6. Applications

The advances in sign language capturing, recognition and representation have led to
the development of several related applications. Each application can be compatible either
with desktop computers or with android and iOS smartphones, as it is illustrated in Table 5.
The majority of the methods use one or two CNN models integrated to their applications.
The use of lightweight CNN models ensures the real-time performance of the applications.

Table 5. Characteristics of sign language applications

Method Operating System Sign Language Scenario

Liang et al. [117] Windows desktop British Dementia screening
Zhou et al. [118] iOS Hong Kong Translation
Ozarkar et al. [119] Android Indian Translation
Joy et al. [120] Android Indian Learning
Paudyal et al. [121] Android American Learning
Luccio et al. [122] Android Multiple Learning
Chaikaew et al. [123] Android, iOS Thai Learning
Ku et al. [124] - American Translation
Potamianos et al. [125] - Greek Learning
Lee et al. [126] - Korean Translation
Schioppo et al. [127] - American Learning
Bansal et al. [128] - American Learning
Quandt et al. [129] - American Learning

Liang et al. in [117], introduced an automatic toolkit to recognize early stages of
dementia among British Sign Language (BSL) users. Hand trajectory data, facial data and
elbow distribution data were employed for feature extraction. The data were extracted
using OpenPose and the dlib libraries. The final decision, whether the user was healthy or
not, was taken by a CNN model. Zhou et al. in [118], created a Hong Kong sign language
recognition platform, consisting of a mobile application and a Jetson Nano [130]. The mobile
application was the front-end of the platform that preprocesses the sign language video.
After the preprocessing, the video was transferred to the Jetson Nano that translates
the video into spoken language, using a pre-trained deep learning model. Moreover,
the authors created a Hong Kong sign language dataset for the purposes of the study.
However, the method provides only word-level translation and predicts a relatively small
vocabulary size. Furthermore, Ku et al. in [124], employed the 2d camera of the smartphone
to record the signer. Hand skeleton information was extracted by OpenPose and a CNN
model identified the meaning of the sign. The user could also choose to translate a pre-
recorded video. However, very few gestures are recognised (three) and only finger positions
are employed for feature extraction and not the entire hand. Moreover, the application
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does not run in real-time. On the other hand, Ozarkar et al. in [119], implemented a
smartphone application consisting of three modules. The sound classification module
detected and classified input sounds and alerted the user through vibrations. The gesture
recognition module recognized the input Indian sign language video and converted it to
natural language. In addition, the Multilingual Translation Module could either convert
text to speech in different Indian regional languages or convert speech to text. Some
limitations of the method are the performance degradation when more than one people
appear in front of the camera, as well as the sensitivity of the sound classification module
in noisy environments. Finally, Lee et al. in [126], described multiple technologies that
could be integrated to a smartphone and ease the communication between speaking and
hearing-impaired people. These technologies were: Text-To-Speech (TTS), Speech-To-Text
(STT), Augmentative and Alternative Communication (AAC) and motion recognition.

Numerous educational oriented applications employing SLR have been also devel-
oped. These applications aim to help someone to learn or practice SL. Potamianos et al.
in [125], presented a summary of the SL-ReDu project. The goal of the project was to
teach the Greek sign language as a second language through recognition. The educational
process was supported by self-monitoring and objective learning of the learners. Further-
more, a deep learning-based approach for isolated sign recognition of GSL was introduced.
On the other hand, Joy et al. in [120], proposed a mobile application that could be used as
a visual dictionary for children. It consisted of two modules: an object detection module
and a word recognition module. The former enabled the user to select an object and the
application displayed the corresponding sign. The latter took as input a picture of a text
and it demonstrated the corresponding sign. However, the word recognition module is
limited to translate a maximum number of 950 characters from a text. In addition, there are
delays in loading sign animation videos due to the limited number of videos that can be
stored on the mobile device. Moreover, Paudyal et al. in [121], designed a smartphone
application that provides feedback to a sign language learner based on location, movement,
orientation and hand-shape of his signs. A dataset was also created from 100 learners,
for 25 American Sign Language (ASL) signs. However, the system does not perform con-
tinuous SLR. Schioppo et al. in [127], created a virtual environment for learning sign
language, employing a virtual reality headset. A Leap Motion sensor was attached to the
headset. The system was evaluated on the 26 letters of the alphabet in ASL. Luccio et al.
in [122], employed an Elf Sandbot robot [131] to help people with hearing impairments
to learn sign language. Two smartphone and tablet applications were also developed,
with the first one controlling the movement of the robot and the second one taking a verbal
or textual input of a word or sentence, translating it to sign language and demonstrating
the corresponding video. Furthermore, Chaikaew et al. in [123], introduced an application
that could help the communication of hearing-impaired people who want to learn the Thai
sign language. The learners were able to choose the preferred vocabulary and practice
with animation. Bansal et al. in [128], designed a game aiming to help Deaf children that
lack continuous access to sign language, using only a high resolution camera and pose
estimation software. The learner was asked to describe a scene and if the description was
correct, he/she advanced to the next scene. Moreover, a dataset with RGB and depth
features was created from adults with little experience with ASL. Nevertheless, the dataset
consists of very few data to effectively train a deep learning model. Finally, Quandt et al.
in [129], designed an avatar who served as the teacher of a virtual environment in order
to teach introductory ASL to a novice signer. The users could also see a digital represen-
tation of their hands due to the usage of LEAP Motion. However, the system could not
capture signs that involved touching a specific part of the body or signs that involved body
part occlusion.

7. Conclusions and Future Directions

In this paper, the broad spectrum of AI technologies in the field of sign language is
covered. Starting from sign language capturing methods for the collection of sign language
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data and moving on to sign language recognition and representation techniques for the
identification and translation of sign language, this review highlights all important tech-
nologies for the construction of a complete AI-based sign language system. Additionally,
it explores the in-between relations among the AI technologies and presents their advan-
tages and challenges. Finally, it presents groundbreaking sign language applications that
facilitate the communication between hearing-impaired and speaking people, as well as
enable the social inclusion of hearing-impaired people in their everyday life. The aim of
this review is to familiarize researchers with sign language technologies and assist them
towards developing better approaches.

In the field of sign language capturing, it is essential to select an optimal sensor for
capturing signs for a task that highly depends on various constraints (e.g., cost, speed,
accuracy, etc.). For instance, wearable sensors (i.e., gloves) are expensive and capture only
hand joints and arm movements, while in recognition applications, the user is required
to use gloves. On the other hand, camera sensors, such as web or smartphone cameras,
are inexpensive and capture the most substantial information, like the face and the body
posture, which are crucial for sign language.

Concerning CSLR approaches, most of the existing works adopt 2D CNNs with
temporal convolutional networks or recurrent neural networks that use video as input.
In general, 2D methods have lower training complexity compared to 3D architectures and
produce better CSLR performance. Moreover, it is experimentally shown that multi-modal
architectures that utilize optical flow or human pose information, achieve slightly higher
recognition rates than unimodal methods. In addition, CSLR performance on datasets with
large vocabularies of more than 1000 words, such as Phoenix-2014, or datasets with unseen
words on the test sets, such as CSL Split 2 and GSL SD, is far from perfect. Furthermore,
ISLR methods have been extensively explored and have achieved high recognition rates on
large-scale datasets. However, they are not suitable for real-life applications since they are
trained to detect and classify isolated signs on pre-segmented videos.

Sign language translation methods have shown promising results although they are
not exhaustively explored. The majority of the SLT methods adopt architectures from the
field of neural machine translation and video captioning. These approaches are of great
importance, since they translate sign language into spoken counterparts and can be used
to facilitate the communication between the Deaf community and other groups. To this
end, this research field requires additional attention from the research community.

Sign language representation approaches adopt either 3D avatars or video generation
architectures. 3D animations require manual design of the movement and the position
of each joint of the avatar, which is very time-consuming. In addition, it is extremely
difficult to generate smooth and realistic animations of the fine grained movements that
compose a sign, without the use of sophisticated motion capturing systems/technologies
that employ multiple cameras and specialised wearable sensors. On the other hand, recent
deep learning methods for sign language production have shown promising results at
synthesizing sign language videos automatically. Besides, they can generate realistic videos
using a reference image or video from a human, which are also preferable from the Deaf
community instead of avatars.

Regarding the sign language applications, they are mostly developed to be integrated
in a smartphone operating system and perform SL translation or recognition. A discrete
category is the educational oriented applications, which are very useful for anyone with
little or no knowledge of sign language. In order to create better and more easily accessi-
ble applications, the research should focus on the development of more robust and less
computational expensive AI models, along with the further improvement of the existing
software for integration of the AI models into smart devices.

Figure 3 is designed to provide objective and subjective comparisons of AI tech-
nologies and DNN architectures for sign language as seen from the perspective and the
experience of the authors in the field. More specifically, Figure 3a presents and compares
the characteristics of the different AI technologies for sign language. Volume of works is
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used to measure the number of published papers for each sign language technology and it
is calculated based on the results of the query search in the databases. Challenges is used to
subjectively measure the difficulty in accurately dealing with each sign language technol-
ogy and it is based on the performance of the methods on the specific area. Finally, future
potential is used to express the view of the authors on which sign language technology has
the most potential to deliver future research works.

Figure 3. Radar charts showcasing the findings of this survey regarding (a) the literature methods
for CSLR, ISLR and SLP and (b) the characteristics of each AI sign language technology.

From the chart in Figure 3a, it can be seen that most existing works deal with sign
language recognition, while sign language capturing and translation methods are still not
thoroughly explored. It is strongly believed that these research areas should be explored
more in future works. Furthermore, it is assumed that there is still great room for im-
provement for applications, especially mobile ones, that can assist the Deaf community.
Regarding future directions, improvements can still be achieved in the accuracy of sign
language recognition and production systems. In addition, advances should be made in
the extraction of robust skeletal features, especially in the presence of occlusions, as well
as in the realism of avatars. Finally, it is crucial to develop fast and robust sign language
applications that can be integrated in the everyday life of hearing-impaired people and
facilitate their communication with other people and services.

On the other hand, Figure 3b draws a comparison between various DNN architectures
in terms of the performance of the proposed networks (Accuracy), hardware requirements
for inference and training of the proposed networks (Hardware requirements), scope for
improvement based on the performance gains and the volume of works (Future poten-
tial), computational complexity during training (Training complexity) and the number of
recorded datasets that are currently available (Existing datasets). Except for the existing
datasets, whose values are based on a search for publicly available datasets, all other metrics
presented in the chart of Figure 3b are calculated based on the study of the review papers
and the opinions and experience of the authors. As it can be observed, ISLR methods have
high accuracy with small hardware requirements but such methods have been extensively
explored resulting in limited future potential. On the other hand, CSLR and SLP methods
have high hardware and training requirements, as well as demonstrate significant future
potential as there is still great room for improvements in future research works.
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