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ABSTRACT

Sensorimotor learning, namely the process of understanding the
physical world by combining visual and motor information, has
been recently investigated, achieving promising results for the task
of 2D/3D object recognition. Following the recent trend in com-
puter vision, powerful deep neural networks (NNs) have been used
to model the “sensory” and “motor” information, namely the object
appearance and affordance. However, the existing implementations
cannot efficiently address the spatio-temporal nature of the human-
object interaction. Inspired by recent work on attention-based
learning, this paper introduces an attention-enhanced NN-based
model that learns to selectively focus on parts of the physical in-
teraction where the object appearance is corrupted by occlusions
and deformations. The model’s attention mechanism relies on the
confidence of classifying an object based solely on its appearance.
Three metrics are used to measure the latter, namely the prediction
entropy, the average N-best likelihood difference, and the N-best
likelihood dispersion. Evaluation of the attention-enhanced model
on the SOR3D dataset reports 33% and 26% relative improvement
over the appearance-only and the spatio-temporal fusion baseline
models, respectively.

Index Terms— Sensorimotor object recognition, attention
mechanism, stream fusion, deep neural networks

1. INTRODUCTION

During the last decades significant research effort has focused on
the field of 2D/3D object recognition. Though this task is crucial
in a variety of fields, such as automation, security, and robotics, it
remains an open challenge in real-world scenarios. In particular,
the existing illumination variation, occlusions, and deformations are
problems that cannot be addressed by the sole use of static object
appearance features, such as shape, texture, and color [1, 2, 3].

On the other hand, recent studies in computer vision have
adopted a more human-inspired approach, the so-called “sensorimo-
tor learning” [4, 5, 6, 7]. Cognitive neuroscience argues that human
object perception is based on fusing the object appearance with its
affordance [8, 9], namely its functionalities or more specifically
the set of actions that a human can perform with the object. Thus,
recognizing a mug not only based on its appearance attributes such
as the cylindrical shape and the hole on the top, but also based on
its “graspable” and “pourable” affordances appears to be more rea-
sonable [10]. In fact, humans in the early stages of their life do not
rely on semantic labels for object understanding, but perform active
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exploration and physical interactions with the real-world objects or
learn from observing others interacting with them [11, 12].

Aided by advances in learning feature representations with con-
volutional (CNNs) and recurrent neural networks (RNNs) [13, 14],
sensorimotor object recognition has significantly evolved over the
past decade. In fact, using NN-based models, the human-inspired
two-stream information processing approach [15, 16] can be mod-
eled more efficiently. In particular, in our recent work [6], we in-
vestigated various two-stream fusion architectures to improve object
recognition and achieved promising results. Besides sensorimotor
learning, multi-stream fusion has been widely investigated in a vari-
ety of tasks, such as action recognition [17, 18], audio-visual speech
recognition [19, 20], and voice activity detection [21]. Additionally,
spatial and temporal attention mechanisms have been integrated to
multi-stream architectures, aiming at learning the most discrimina-
tive features of each input modality, leading to significant perfor-
mance improvement over plain fusion. For example, in [22] the pro-
posed temporal attention mechanism fuses visual with motion fea-
tures by attending to the most informative frames of the video in
order to generate a description, while in [23] cross-link attentional
layers are developed between the temporal and spatial streams in or-
der to enhance the human foreground area for video-based action
recognition.

In this paper, we investigate the integration of an attention mech-
anism within the sensorimotor object recognition framework. The
spatio-temporal late fusion model of [6] is adopted, and the atten-
tion mechanism is integrated in the object appearance stream, prior
to fusion. We argue that the object appearance features are the most
informative for object recognition, while the affordance information
should be attended when the appearance one is failing. The pre-
diction entropy, the average N-best likelihood difference, and the
N-best likelihood dispersion metrics are evaluated for the appear-
ance classifier’s confidence measurement. The proposed attention-
enhanced model is experimentally shown to perform better than both
appearance-only and the spatio-temporal baselines.

The remainder of the paper is organized as follows: Section
2 presents the sensorimotor object recognition task addressed in
this paper and reviews our baseline models introduced in [6], Sec-
tion 3 details the proposed attention mechanism and its integration
within the recognition framework, while Section 4 presents our
experiments. Finally, Section 5 summarizes the paper.

2. TASK DESCRIPTION AND BASELINE APPROACH

In this section, the object recognition problem based on hand-object
interaction input is discussed. Notice that all models presented in
the study utilize RGB-D sequences of the SOR3D dataset [6] cap-
tured by Kinect sensors (more details are provided in Section 4). A



Fig. 1: Example video session “squeeze sponge” from SOR3D [6], sampled every 4 frames. The object appearance and the corresponding
affordance information are presented as RGB frames.

sub-sampled sequence of the available data is depicted in Fig. 1.
There are two available streams of information: a) the appearance
stream, which encodes the appearance features of the object, and b)
the affordance stream, which encodes the motion features during an
interaction.

2.1. Single-stream Modeling

As single-stream baseline approach for the object recognition task,
a CNN is used to train a classifier that recognizes objects based
solely on their appearance features. Additionally, a baseline model
for affordance representation learning is defined, which consists of a
CNN for feature extraction, followed by a Long-Short Term Mem-
ory (LSTM) [24]. This model exploits the capabilities of the CNN
to model the spatial correlations of the input, while subsequently
takes advantage of the LSTM for efficiently encoding the temporal
dynamics of the interaction. Further details for the CNN structure
and the information flow for each model are presented in Section 4.

2.2. Two-stream Fusion

As already noted, fusing multiple streams of information leads to
more discriminative feature representations, therefore to more con-
fident predictions. In this context and given the demonstrated ef-
fectiveness of the sensorimotor approach, a model that fuses the
appearance with the affordance information is investigated. There
are several approaches to fuse the aforementioned streams, however
in this work the best performing spatio-temporal model from [6] is
adopted. In detail, the features of the last fully connected (FC) layer
x1×F
t of the appearance CNN and the hidden state vector h1×M

t (M
LSTM hidden units) of the last layer of the affordance CNN-LSTM
are concatenated for each frame t = 1, . . . , T , and are processed by
a Multilayer Perceptron (MLP). The MLP consists of 2 FC layers
and is followed by a Softmax layer. The adopted late fusion model
is depicted in Fig. 2 (excluding the green box) and serves as the
spatio-temporal (ST) baseline.

Though the latter model performs better than the appearance-
only CNN in the object recognition task, we argue that the affor-
dance information is truly informative when the actual interaction
takes place. As shown in Fig. 1, the object can be easily identified at
the first and the last frames of the video based solely on its appear-
ance features. On the contrary, at the middle of the video, it is hard
to predict the object label with confidence, mainly due to occlusions
and deformation. Thus, the affordance features are mostly needed

as additional information during the interaction, namely when the
prediction based on the appearance features is not so confident. To
support this hypothesis, an attention mechanism that operates before
the stream fusion is proposed.

3. ATTENTION MECHANISM

The proposed attention mechanism is based on the appearance
stream confidence. As depicted in Fig. 2 (green box), a Softmax
layer is added after the last FC layer of the appearance CNN, which
predicts the label of the object for each frame. The new layer is
followed by a module that measures the appearance-based classifier
confidence for the entire frame sequence. The output of the latter is
used to selectively attend to the affordance features extracted by the
affordance CNN-LSTM stream, prior to the fusion MLP.

In order to measure the appearance classifier confidence, we in-
vestigate three different metrics. Let ct,n, n = 1, . . . , N be the
rankedN−best object class predictions of the appearance CNN clas-
sifier, C the number of the object classes, and pt,n = Pr(ct,n|xt)
the probability distribution after the Softmax given the appearance
feature vector xt at frame t. As the first metric, the entropy It,E is
computed for the probability distribution as:

It,E = −
C∑

n=1

pt,n log (pt,n). (1)

Clearly, It,E values that are close to zero indicate strong confidence,
while larger values indicate difficulty in discrimination. The second
investigated metric is the average N−best log-likelihood difference,
computed as:

It,A =
1

N − 1

N∑
n=2

(log (pt,1)− log (pt,n)), (2)

where N ≥ 2. In contrast to the entropy metric, larger values of
It,A indicate high-confidence predictions. The last metric measures
the log-likelihood dispersion among the N−best class predictions,
and is given by:

It,D =
2

N(N − 1)

N−1∑
n=1

N∑
m=n+1

(log (pt,n)− log (pt,m)), (3)

where N ≥ 2. Similarly to (2), larger It,D values indicate high
classification confidence. It must be noted that the presented metrics



Fig. 2: Detailed architecture of the proposed spatio-temporal late fusion model. The green box includes the attention mechanism modules
attached to the final FC layer of the appearance CNN (top), which selectively attends to the affordance CNN-LSTM output (bottom). The
feature fusion MLP follows (right-most), while �, �, and ⊕ represent normalization, frame-level multiplication, and concatenation.

have been also used in the context of audio-visual speech recogni-
tion [25, 26]. Following the appearance classifier confidence mea-
surement, the It values of all frames are normalized to [0, 1] by:

wt =
It − Imin

Imax − Imin
, (4)

where Imin, Imax are calculated over the entire frame sequence,
and w ∈ [0, 1] is the video confidence vector. The last step of the
mechanism is given by:

Ĥ =

{
w �H if (1)
(1− w)�H if (2) or (3)

where � indicates the frame-level multiplication of confidence val-
ues with the LSTM output matrix HT×M . Notice that by multiply-
ing wt with the corresponding ht, the mechanism alters the impact
of the affordance information on the final prediction, since ĤT×M

is fused with the appearance features as:

p̂t = softmax(φ(concat(xt, ĥt))), (5)

where xt ∈ XT×F denotes the appearance feature vector, φ is the
fusion MLP followed by a Softmax function, and p̂t is the probabil-
ity distribution of the attention-based ST (AST) model (Fig. 2) for
the t−th frame.

Regarding the final prediction, two approaches are investigated.
Both aggregate the frame-level prediction of the AST model to yield
a video-level decision for the object label. Given a series of frame-
level predictions p̂1,c, . . . , p̂t,c, . . . , p̂T,c from (5), the video-level
classification decision y is given either by:

yavg = argmax
c

1

T

T∑
t=1

p̂t,c, (6)

as the averaging (AVG) approach, or by:

yw = argmax
c

1

T

T∑
t=1

t p̂t,c, (7)

as the weighting (W) approach, respectively. Clearly, the latter
forces the model to focus more on the frame-level predictions over
the last frames of the video, while the former treats all frame-level
predictions equally.

4. DATASET AND EXPERIMENTS

As noted in Section 2, the presented models are trained and evaluated
using the SOR3D dataset [6]. SOR3D is the broadest and most chal-
lenging public dataset in the sensorimotor object recognition litera-
ture. It consists of 20,830 RGB-D instances of various length, that
include 14 object types and 13 affordance ones. The instances are
provided as sequences of RGB and depthmap frames with 300×300
pixel resolution, depicting the segmented object and the correspond-
ing hand, as shown in Fig. 1. We use the same training, validation
and test set as in [6].

For the presented experiments, the colorized depth maps of the
object appearance (CDM-AP) were used as input to the appearance
CNN, while for the affordance CNN-LSTM both colorized depth
maps of the hand (CDM-AF) and the corresponding colorized mag-
nitude of the computed 3D optical flow [27] (3DFM-AF) were used,
respectively. Notice that the depth map colorization enables the fine-
tuning of pre-trained deep neural networks, and it is considered a
common practice [28].

Regarding the CNNs included in the models, the widely-known
VGG-16 [29] was used. For the ST and the AST models, the appear-
ance features were extracted from the last FC layer of the appearance
VGG, while the spatial affordance features that were propagated to
the LSTM were extracted from the last FC layer of the affordance
VGG. All VGGs were pre-trained on ImageNet [30], and the uti-
lized LSTM consisted of 4096 hidden units.

For the experiments, each input frame was randomly cropped to
a 224 × 224 resolution. The negative log-likelihood criterion was
selected during training, whereas for back-propagation, Stochastic
Gradient Descent (SGD) with momentum was used. Regarding the



Model Input Stream(s) Test Acc. (%)
Appearance-only [6] CDM-AP 85.12
STAV G [6] CDM-AP, CDM-AF 86.50
STAV G CDM-AP, 3DFM-AF 86.38
STW CDM-AP, CDM-AF 86.87
STW CDM-AP, 3DFM-AF 86.72
ASTAV G CDM-AP, CDM-AF 89.27
ASTAV G CDM-AP, 3DFM-AF 89.41
ASTW CDM-AP, CDM-AF 89.84
ASTW CDM-AP, 3DFM-AF 90.02

Table 1: Comparative evaluation of the appearance-only, ST, and
AST (N−best log-likelihood dispersion metric, N = 3) models.
The second column presents the input streams used for each exper-
iment. The first two lines correspond to the baseline models of this
study (from [6]).

Confidence Metric Test Acc. (%)
Entropy 88.75
N−best difference 89.12
N−best dispersion 89.27

Table 2: Comparative evaluation of the ASTAV G model using: a)
the entropy, b) the average N−best log-likelihood difference (N =
3), and c) the N−best log-likelihood dispersion (N = 3). The
model is evaluated using CDM-AP and CDM-AF as input streams.

baseline approach, the appearance VGG was fine-tuned with a learn-
ing rate (LR) set to 5× 103 for 30 epochs. For the ST and the AST
approaches, the latter is used for feature extraction and confidence
measurement. Subsequently, the pre-trained affordance VGG, the
LSTM, and the fusion MLP were jointly fine-tuned on SOR3D, with
LR set to 1×102 for 90 epochs. The LR was decreased by a factor of
2 × 102 when the validation accuracy curve plateaued. The models
were implemented using the Torch71 framework and a Nvidia Titan
X GPU.

Table 1 reports the performance of the baseline appearance-only
CNN and the baseline ST model using CDM-AP and CDM-AF in-
puts as presented in [6]. In order to compare the AST performance
with the aforementioned baselines, the best metric for the attention
mechanism must be determined. The performance of the AST model
for the metrics presented in Section 3 is given in Table 2. For a fair
comparison, CDM-AP and CDM-AF are used as inputs to the ap-
pearance and affordance streams, while the final prediction is based
on frame-level prediction averaging. It can be observed that the at-
tention mechanism based on the N−best log-likelihood dispersion
metric (N = 3) yields the best overall accuracy (89.27%). In fact,
the AST model outperforms both the appearance-only CNN and the
ST model using any of the presented confidence metrics. Thus, in
the remaining experiments, the AST model with the N−best log-
likelihood dispersion metric is adopted.

Table 1 also reports the overall accuracy achieved by the ST and
AST models for different input modalities and frame-level prediction
aggregation. From the presented results, it can be observed that the
weighting frame-level prediction approach leads to superior perfor-
mance over the averaging one, for all ST and AST evaluated models.
Additionally, the AST models outperform the ST ones for any input
combination, supporting our hypothesis that the affordance features
are most informative during the hand-object interaction, hence when
the object appearance is cluttered. Notice that even though 3D opti-

1http://torch.ch/

Fig. 3: Object recognition confusion matrices of the best perform-
ing: a) STW (top), and b) ASTW (bottom) model, respectively.

cal flow is more informative than depth when representing motion,
the ST model fails to exploit its capabilities. On the contrary, the
AST model that uses 3DFM-AF instead of CDM-AF as affordance
input, achieves marginally better overall accuracy. One plausible
reason is that the 3DFM of the hand movement, prior to and after
the interaction, may not contain significant affordance information,
thus its impact to the final prediction should be small for the cor-
responding frames. The ASTW model with CDM-AP and 3DFM
inputs constitutes the best performing scheme, achieving 90.02%
accuracy. In fact, it outperforms the appearance-only and the ST
baseline models by 4.9% and 3.52% absolute, while also achieving
an absolute increase of 3.15% in the overall accuracy, compared to
the best performing ST one. This corresponds to 33%, 26%, and
25% relative classification error reduction, respectively. The object
recognition confusion matrices of the best performing ST and AST
models are depicted in Fig. 3. It can be seen that the proposed at-
tention mechanism boosts the performance of all evaluated object
types, favoring the most deformable ones (e.g. “box”, “brush”, and
“sponge”).

5. CONCLUSION

In this paper, the problem of attention-enhanced sensorimotor object
recognition was investigated. An attention mechanism that selec-
tively attends to the affordance information, when the appearance
features are not discriminative enough, was introduced. The latter
was integrated to the spatio-temporal fusion model presented in [6]
and was experimentally shown to outperform both the no-attention
and the appearance-only models by a significant margin. Future
work will investigate the integration of intra-stream attention mech-
anisms to force better single-stream representation learning, prior to
the fusion module.
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