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Automatic Classification of Archaeological Pottery Sherds
MICHAEL MAKRIDIS and PETROS DARAS, Information Technologies Institute

This article presents a novel technique for automatic archaeological sherd classification. Sherds that are found in the field
usually have little to no visible textual information such as symbols, graphs, or marks on them. This makes manual classification
an extremely difficult and time-consuming task for conservators and archaeologists. For a bunch of sherds found in the field, an
expert identifies different classes and indicates at least one representative sherd for each class (training sample). The proposed
technique uses the representative sherds in order to correctly classify the remaining sherds. For each sherd, local features based
on color and texture information are extracted and are then transformed into a global vector that describes the whole sherd
image, using a new bag of words technique. Finally, a feature selection algorithm is applied that locates features with high
discriminative power. Extensive experiments were performed in order to verify the effectiveness of the proposed technique and
show very promising results.
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1. INTRODUCTION

Computer aided restoration of cultural relics is a two-stage process involving classification and recon-
struction. Classification is currently performed manually on large quantities of archaeological sherds
in order to roughly classify them into groups from the same or similar relics. Reconstruction involves
pairwise comparison of sherds using geometrical, color and texture features, so as to obtain the entire
object (relic).

Although numerous techniques have been introduced in the relevant literature for object recon-
struction, using torn documents [Biswas et al. 2005; de Smet 2008; Justino et al. 2006], jigsaw puzzles
[Bunke and Kaufmann 1993; Goldberg et al. 2004; Yao and Shao 2003; Makridis and Papamarkos
2010] and archaeology fragments [Leitao and Stolfi 2002; Papaodysseus et al. 2002; Kampel and
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Fig. 1. Images taken from the pottery sherd database. Front and back views of sherd images from two classes are depicted.

Sablatnig 2004], only few techniques addressing the sherd classification problem have been proposed
so far. During an archaeological dig, hundreds or even thousands of sherds, constituting fragments of
numerous different potteries, can be discovered. These sherds are carefully cleaned and then roughly
classified into similar sherd-groups. Each sherd-group contains sherds with similar semantics, for ex-
ample, pottery of the Byzantine era. Sherd classification is achieved by taking into account mainly
color, hue, saturation, chrominance, and material characteristics. Finally, conservators detect match-
ing pairs of sherds in order to reconstruct a relic. This is obviously a highly time consuming task,
which may require months of daily effort in order to identify the sherds of a certain object. As a result,
millions of sherds are stored into large storage areas and remain unexploited for years.

This article aims at automatic and accurate classification of sherds; a very challenging process, since
sherds usually have limited, if any textual information. Most of them have neither graphs, nor figures,
nor painted shapes. Their contours are chipped and degraded due to their time exposure, soil sub-
stances, erosion and usage. Figure 1 illustrates two sherd classes of the database used in this article.
Both front and back views of each sherd are depicted. The visual similarity among sherds belonging to
different classes justifies the challenge of automatic and accurate sherd classification. It is hard to dis-
tinguish sherds of different classes, as their color is very similar and the differences that appear on the
sherds’ hue, chrominance, rills (edges), saturation, and texture are only at a local level. Sherds of the
first class in Figure 1 are slightly more textured; their front views demonstrate faint rills, while both
views appear to have higher saturation than the sherds of the second class. The proposed technique
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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Fig. 2. Indicative images from each class of the ceramic sherd database [Ceramic sherd database 2010], with permission of
Drexel Computer Science and NEC Labs.

uses a combination of simple low-level features focusing mainly on the color properties of the sherds.
Furthermore, the sherd classification problem is treated statistically in order to achieve accurate clas-
sification estimation and simultaneously to avoid classification errors due to local degradation of a
sherd. In a nutshell, the proposed technique aims to automate the sherd classification process so as to
reduce archaeologists’ workloads.

1.1 Background and Related Work

As already mentioned, few works dealing with sherd classification have been proposed so far in the
literature. Moreover, each of these methods handles different classification subproblems depending on
the data set, for example, potteries, ceramic, textured, nontextured, or mixed sherds, and so on. Fur-
thermore, no existing method exploits both front and back view characteristics of the sherds. Although
the front view can describe a sherd more accurately than its back view, the latter can significantly
enhance the classification accuracy.

Among the first researchers involved in sherd classification were Kampel and Sablatnik [2000], who
classified archaeological sherds based on estimating sherd color so as to automate the classification
procedure. Their technique relied on the assumption that the spectral reflectance of materials varies
slowly in the visible spectrum. In order to test their color estimation method, they used Tungsten
Halogen Floodlamps TL-light, as light resources along with various video cameras. This technique
required color calibration with known illuminants and therefore, color estimation was sensitive to
lightning variations.

Smith et al. [2010] proposed a method for ceramic sherd classification based on color and texture
characteristics. This is the most recent and accurate sherd classification technique and it was ap-
plied to a database that consists of ceramic sherds, most of which are highly textured [Ceramic sherd
database 2010]. As shown in Figure 2, the test database contains classes with quite different visual
patterns. Color similarity between ceramic sherds was based on estimating the joint probability distri-
bution of the color channels [Smith and Chang 1996], and a color histogram in the 3-dimensional RGB
space was constructed (Novak and Shafer 1992). Moreover, texture similarity was estimated using
a new texture descriptor motivated by the geometric total variation energy (TVG) concept proposed
by Burchard [2002]. Finally, a sherd descriptor vector was produced as a combination of TVG and
color histograms, which achieved satisfactory results in the textured sherd database [Ceramic sherd
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Fig. 3. Block diagram of the proposed technique.

database 2010]. On the other hand, as the authors noticed, their algorithm resulted in generally poor
classification rates in low textured sherds with small intensity and color variations.

Li-Ying and Ke-Gang [2010] classified ancient sherds using solely texture-based features, which
were extracted by applying Gabor wavelet transformations [Lee 1996]. These features were then used
to classify sherds using an unsupervised kernel fuzzy clustering algorithm that is an extension of
the fuzzy C-means algorithm [Bezdek et al. 1984]. Ke Gang et al. [2008] proposed another texture-
based method for classification of porcelain sherds, where texture features, extracted using the Gabor
transformation, were used to distinguish different kinds of porcelain pictures.

Another interesting work on classification of sherds was proposed by Karasik and Smilansky [2011].
This technique performs a morphological analysis and classification of ceramic assemblages based on
their profile morphology. However, there are major differences with the proposed technique in this
article, due to certain assumptions. Moreover, it is assumed that the assemblages were produced on
a wheel and possess axial symmetry. In other words, as the authors state, their shape is entirely
characterized by their profiles. It is worth mentioning that Karasik and Smilansky have presented
interesting work about the typology, morphology, classification, and 3D scanning of ceramic or pottery
assemblages [Adan-Bayewitz et al. 2009; Karasik and Smilansky 2008, 2006; Karasik 2008; Saragusti
et al. 2005; Karasik et al. 2005; Gilboa et al. 2004].

In this article, we propose a novel approach for sherd classification using local color-based and
texture-based features. It is an attempt to reduce the expert’s workload, by automating the steps of
the classification procedure. The proposed technique has the following advantages: (a) it performs very
well on both high- and low-textured databases; (b) it significantly reduces the computational com-
plexity and enhances the accuracy, by using bag of words and feature selection techniques; and (c) it
exploits both front and back views of sherd images, as archaeologists do in their everyday activities.

The rest of the article is organized as follows. An overview of the proposed technique is presented
in Section 2. Section 3 presents color and texture features used in the proposed framework. Section 4
introduces the proposed bag of words method used to transform the extracted local features of each
sherd into global feature vectors. Feature selection and classification stages are described in Section 5.
In Section 6, multiple experiments are given, so as to prove the efficiency of the proposed method.
Finally, conclusions are drawn in Section 7.

2. METHOD OVERVIEW

The proposed technique can be summarized in the following steps (Figure 3): (a) local feature extrac-
tion from the front and the back views of the archaeological sherds, (b) bag of words creation and
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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feature fusion, in order to form a global sherd descriptor vector that will decrease systems’ compu-
tational complexity, (c) feature selection that will further increase systems’ performance and reduce
vectors’ dimensionality by keeping only those descriptors that have the highest discriminative power;
and (d) classification using at least one ground truth sherd descriptor vector from each class.

More specifically, feature extraction is performed locally for each pixel of each view of a sherd image.
Initially, many local features are calculated in order to decide which of them are more appropriate for
the specific sherd classification task and lead to the best classification performance. Therefore, midlevel
(such as edge map and local binary patterns), low-level (components of color models, standard deviation
and contrast), texture-based, and color-based features are extracted.

In general, our aim was to create a global descriptor vector from local features extracted for each
sherd image. Local feature extraction on a pixel-by-pixel basis increases the overall computation
cost to prohibitive levels. On the other hand, global feature extraction may lead to significant loss
of information.

As it is previously mentioned, pottery sherds have certain characteristics that differentiate them
from generic images, such as degradation, chipped contour, and low-texture information. Therefore,
it is essential for a pottery sherd classification technique to focus mainly on dominant color, chromi-
nance, and texture information, as archaeologists do in their narrative processes. Among the simplest,
yet most effective ways of exploiting these characteristics is the use of histograms of local features.
Furthermore, histograms of local features have the advantage of being robust to local noise.

In order to deal with the computational complexity problem, we propose a new bag of words (BoW)
method. More specifically, words are created using a multithresholding technique over the 256-sized
vector of each local feature’s histogram. The state-of-the-art multithresholding technique used in this
work has the advantage of maximizing the interclass variance between histogram peaks and locat-
ing thresholds on histogram valleys. By locating thresholds on histogram valleys, the possible loss of
information due to histogram clustering is minimized. Finally, the extracted feature vectors are con-
catenated so as to form a global sherd descriptor vector.

Since global sherd descriptor vectors are formed for all sherd images (ground truth and unclassi-
fied), a feature selection technique is applied in order to find features that have the most discrimi-
native power, increase the classification performance and further reduce descriptors’ dimensionality.
Finally, unclassified descriptor vectors are classified to one of the ground truth classes using a K-
nearest neighbor (KNN) classifier [Aha and Kibler 1991]. The KNN classifier was selected due to its
ability to perform well in generic image classification problems [Boiman et al. 2008]. This is also proved
experimentally in this article (Section 6).

3. FEATURE EXTRACTION

Numerous color- and texture-based local features, both low level and medium level were implemented
and presented in this section along with the rationale for the selection.

3.1 Color Model’s Components

Each component of a color model has different utility, some of which can be proved efficient and compu-
tationally inexpensive when dealing with a specific problem [Agrawal et al. 2011]. Color components
are appropriate for sherd classification, since the expected result is a rough classification, based mainly
on color, without requiring excessive computational cost. The color model components that were se-
lected as more suitable for describing color, chromaticity, and chrominance of a sherd image are: RGB,
HSV, and YIQ.

Transformations from an RGB color model to YIQ and HSV are used to extract the corresponding
components and are given in the following equation.
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Fig. 4. Sherds that justify the use of texture features.
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H =
60(b − g), if R = M
60(2 + r − b), if G = M
60(4 + g − r), if B = M
180, if M = 0

S = 0, if M = 0
(M − m)/M, if M<>0,

V = M

(1)

where M = maximum(R, G, B), m = minimum(R, G, B), r = (M − R)/(M −m), g = (M − G)/(M −m), b =
(M − B)/(M − m).

3.2 Low Level Features

Standard deviation is a widely used feature in statistical image processing. Although it is suscepti-
ble to noise, its histogram [Zhenhua et al. 2010a] can be proved to be a very effective tool in rough
classification problems, such as sherd classification. The standard deviation is defined by the following
equation:

σ =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄), (2)

where n is the total number of pixels neighboring to xi and x̄ is the average pixel value of the pixels in
the neighborhood.

Contrast is more appropriate when distinctive objects exist on an image. Although pottery sherd
images do not have graphics or symbols on them, degradation due to subsoil substances and time
creates faint objects in some sherd classes. Therefore, Michelson contrast [Michelson 1927], which
has been adopted by the proposed technique, has proved to be an effective tool for exploiting such
information, especially for sherds such as the ones illustrated in Figure 4

As depicted in Figure 4, the skin of the sherd is degraded over time, creating visual color variations
on its surface. On the other hand, contrast can lead to misclassification in classes where some sherds
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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Fig. 5. Kirsch edge map for a single sherd view.

are degraded while others are intact. Michelson contrast is calculated for the eight neighbors of a pixel
according to the following equation.

c = (Imax − Imin)/(Imax + Imin), (3)

where Imax is the maximum intensity (in gray scale) in the neighborhood of the center pixel, while Imin
is the minimum intensity (in gray scale) in the neighborhood of the center pixel. If both Imax, Imin = 0
then the contrast is considered as zero, since there is no intensity variation in the neighborhood.

3.3 Medium Level Features

Kirsch edge map [Kirsch 1971] is a first order method [Maini and Aggarwal 2009], generally used for
edge detection. In the proposed technique, it is applied on the intensity image of each color sherd image.
The intensity image is convolved with filter masks and an edge strength value is assigned to each pixel.
Statistical analysis of pixels’ edge strength on a sherd image is used to reveal the degradation degree
or rills on the image, if present. However, similarly to the contrast feature, the kirsch edge map is not
effective in classes, where some sherds are highly degraded while others are not.

Kirsch edge detection is based on image filtering using eight masks corresponding to different direc-
tions. Kirsch masks, which detect edges in horizontal and vertical directions at 45, 135, 225, and 315
degree angles, are presented in following.⎡

⎢⎣ −3 −3 3
−3 0 −3
5 5 5

⎤
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⎡
⎢⎣ −3 −3 3
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⎤
⎥⎦ ,

⎡
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⎤
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−3 0 −3
−3 −3 −3

⎤
⎥⎦ ,

⎡
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⎤
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⎤
⎥⎦ ,

⎡
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−3 0 5
−3 5 5

⎤
⎥⎦

(4)

For each pixel of the sherd image the largest absolute value is considered as the pixel’s edge value. An
example of Kirsch edge map is given in Figure 5.
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Fig. 6. LBP descriptor vector (histogram) rotation invariance demonstration.

Local binary patterns (LBP), which were first introduced by Ojala et al. [1994], are simple but ef-
ficient descriptors designed for texture classification. Since then, various papers have exploited LBP
[Khellah 2011; Zhenhua et al. 2010b; Ojala et al. 2002] due to its simplicity and rotation-invariant na-
ture. A fixed-range circular neighborhood is defined around each pixel. Neighboring pixels’ intensities
are considered as 1 or 0 values, depending upon whether they are higher or lower than the inten-
sity of the center pixel. The local LBP value of the center pixel is calculated according to the number
of transitions between ones and zeros around it. Rotation invariance is achieved due to the circular
neighborhood. The LBP global descriptor vector is constructed through histogram construction of local
LBP values and its length depends on the range of the LBP neighborhood and the distance of the ad-
jacent neighbor pixels. LBP is more efficient in sherds that are highly textured, such as those included
in the ceramic sherd database [Ceramic sherd database 2010] and thus is has been included in the
proposed technique.

Rotation invariance with LBP can be achieved by shifting bitwise the values or by using uniform pat-
terns. We decided to use the latter since it was proven to be more accurate [Ojala et al. 2002]. Rotation
invariance of the LBP descriptor is demonstrated in Figure 6. The original sherd image illustrated in
Figure 6(a) was manually rotated in two random angles (Figure 6(b) and (c)). The corresponding LBP
histograms are depicted in Figure 6(d)–(f).

4. BAG OF WORDS WITH MULTITHRESHOLDING

Initially, bag of words (BoW) models were applied on words in documents and were related to the fre-
quency of appearance of each word, without preserving the order of appearance in a sentence [Wallach
2006]. Similarly to these models, new bag of words models were soon applied to image features.

BoW models reduce the dimensionality of high-dimensional feature vectors by clustering them into
a small fixed vocabulary of visual words, and then using histograms of these visual words to represent
the images. In most recent techniques, K-means [Sheng et al. 2010; Kandasamy and Rodrigo 2010;
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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Hotta 2009; Chimlek et al. 2010] is preferred for clustering data because it is unsupervised and easily
implemented. However, K-means has obvious sensitivity in initialization and local searching abilities.
In cases where the class centers are not efficiently defined, K-means can get trapped in local minima.

In this article, a new technique for creating bag of words is proposed using the Reddi multithresh-
olding concept [Reddi et al. 1984]. The latter is based on the maximization of the intraclass variances
between different classes, which can be seen as valley detection on a histogram. Once maximization is
achieved, clusters’ range can be easily calculated as the range between neighbor thresholds.

More specifically, let us assume an image I of dimensions K,L, and each pixel values range is [0–255],
where the 0 corresponds to black and 255 to white colors (grayscale values). The proposed BoW model
can be described by the following steps.

First, histogram extraction for each local feature fs takes place according to the following equation.

hf (x) =
K∑

i=0

L∑
j=0

d( fs(i, j)), x = 0, 1, 2, . . . , 255, (5)

where f (i, j) is the feature value in coordinates f (i, j) and d is the delta function.

d( fs (i, j)) =
{

1, if fs(i, j) = x
0, otherwise

(6)

Then, the accumulative histogram AHfs , is created for each feature and for all ground truth sherds
according to the following equation:

AH fs =
i=N∑
i=0

hi, fs (x) , (7)

where N is the total number of ground truth sherd images, which is equal to the total number of sherd
classes (in the case of one ground truth per class).

Finally, Reddi et al. [1984] multithreshording is applied on each feature’s accumulative histogram
AH. Words are created according to features’ values and the extracted thresholds, as described in the
preceding.

Using this transformation, the dimensionality of the final global feature vector is reliably decreased
from 256 (all histogram bins) to the final number of thresholds. Since we have N ground truth sherd
images we define N − 1 thresholds leading to N words in each feature’s histogram.

After BoW realization, all local features are concatenated forming a global descriptor vector that
describes the whole sherd image. A graphical presentation of the proposed BoW technique is depicted
in Figure 7.

4.1 Reddi Multithresholding

In this paragraph, we briefly describe the multithresholding technique used in the Bag of Words cre-
ation. In the literature, there are several histogram-based multithresholding techniques that are used
mainly for image segmentation or image binarization (single threshold). The method of Reddi et al.
[1984] extends the global (binary) threshold method of Otsu [1979], which is one of the most powerful
methods for global thresholding, to multithresholding. The criterion used is the selection of thresholds
so that the interclass variance between dark and bright regions is maximized.

The Reddi multithresholding technique,which is applied to all features used in this article except for
LPB the(LBP histogram has only 24 bins), can be summarized in the following steps.

—Define N number of thresholds.
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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Fig. 7. Graphical presentation of the proposed bag of words procedure.

—Initialize threshold values according to the following equation.

ki = 256
N + 1

, (8)

where 256 is the range of possible pixel values in a gray scale image. When this algorithm is applied
to a normalized feature, the range of possible values changes from [0,255] to [0,1].

—Calculate the following error values for each threshold ki.

e1(0, k1) = [m(0, k1) + m(k1, k2)]
2

− k1

e2(k1, k2) = [m(k1, k2) + m(k2, k3)]
2

− k2

. . .

en(kn−1, kn) = [m(kn−1, kn) + m(kn, 255)]
2

− kn,

(9)

where m
(
ki, kj

) =
∑kj

ki
xpx∑kj

ki
px

, ki, kjare neighbor thresholds, x is the position on the histogram, and pxis

the value in this position.
—Calculate new threshold values according to the following equation.

ki = ki + round(ei), i = 1, 2, . . . , n. (10)

—Repeat until maximum(|e1|, |e2|, . . . , |en|) ≤ 0.5.

5. FEATURE SELECTION AND SHERD CLASSIFICATION

Feature selection techniques have been widely used in 2D image classification problems [Chimlek
et al. 2010; Kerroum et al. 2009]. In our case, a plethora of features has to be integrated in order to
deal with both textured and nontextured databases. On the other hand, only a number of features is
usually required, as the selection of the appropriate features depends on the morphology of the sherds.
ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.
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Table I. Pottery Sherd Database
Classes Number of sherd images (front and back views)

Class A 46
Class B 22
Class C 16
Class D 8
Class E 8
Class F 10

Therefore, an effective feature selection technique that is able to keep only the most discriminative
ones is of paramount importance. This results in increased classification rates, reduced complexity,
and increased adaptability of the method. Summarizing, the bag of words technique is the first step
in reducing the overall computation cost, while feature selection acts in a complementary fastion to
further reduce the complexity and improve the classification performance.

Although feature selection is popular in image classification problems, no reference of feature se-
lection in archaeological sherd classification has been reported so far. In order to choose the most
appropriate features, several techniques have been tested. Eventually, the most appropriate one for
our problem was found to be the principal component method (PCA) [Jolliffe 1986]. A comparative
graph is illustrated in Figure 11 in the experimental results section.

After the feature selection procedure, a feature vector is produced for each sherd view. Final sherd
classification is performed using the global sherd feature vector produced by concatenating each sherd’s
view feature vectors. Although concatenation increases the computational complexity, a sherd’s repre-
sentation by a larger feature vector leads to more accurate classification.

Classification. At the final stage, archaeological sherds are classified using a K-Nearest Neigh-
borhood classifier (KNN) [Aha and Kibler 1991]. The problem addressed by the proposed technique
involves only a small set of representative samples for each class. In this case, KNN has low computa-
tional complexity. Thus, the rationale behind the choice of KNN is due to its simplicity, low computa-
tional complexity, and accuracy [Boiman et al. 2008].

Before concluding that KNN, had the best performance for this problem, the proposed system was
tested using various classifiers besides KNN, such as SVM [Chang and Lin 2001], Naı̈ve Bayes [John
and Langley 1995], Sequential Minimal Optimization (SMO) [Platt 1998; Keerthi et al. 2001; Hastie
and Tibshirani 1997] and Simple Logic [Sumner et al. 2005]. The experimental results that were per-
formed in two sherd databases (Figure 10), pottery and ceramic, justify the selection of KNN.

6. EXPERIMENTAL RESULTS

Several experiments were performed in different areas of the problem so as to provide an objective
evaluation of the proposed method.

More specifically, two databases with different characteristics were used. The first is a pottery sherd
database, which consists of 110 pottery sherd image views (back and front views), classified in 6 dif-
ferent classes by archaeologists and conservators.1 Ground truth images (one from each class, front
and back views) were also indicated by specialists. Table I summarizes the pottery sherd database
indicating the corresponding classes, while Figure 8 depicts the ground truth images from all classes.

Sherd database creation was achieved in cooperation with archaeologists from the 9th Ephorate of
Byzantine Antiquities, in Thessaloniki, Greece. All sherds were selected by experts and photographed
by the authors. More specifically, a Sony DSC-HX1 SLR-like camera with a resolution of 10 megapixels

1Ftp://ftp.iti.gr/pub/incoming/Sherds%20classification%20code.zip.
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Fig. 8. Ground truth images from the pottery sherd image database.

Table II. Ceramic Sherd
Database

Classes Number of sherds

Class A 9
Class B 9
Class C 9
Class D 16
Class E 2
Class F 10
Class G 7
Class H 18

was used. During the photograph session there were no special parameters except for a camera base
in order to keep the camera on a steady distance (10 cm) from the ground.

It should be clearly stated that, the aim of the proposed work is not to replace the experts but to
facilitate their work. As it can be assumed, automated classification of archaeological sherds cannot
be more successful than manual classification. However, a rough classification with over 50% success
rate would be very useful, in terms of speeding up the manual classification procedure. This is exactly
the aim of the article.

The ceramic sherd database [2010] a used by Smith et al. [2010], is ideal for evaluation reasons,
because it has significant differences from the pottery sherd database. In this dataset, most of the
sherds are highly textured, with smooth surface and high contrast. The dataset consists of 80 ceramic
sherds classified in 8 classes (Table II). Sample sherds are presented in the following figure.
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Fig. 9. Comparative mean performance of all features used in the proposed technique. Each feature’s percentage is set according
to saturation, which had the best performance in the experiments.

Table III. Ceramic Sherd Database
Images Resolution (dpi) Mean (width X height) Total execution time (sec)

Pottery sherd db 110 200 1206 X 928 227,938
Ceramic sherd db 80 72 357 X 346 28,766

6.1 Advantages of the Proposed Sherd Classification Technique

Relevant performance of features used in the proposed technique. Since several features have been
exploited in the proposed framework, it is essential to present comparative performance of each feature
separately. Comparative results are presented in Figure 9. It should be noted that some features act
in a complementary fashion, while others act competitively. Therefore, a feature selection technique is
used to select features with better discriminative power.

Additional texture features were studied (such as those mentioned in Lowe [2004]; Muwei et al.
[2009]; Pengyu et al. [2007]; Chamorro-Martinez and Martinez-Jimenez [2009]; and Khellah [2011]),
but most of them failed, which justifies why sherd classification depends more on the color rather than
the texture.

Results related to execution times of the feature extraction process, for all images, are presented in
Table III. It should be noted that in the proposed framework, no code optimization has been applied
and the following results are relevant to the implementation and the characteristics of the computer.
Experiments have been performed using a Pentium I-5 @ 3.3 Ghz (4GB RAM) and the system was
implemented in Pascal Borland Delphi.

Computational complexity reduction using the proposed BoW method: The BoW method takes fea-
ture histograms as input and performs clustering on each of them. The number of clusters is defined
by the number of final classes. According to this, the vector of each feature is reduced (in percentage)
by 100%(1 − N

256 ), where N is the total number of classes, while 256 is the quantity of bins in the his-
togram. Thus, in the sherd database, the dimensionality of the global feature vector for each ground
truth sherd is decreased from 256 ∗ 6 = 1536 to 36.

Relevant performance of feature selection techniques. Since various tests with different feature selec-
tion techniques have been performed, it is worth discussing the comparative performance of the major
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Fig. 10. Comparative mean performance of feature selection algorithms used in the proposed technique. Each algorithm’s
percentage is according to PCA, which had the best performance in experiments.

techniques used in the proposed article. More specifically, we mention the feature selection techniques
tested, as well as the different search strategies used.

—Correlation-based feature selection (CFS bff) [Hall 2000] using best first forward search strategy;
—Correlation-based feature selection (CFS bfb) [Hall 2000] using best first backward search strategy;
—Chi-Square attribute selection (Chisquare) [Jonhson et al. 1994] using ranker search strategy;
—Consistency-based (Consistency based bff) [Liu and Setiono 1996] using best first forward search

strategy;
—Consistency-based (Consistency based bfb) [Liu and Setiono 1996] using best first backward search

strategy;
—Principal components (PCA) [Jolliffe 1986] using ranker search strategy;
—Relief attribute selection (Relief AS) [Robnik-Sikonja and Kononenko 1997] using ranker search

strategy;
—Support vector machines (SVM)-based [Guyon et al. 2002] using ranker search strategy.

In Figure 10, a comparative graph of all feature selection techniques is illustrated. Search strate-
gies were used in order to avoid exhaustive enumeration of all possible feature subsets. The principal
components analysis technique (PCA) has been proven to have the best results, in mean terms, for
both datasets. More specifically, without using PCA, the overall classification accuracy was 67.74%
and 75% in the pottery and the ceramic database respectively. Using PCA, the classification accuracy
was increased to 70.96% and 78.26% in the corresponding databases.

Computational complexity reduction due to feature selection. The contribution of feature selection
techniques to the reduction of computational cost depends on the number of selected features.
Figure 11 depicts the dimensionality reduction of each feature selection technique. In particular, each
percentage is the mean performance of each technique in the pottery and the ceramic database. It is ob-
vious that the consistency-based techniques (bff and bfb) achieve the highest dimensionality reduction,
while chisquare, relief attribute selection, and SVM-based, very contribute to the overall computational
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Fig. 11. Descriptor vector dimensionality reduction (in percentage) for each feature selection technique tested.

Table IV. Global Descriptor Dimensionality Reduction after Applying Feature
Selection

Pottery database Ceramic database
Global descriptor vector length 73 137

Length after applying CFS bbf 6 16
Length after applying CFS bbb 6 16
Length after applying Chisquare 72 136
Length after applying Consistency based bbf 2 5
Length after applying Consistency based bbb 2 5
Length after applying Principal Components 12 13
Length after applying Relief Attribute Selection 72 136
Length after applying SVM 72 136

complexity. The Principal Component analysis method is selected as the most balanced between accu-
racy improvement (the main purpose of feature selection) and dimensionality reduction. Analytical
performance of each feature selection technique for each database is shown in Table IV. All feature
selection techniques are executed almost in real time and therefore time-execution results are not
presented.

Comparative performance of classification techniques. Classification of the extracted descriptor vec-
tors is performed using KNN. However, four other classifiers were also tested. More precisely, we com-
pared KNN with SVM [Chang and Lin 2001], Naı̈ve Bayes [John and Langley 1995], Sequential Min-
imal Optimization (SMO) [Platt 1998; Keerthi et al. 2001] and Simple Logic [Hastie and Tibshirani
1997]. Comparative results, which are illustrated in Figure 12, prove that KNN is the most suitable
choice for the proposed method.

ACM Journal on Computing and Cultural Heritage, Vol. 5, No. 4, Article 15, Publication date: October 2012.



15:16 • M. Makridis and P. Daras

Fig. 12. Comparative mean performance of all classifiers tested on ceramic and pottery datasets, in comparison with KNN.

6.2 Evaluation of the Proposed Technique on the Pottery Sherd Database

The proposed framework has been initially evaluated on the pottery sherd database (Table I). As il-
lustrated in Figure 8, ground truth sherd images from different classes have many similarities. Some
differences are detected on sherds’ hue, chromaticity, saturation, and small local texture variance.
Therefore, any pottery sherd classification technique should focus on these differences in order to dis-
criminate sherd classes. This justifies the use of color related features by the proposed technique.
More specifically, concerning the pottery sherd database, the selected features were: in phase (Eq. (1)),
contrast (Eq. (3)), Kirsch edge map (Eq. (4)), saturation (Eq. (1)), quadrature (Eq. (1)), and standard
deviation (Eq. 2).

Table V presents the confusion matrix, which is also known as the contingency table. The diagonal
of the confusion matrix depicts the number of correctly classified sherds. The sum of the diagonals
represents the total number of correctly classified sherds. There are 68 correctly classified sherd views,
in the proposed experiment. The sum of each row represents the total number of sherd images for each
class. Finally, each column represents the number of sherd images that are classified into a certain
class, whether they actually belong to this class or not. In this experiment, 12 ground truth sherd
views were used for training (one for every class) while 98 sherd views were used for testing. In total,
69.39 percent of the sherds were correctly classified.

In order to evaluate the classification outcome per class, the following measures have been used.

—The True Positive (TP rate) rate is the percentage of correctly classified sherds within a class over
the entire collection of sherds that belong to that class. True positive is the same as recall.

—The False Positive (FP rate) rate is the proportion of sherds that were classified in a certain class,
but belong to a different class, among all sherds that are not of this class.

—The Precision is the proportion of the sherds that truly belong to a class among all those that were
classified in that class

—The F-Measure is 2∗Precision∗Recall / (Precision + Recall), a combined measure for precision and
recall.
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Table V. Confusion Matrix of the Proposed Technique in the Pottery Sherd Database
(Front and Back Views)

Class A Class B Class C Class D Class E Class F Sum

Class A 26 4 4 2 6 2 44
Class B 2 18 0 0 0 0 20
Class C 0 0 14 0 0 0 14
Class D 0 0 0 2 4 0 6
Class E 2 0 0 0 4 0 6
Class F 0 0 0 4 0 4 8

Correctly Classified 26 18 14 2 4 4 68

Total tested 98 Success Rate 69,39%

Table VI. Evaluation per Class of the Proposed Technique in Pottery
Sherd Database (Front and Back Views)

TP Rate FP Rate Precision Recall F-Measure Class

0.591 0.074 0.867 0.591 0.703 A
0.9 0.051 0.818 0.9 0.857 B
1 0.048 0.778 1 0.875 C
0.333 0.065 0.25 0.333 0.286 D
0.667 0.109 0.286 0.667 0.4 E
0.5 0.022 0.667 0.5 0.571 F

Table VII. Confusion Matrix of the Proposed Technique in Pottery Sherd Database using 40% as Training
Data (Front and Back Views)

Class A Class B Class C Class D Class E Class F Sum

Class A 18 2 2 0 0 0 22
Class B 4 10 0 0 0 0 14
Class C 0 2 8 0 0 0 10
Class D 0 0 0 2 0 0 2
Class E 2 0 0 0 4 0 6
Class F 2 0 0 0 4 2 8

Correctly Classified 18 10 8 2 4 2 44

Total tested 62 Success Rate 70,97%

Experimental results’ evaluation according to these metrics and classification accuracy are given in
Table VI.

In this article, we demonstrate a technique that deals with the sherd classification problem using
at least one ground truth sherd image. However, splitting the dataset into train and test samples is
used in the majority of the techniques found in the literature. In order to demonstrate the accuracy
of the proposed technique in a way that is comparable with the existing literature, we also tested the
proposed technique by splitting our dataset into training and test sets. The training percentage usually
[Zhenhua et al. 2010b; Lazebnik et al. 2006] varies between 30% and 50%. Therefore, in the proposed
technique we perform all experiments by splitting the datasets (ceramic and pottery databases) into
40% training samples (mean value) and 60% test samples. The confusion matrix of results in the
pottery sherd database is shown in Table VII.
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Table VIII. Confusion Matrix of the Proposed Technique in Ceramic Sherd Database
Classes A B C D E F G H Sum

Class A 5 0 0 0 0 0 0 0 5
Class B 0 5 0 0 0 0 0 0 5
Class C 1 0 6 0 0 0 0 0 7
Class D 0 0 0 4 0 1 3 0 8
Class E 0 0 0 1 0 0 0 0 1
Class F 0 1 0 0 0 2 0 0 3
Class G 0 0 0 0 2 1 1 0 4
Class H 0 0 0 0 0 0 0 13 13

Correctly Classified 5 5 6 4 0 2 1 13 36

Total tested 46 Rate 78,26%

Table IX. Comparative Results with Five Well Known Feature Extraction Techniques
Ceramic sherd db Pottery sherd db front views Pottery sherd db back views

Geomentric blur 43,86% 25,00% 15,63%
PHOW color 42,11% 15,63% 18,75%
PHOW gray 40,35% 25,00% 15,63%
Self similarity 33,33% 18,75% 25,00%
Weighted 43,86% 21,88% 15,63%
Proposed 78,26% 61,29% 70,96%

6.3 Comparison with the Method in Smith et al. [2010] on the Ceramic Sherd Database

The proposed technique was also tested in the ceramic sherd database. Despite the great difference
between these databases, the proposed technique resulted in satisfactory success rates in ceramic
sherds as well.

Another important reason for using this database was to test the proposed BoW technique (see
Figure 7), which appears to work efficiently, when it is fed with the appropriate features. For the
ceramic database experiment, the selected features were hue (Eq. (1)), in phase (Eq. (1)), R-G-B com-
ponents (Eq. (1)), standard deviation (Eq. (2)), saturation (Eq. (1)) and local binary patterns.

Again, the splitting percentage is set to 40% training and 60% testing samples. The same percentage
is also used in the following section, where we compare the proposed technique with four other state-of-
the-art methods. Table VIII presents the confusion matrix of our method in the ceramic sherd database,
which has a success rate of 78.26%. In the same database, the technique of Smith et al. [2010] achieves
a 75% success rate using the SIFT texture descriptor and 74% using the TVG descriptor.

6.4 Comparison with Various State of the Art Descriptors in Both Databases

In this section, we present our experiments with four other state-of-the-art techniques: self similarity
[Shechtman and Irani 2007], pyramid histogram of words (color/gray) [Lazebnik et al. 2006; Bosch
et al. 2007], geometric blur [Zhang et al. 2006; Berg et al. 2005] and a weighted combination of them
[Vedaldi et al. 2009]. All four techniques have demonstrated significant performance in generic image
databases. However, applying those methods to sherd classification reveals the difficulties of such a
problem. Since these techniques are not designed to combine information from both front and back
views, the pottery sherd database was considered as two separate databases, front sherd views and
back sherd views. The proposed system was also tested in front and back sherd views separately.
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Table IX presents the comparative classification rates for this experiment, where it is obvious that the
proposed framework outperforms the existing state of the art.

7. CONCLUSION

In this article, we proposed an automatic technique for archaeological pottery sherd classification. The
main contributions of the proposed work include a novel BoW model based on multithresholding, the
exploitation of the information derived from both front and back views of sherd images, and a new
approach for the creation of feature vectors, which can be used to classify sherds of artifacts into a
finite number of classes. The proposed technique uses simple local features and a new bag of words
model in order to create a global descriptor for each sherd image and to reduce the computational
complexity. Furthermore, a feature selection technique was applied in order to select features with
higher discriminative power, increase classification performance and further reduce the computational
cost. In the proposed technique, at least one ground truth sherd image of each class was used in order
to classify the rest of the sherds. Extensive experiments have been compared to other state of the art
techniques. The results demonstrate the efficiency of the proposed method.
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