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Abstract. The acceptability of AI decisions and the efficiency of AI-
human interaction become particularly significant when AI is incorpo-
rated into Critical Infrastructures (CI). To achieve this, eXplainable AI
(XAI) modules must be integrated into the AI workflow. However, by
design, XAI reveals the inner workings of AI systems, posing potential
risks for privacy leaks and enhanced adversarial attacks. In this litera-
ture review, we explore the complex interplay of explainability, privacy,
and security within trustworthy AI, highlighting inherent trade-offs and
challenges. Our research reveals that XAI leads to privacy leaks and in-
creases susceptibility to adversarial attacks. We categorize our findings
according to XAI taxonomy classes and provide a concise overview of
the corresponding fundamental concepts. Furthermore, we discuss how
XAI interacts with prevalent privacy defenses and addresses the unique
requirements of the security domain. Our findings contribute to the grow-
ing literature on XAI in the realm of CI protection and beyond, paving
the way for future research in the field of trustworthy AI.

Keywords: Trustworthy AI · Explainable AI (XAI) · Privacy · Security
· Critical Infrastructures (CI)

1 Introduction

The incorporation of Artificial Intelligence (AI) into the operational procedures
of Critical Infrastructures (CI) calls for enhancing both the acceptability of AI
decisions and the efficiency of collaboration between AI and human operators. To
this end, eXplainable Artificial Intelligence (XAI) becomes essential in creating
a trustworthy and widely accepted AI workflow.

The main objective of XAI is to provide insights about the decision-making
processes of AI models in a human-understandable manner. Furthermore, it
can be applied at all stages of delivery process, including development, valida-
tion/verification, accountable prediction, and maintenance [32]. XAI can improve
AI systems by revealing hidden facets of models and extracting new knowledge
from underlying data correlations and learned strategies [2].

However, XAI methods unintentionally leak sensitive information about the
training data and models at hand [48][58]. Moreover, adversaries can exploit
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these methods to enhance privacy and security attacks [6][25][27][40][31][32].
Undoubtedly, highly accurate AI systems with explainability, privacy and secu-
rity guarantees are complex but necessary, as emphasized by regulations [13],
standards [18], and EU expert groups [17].

Hence, it is important to identify overlaps, conflicts, and trade-offs to explore
the ideal compromise, particularly, when implementing AI systems in safety-
critical domains with significant human impact. To this end, we review recent
literature, categorize the findings, and present them in a comprehensive manner.
We argue that our contribution attributes researchers and practitioners to design
trustworthy AI systems that meet modern requirements.

In Section 2, we provide a concise overview of the fundamental concepts
necessary for a comprehensive understanding of our findings. Then, in Section 3,
we delve into the main analysis of the interplay between explainability, privacy,
and security in AI. Finally, in Section 4, we consolidate our general conclusions.

2 Background

In this section, we aim to establish the background for a thorough understanding
of our study. We do not intend to give an exhaustive analysis of all concepts,
but rather to highlight those that are absolutely essential in supporting our find-
ings (see Section 3). To this end, we start by constructing a partial taxonomy
of XAI, focusing specifically on our areas of interest. We provide a conceptual
representation of the classes pertinent to our study and briefly describe them.
Furthermore, we address the evaluation of explainability in AI systems by enu-
merating qualitative indicators of explanations and outlining different levels of
evaluations. Lastly, we succinctly describe the adversarial attack tests used to
assess the robustness of AI systems.

2.1 XAI taxonomy classes

Constructing an XAI taxonomy is a complex task that requires a thorough and
detailed analysis. A comprehensive work on this subject can be found in [8]. In
our study, we selectively emphasize only on the classes presented in our findings
(see Section 3); while excluding many others. Further, XAI methods with prop-
erties relevant to multiple general groups have been uniquely categorized based
on the primary focus of the reviewed article in question.

Our XAI taxonomy, as illustrated in Figure 1, offers a hierarchical concep-
tual representation of the different classes relevant to our study. It encompasses
the scope of explanation methods, including model-specific and model-agnostic
approaches, as well as the types of explained systems, such as DL-based and
feature-based systems. Furthermore, it addresses the transparency of the ex-
plained models, distinguishing between white-box and black-box models. Addi-
tionally, we classify XAI methods into intrinsic and post-hoc categories, with the
post-hoc methods further classified into example-based, backpropagation-based,
gradient-based, and perturbation-based methods. For concise definitions of these
taxonomy classes, please refer to Table 1.
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XAI

Scope of explanation methods

Model-specific Gradients [41]
IG [47]

Grad-CAM [39]
LRP [5]

SmoothGrad [43]

Model-agnostic LIME [36]
SHAP [24]

LEMNA [15]
QII [10]

Counterfactuals [49]
Systems

DL-based

Feature-based

Target models

Black-box

White-box

Explanation methods

Intrinsic EBM [29]
GBDT [12]

Post-hoc

Backpropagation-based

Gradient-based Gradients [41]
Grad-CAM [39]

IG [47]
LRP [5]

Perturbatuion-based LIME [36]
LEMNA [15]
SHAP [24]

SmoothGrad [43]
QII [10]

Example-based Counterfactuals [49]

Fig. 1: A conceptual depiction of XAI taxonomy classes relevant to our findings.

Table 1: Definitions of XAI taxonomy classes.
Taxonomy Class Definition

Model-specific Methods exclusive to certain model classes that are highly relying
on their internal parameters and mechanisms, such as weights and
gradients [8].

Model-agnostic Methods that maintain the ability to generalize across any DL-based
system [58].

Deep Learning-based Systems that process input data such as images, signals, or text with
numerous features [32].

Feature-based Systems that mainly process tabular data with a limited number of
features, including numerical and categorical values [32].

Black-box Models characterized by their complexity and obscurity, which pose
interpretability challenges for stakeholders [52][16].

White-box Models that are inherently interpretable and provide complete trans-
parency, offering full access to their parameters and architecture [23].

Intrinsic Methods that commonly impose constraints on model complexity dur-
ing training to inherently increase interpretability; typically associ-
ated with model-specific methods [8].

Post-hoc Methods applied after model training to clarify model decisions; typ-
ically associated with model-agnostic methods [8].

Backpropagation-based Methods that leverage backpropagation to assess feature attribution
in model decision-making [40].

Perturbation-based Methods that involve querying the model with slightly modified in-
puts to determine feature attribution in model decision-making [6].

Example-based Methods that use specific instances from the dataset to elucidate
model behavior, without any manipulation of the features or the
model itself [2].
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2.2 Evaluation Criteria & Methods

In this section, we discuss the evaluation criteria and methods used to assess key
aspects of trustworthy AI systems, including explainability, privacy, and security.
Particularly regarding explanations, we also refer to the different levels at which
evaluation can be conducted.

Explainability Despite the absence of universally accepted evaluation criteria
[6][8], we have identified a set of qualitative indicators that is referred to many
recent studies, including [20][4][6][8][30][52]. In Table 2, we highlight the metrics
relevant to our findings and provide concise definitions.

Moreover, an intriguing aspect of this topic involves multi-level evaluation
methods to assess explainability, as discussed in [8][6]. At the functional-level,
quantitative measures are used as proxies for qualitative characteristics, elimi-
nating the need for end-user experiments. However, solely relying on functional-
level evaluation criteria can yield misleading results [6]. For a more comprehen-
sive evaluation, it may be necessary to perform end-user experiments, involving
domain experts at the application-level or laypersons at the human-level evalu-
ation. By incorporating these different levels of evaluation, a more holistic un-
derstanding of the effectiveness and impact of explainability methods can be
achieved.

Table 2: Definitions of XAI evaluation criteria.
Criterion Definition

Accuracy The extent to which the features identified as relevant in unseen data
are truly so [8][6][52][44].

Completeness The extent to which the explanations are meaningful and consistent
across all possible inputs [52][37].

Comprehensibility The degree to which end-users understand the generated explanations
[8][6].

Contrastivity The degree of difference in feature attributions assigned to different
classes [6].

Efficiency Pertains to the computational complexity and runtime of the XAI
method; it measures the extent to which the typical workflow of the
explainee is disrupted [6][52][28].

Faithfulness Closely related to accuracy ; it measures the impact on model perfor-
mance when the most important features are eliminated one by one
[6][4].

Fidelity It measures the approximation quality of the surrogate interpretable
model [8][6].

Robustness It measures the resilience to both random noise and adversarial at-
tacks [6][52].

Sparsity The extent to which the number of features considered important is
kept to a minimum [6][52][37].

Stability To what extent the generated explanations of the same instance re-
main consistent across multiple runs [6][52], or similar explanations
are generated for similar instances [8].

Usability The intersection of comprehensibility and efficiency [6].
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Privacy & Security Assessing privacy leakage in AI systems often involves
taking the perspective of an adversary and measuring the success rate of the at-
tack [40]. To this end, we enumerate and define popular privacy attacks discussed
in the reviewed studies.

Attribute Inference refers to the disclosure of a sensitive attribute from a specific
instance by utilizing the model’s output and non-sensitive attributes [19][30].

Memebership Inference involves querying a particular data point to the target
model to verify its presence in the training dataset [7][9][40][59].

Property Inference confirms the existence of a data point with specific properties
within the training dataset [59].

Model Extraction (also known as Model Stealing) encompasses the construction
of a surrogate model that mimics the behavior of the target model by creat-
ing a surrogate dataset and querying it to obtain the target model’s decision
boundaries [30][21][53][19].

Model Inversion involves reconstructing data from a private training dataset [30].

Furthermore, in Table 3, we categorize the corresponding reviewed studies based
on the types of privacy attacks they employ, extending beyond the scope of
explainability and security.

Table 3: Different types of privacy attacks featured in each reviewed study.
Reference Authors Attribute

Inference
Membership
Inference

Property
Inference

Model
Extraction

Model
Inversion

[3] Aivodji et al. ✓
[6] Bhusal and Rastogi ✓ ✓
[7] Carlini et al. ✓
[9] Choquette-Choo et al. ✓
[19] Izzo et al. ✓
[21] Kariyappa and Qureshi ✓
[27] Milli et al. ✓
[28] Miura et al. ✓
[30] Oksuz et al. ✓
[40] Shokri et al. ✓
[45] Song and Shmatikov ✓
[46] Stadler et al. ✓ ✓
[48] Truong et al. ✓
[51] Wainakh et al. ✓
[53] Yan et al. ✓
[55] Yin et al. ✓
[58] Zhao et al. ✓
[57] Zhao et al. ✓
[59] Zhu and Han ✓ ✓ ✓

Privacy and security attacks have different goals. Privacy attacks aim to leak
sensitive information or violate the intellectual property of the target model,
while security attacks focus on degrading the overall performance of the model
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[22]. However, the robustness of an AI system to both types of attacks is evalu-
ated using the same approach [42][56]. Thus, as we have done for privacy attacks,
we define the popular security attacks found in the reviewed literature:

Poisoning refers to manipulating training data or model parameters to degrade
the model performance [50].
Evasion involves manipulating input data during inference to trigger incorrect
model outputs with high confidence [56].

3 Findings

Our research aims to shed light on trade-offs, challenges, and opportunities that
arise from the interplay of explainability, privacy, and security in AI. In this
analysis, XAI serves as a cornerstone. This signifies that the identified aspects of
this analysis are primarily examined from the angle of different XAI taxonomy
classes or methods. Moreover, we approach privacy from two perspectives: po-
tential attacks and prevalent defenses. Additionally, our security analysis takes
into account two facets: the security of AI systems, focusing on the protection
of the AI systems per se, and security enabled by AI systems, which seeks to
enhance overall security measures in various domains and applications.

3.1 Privacy Attacks

AI models are already susceptible to inference attacks [40][7]. This vulnerability
can be particularly relevant to specific architecture categories, such as those used
in DL-based systems [21] or data properties such as underrepresented population
groups [19][31][40]. However, privacy risks escalate when adversaries have expla-
nations for decision-making at hand [6][25][27][40][31][32]. For example, model-
agnostic explanation methods can be used in black-box models, which are inher-
ently more resilient to privacy attacks [6][31], to mitigate their obscurity and thus
increase their vulnerability [58][53]. Another method involves model extraction
[48]. Indeed, we argue that there is an intriguing reciprocal interaction between
privacy and explainability; a privacy attack provides model interpretability and
exposes it to higher risk for subsequent attacks.

In categorizing our findings into broader XAI taxonomy classes, we propose
that example-based methods may be the most prone to privacy leakage. Compar-
ing these with backpropagation-based and perturbation-based methods brings to
light their distinctive risk profiles. The level of information leakage is so substan-
tial that the models being explained become vulnerable not just to membership
inference but also to model inversion attacks [40].

After example-based, backpropagation-based methods, particularly gradient-
based ones, stand out as the next most significant source of privacy leak [40].
The variance of these explanations reveals statistical information on the decision
boundaries of the model [6][40]. High variance indicates that a data point is
close to the decision boundaries, which primarily suggests a lower probability of
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participating in the training set [40]. In fact, the correlation between variance
and privacy leakage intensifies as the number of data features increases [40].
Based on a detailed analysis [58], Grad-CAM [39] is the most revealing method,
followed by Gradients [41] and LRP [5]. This could be because Class Activation
Mapping (CAM) explanations take into account a transformation of the original
input, in addition to gradient information [58]. An additional justification could
be that backpropagation-based methods, which are not gradient-based, such as
LRP and Integrated Gradients (IG) [47], tend to lie near a low-dimensional
manifold (i.e., they violate the data-manifold hypothesis) [31], and explanations
with lower fidelity face less privacy risks [40]. Another general observation is
that explanations focusing on neuron activations (like Grad-CAM ) leak more
privacy than those focusing on the model’s output with respect to the input
(like Gradients, IG, LRP, and perturbation-based methods) [58].

Perturbation-based methods, such as LIME [36] and SmoothGrad [43]), are
found to be more resilient to inference and model extraction attacks [40][53].
This resilience may stem from their reliance on out-of-distribution (OOD) or off-
manifold samples, resulting in lower fidelity and stability [31][40]. As mentioned
previously, there is an underlying relation of explainability evaluation criteria
and privacy leakage, as XAI methods that provide better explanations tend to
leak more sensitive information [53]. Thus, a comparative analysis of LIME,
LEMNA [15], and SHAP [24] is worth mentioning. This analysis [6] concludes
that LIME achieves the highest stability, SHAP exhibits the lowest faithfulness
and the highest sparsity, and all three methods demonstrate high scores in terms
of contrastivity [6].

Remark 1. XAI methods “whiten” black-box models, increasing privacy risks.

Remark 2. Better explanations, higher exposure to privacy risks.

Remark 3. Order of XAI methods in terms of privacy leak (highest first):
Example-based > Gradient-based ≥ Backpropagation-based > Perturbation-based

3.2 Privacy Defences

Research in privacy-enhancing AI has converged on several prominent methods,
including Differential Privacy (DP), Federated Learning (FL), Homomorphic
Encryption (HE), and anonymization techniques such as generation of synthetic
data.

DP introduces statistical noise into the data or the model [1], which can
lead to extremely convoluted decision boundaries [31], hampering the fidelity
and comprehensibility of explanations [38]. However, these explanations can re-
veal additional information about the data or the model, increasing the privacy
budget to be spent by DP mechanisms [31].

It has been demonstrated that perturbation-based methods suffer less from
the adverse impacts of DP [38]. When employed together, these techniques can
strike a balance between explainability and privacy [31][10]. Furthermore, when
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DP is incorporated into inherently interpretable algorithms, such as EMBs [29],
the objective extends beyond achieving high prediction accuracy and privacy
[29]. The negative effects of noise can be mitigated post-training, and desirable
constraints, like monotonicity, can be imposed. Moreover, it has been argued
that the combination DP and FL could mitigate some of DP ’s negative impacts
[38].

FL is a collaborative learning process that offers a degree of privacy, as the
model parameters or gradients shared by clients with the central server carry
less sensitive information than raw data [26][54]. However, model inversion is
possible using just publicly shared gradients [57][59][55], suggesting that FL is
not foolproof in terms of privacy preservation, and gradient-based explanations
can further worsen privacy leakage. Moreover, in this collaborative set up, clients
can only make partial observations, potentially expressing doubts about model
outputs or explanations [35]. We argue that resolving these conflicts might neces-
sitate full information disclosure, which disregards privacy. On the other hand,
such environments facilitate the provision of culture-based explanations that are
tailored to individual clients [34].

HE allows computations on encrypted data without the need for decryption
[33], and it has been effectively used in conjunction with XAI [14]. However, it
comes with significant computational overhead and imposes limitations on the
model architecture and types of operations, which complicates the integration
with intrinsic constraints for interpretability [14]. Finally, the generation of syn-
thetic data undermines interpretability, as it blurs the distinction between real
and artificial information [46].

Remark 4. Each privacy-enhancing technique presents unique trade-offs with
explainability, potentially varying across different XAI taxonomy classes.

Remark 5. Using a combination of privacy-enhancing techniques may better bal-
ance privacy and explainability.

3.3 Security Aspects

Each point discussed above is equally pertinent in the realm of security, as pri-
vacy concerns can trigger a cascading effect, thus escalating security risks. First,
the data under consideration often contains sensitive information, the disclosure
of which can critically compromise safety [11]. Second, if an adversary has al-
ready breached the privacy of an AI model, the process of crafting malicious
samples is simpler [21].

Moreover, by revealing the inner-workings of AI systems, XAI methods can
directly pose security risks [32]. The exploration of XAI in security is still not ex-
haustive; establishing robust defenses and defining additional prerequisites that
need to be met remain open research questions [52]. The unique treatment this
field necessitates arises from the participation of different stakeholders, the in-
creased complexity of the systems, and the profound correlation between privacy
and security concerns [6]. On this basis, the following evaluation criteria have
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been underscored as especially important: accuracy, completeness, fidelity, ro-
bustness, stability, and usability [52][6]. However, security-oriented explanations
cannot yet achieve high fidelity and stability [6], perhaps due to the popularity
of DL-based systems in the security domain [52].

Remark 6. Privacy concerns can lead to security risks.

Remark 7. The intersection of XAI and security presents unique characteristics
which require further research.

4 Conclusions

Throughout our literature review, we identified numerous challenges involving
explainability, privacy, and security within AI, and delved into the inherent
trade-offs at their intersections. These findings were categorized according to the
prevalent XAI taxonomy classes. To emphasize the contribution of our literature
review, we consolidated our findings in the form of remarks in Section 3.

We underscored the significant role of XAI in bridging the vulnerability gap
that exists between black-box and white-box models. Our study also emphasized
the fundamental connection between explainability evaluation criteria and the
success rate of adversarial attacks.

In the realm of privacy, we brought to light the potential risks induced by
various XAI methods, highlighting the role of the quality of the explanations
produced. Example-based methods pose the highest risk, followed by Gradient-
based, other Backpropagation-based, and lastly, Perturbation-based methods. We
also explored the intricate relationship between XAI and prevalent privacy de-
fenses, highlighting the unique trade-offs associated with each privacy-enhancing
technique. Moreover, we shedded light on promising results and future work di-
rections.

Approaching the security aspects, we underlined the strong correlations of
explainability and privacy vulnerabilities with security concerns. We elaborated
on the additional challenges posed when incorporating XAI in security applica-
tions, emphasizing the urgent need for further research in this area.

In our future work, our aim is to implement these findings in actual use cases
within CI, while exploring and taking into consideration the prioritization of
requirements across different application domains.

In conclusion, we believe that our work enriches the expanding literature on
XAI in the realm of CI protection and beyond. We provide a solid groundwork,
supporting future research aimed at addressing challenges and balancing trade-
offs inherent in trustworthy AI.
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