IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 December 2025, accepted 6 January 2026, date of publication 12 January 2026, date of current version 15 January 2026.

Digital Object Identifier 10.1109/ACCESS.2026.3653132

== RESEARCH ARTICLE

Compressing What Matters: Neuron Importance
Meets Data-Aware Low Rank Approximation
for Language Model Compression

ATHANASIOS NTOVAS =, ALEXANDROS DOUMANOGLOU -, PETROS DRAKOULIS ™,
AND DIMITRIS ZARPALAS

Information Technologies Institute (ITT), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
Corresponding author: Athanasios Ntovas (atdovas @iti.gr)

This work was supported by the European Union (EU) Project VOXReality (Voice-Driven Interaction in Extended Reality (XR) Spaces)
under Grant 101070521.

ABSTRACT To excel at their domain, large language models are comprised of billions of parameters. Yet,
this comes at the cost of huge memory requirements, restricting their applicability in resource-constrained
environments. To address the problem of neural network (NN) compression, Singular Value Decomposition
(SVD) has played a key role as a fundamental component for matrix compression through decomposition.
To minimize compression error and to maximize the efficacy of the compressed model on the downstream
tasks, previous works focused on low-rank approximation of the NN’s weight matrices either from the
perspective of parameter importance or per-layer functional equivalence. While previous works studied the
aforementioned perspectives in isolation, in this work, we are investigating the effectiveness of an approach
that combines ideas from these two perspectives in a single objective. In parallel to this, an important
aspect that affects the compression quality is the distribution of the compression rate across layers and NN
parameters. Earlier works mostly considered distributing the compression rate uniformly across layers and
network weights or relied on computationally expensive heuristic search. Contrary to them, in this work,
we propose an enhanced and computationally efficient algorithm for dynamic compression rate allocation.
Experimental results support the efficacy of the proposed approach, which performs on par or substantially
better than the previous state-of-the-art, especially under high compression ratios.

INDEX TERMS Language models, neural network compression, neuron importance, SVD.

I. INTRODUCTION

The advances in Artificial Intelligence (AI) over the last
decade have enabled a multitude of applications that were
previously considered unreachable using traditional program-
ming techniques. Nowadays, Al powers computer vision
applications that can understand our world and chatbots
that can communicate with humans in natural language,
among others. Currently, Al is mainly realized by deep neural
networks (DNNs), which are computational architectures
that are trained to solve tasks from a particular domain at
human-level performance. Large Language Models (LLMs)
[11, [2], [3], [4], [5], [6] constitute DNNs that excel in
Natural Language Understanding (NLU) and Processing

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko

(NLP) and enable fluent human-machine interfaces based on
natural language. However, these DNNs come with a ton of
parameters and a large memory and computational footprint.
With Al becoming ubiquitous, their efficient deployment
in resource-constrained environments such as edge devices,
smartphones, and mini-PCs becomes a hard requirement.
Thus, compressing LLMs for efficient deployment has
naturally emerged as a field of its own [7], [8].

Since 2017, the transformer architecture [9] has been the
main workhorse behind LLMs. In their simplest form, trans-
formers process natural language by splitting sentences and
words into tokens, which are subsequently processed sequen-
tially by a series of transformer blocks, organized in layers.
Each transformer block consists of a self-attention module
and a feedforward layer, both of which are parameterized
by matrices of weights, with each weight corresponding to a

© 2026 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

6106 For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 14, 2026

https://orcid.org/0009-0000-7260-1348
https://orcid.org/0000-0002-4337-1720
https://orcid.org/0000-0003-3434-3290
https://orcid.org/0000-0002-9649-9306
https://orcid.org/0000-0002-2298-5037

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

[

£ | £ LM Modet
— Input —> X Y ——>» Neuron |

Activation / 0. (v !

4/// / Q1 Ky, ... dy

Q2 K7

R
L.

Q
N

heoretical

Loss |
|

Ony Ky o

\ Truncation /

Comp Ranks

| Ratio “
\ |

[
LLM Model i 4
Layer Index-Based Ratio Allocation _
- oo
k A
1, Ky eensOg / \ Q1 Lk - bd1 // \ Q1 RK1y - Rd1 QVNY KVN’ ’dIN

A [\ \
Group | / | Convert

\ | 5 | o
\ | \
\/ o \\ ’/ a

FIGURE 1. Architectural overview of the hybrid compression pipeline (NIDA-SVD). Our approach synthesizes the weight importance with data-aware
low-rank approximation, guided by our dynamic rank allocation scheme. In the architectural representation, layer components such as Q; (Query) and K;
(Key) are used to denote the corresponding compressible weight matrices WQ,, and WKi respectively.

parameter that is tuned during network training. Compressing
a transformer network can be accomplished in a variety of
ways, but the end goal is common: to reduce the number of
network parameters that need to be stored in memory with a
minimal compromise in network performance.

One line of research for LLM compression attempts to
reduce the LLM’s parameters by approximating the weight
matrices of the transformer blocks with the product of two
low-rank matrices, a technique also known as low-rank
approximation. Since low-rank, these matrices are crafted to
have a sum of parameters that is less than the parameters
found in the original matrix. Singular Value Decomposition
(SVD) [10] is a matrix decomposition method [11] that
plays a key role in the low-rank approximation problem, as,
given a target rank, it is proven to produce the best possible
approximation with a minimum matrix reconstruction error.

Beyond its naive use, SVD has been employed in more
sophisticated approaches for compressing DNN matrices.
First, using weighted low-rank factorization, FWSVD [12]
takes into account the importance of each parameter to the
DNN’s output, improving model performance under equiva-
lent compression ratios. And second, the data-aware approach
of SVD-LLMv2 [13] aims for a functionally equivalent
approximation of the DNN’s weight matrix by taking into
account layer inputs to be multiplied with the transformation
matrix through a small calibration dataset. Each one of
the approaches has demonstrated significant improvements
compared to baselines, yet an approach combining ideas from
both is currently missing from the literature.

In this work, our first contribution is to address this
gap. Since data-aware low rank approximation has been the
previous state-of-the-art in LLM compression, we opt for
keeping it as a fundamental component of our method while
seeking to improve it. Our investigation and analysis show
that naively combining data-aware low rank approximation

VOLUME 14, 2026

with the parameter importance estimation method that was
suggested by FWSVD degrades the LLM’s performance
on downstream tasks compared to using data-aware low
rank approximation alone. To overcome this, we propose to
use neuron importance estimation, an alternative approach
which considers parameters in functional groups, that often
leads to substantial improvements in downstream model
performance compared to the previous state-of-the-art under
similar compression ratios.

Besides the contributions that we make in the compression
method itself, we also consider the problem of parameter
count allocation across weight matrices. Although in previous
works uniform allocation has been the most common
approach to distribute parameters across matrices, in the
recent approach of SVD-LLMyv2, a novel algorithm has been
proposed as an improvement of the previous naive uniform
strategy. This previous approach relies on grouping weight
matrices based on their functionality in the transformer
blocks. In this work, we make a second contribution by
providing experimental evidence that a different grouping
strategy, based on layer index, is more effective. Our analysis,
ablation studies, and experimental findings support that
when compressing BERT [2], DistilBERT [14], Mobile-
BERT [15], and TinyBERT [16], foundational models for
natural language understanding, in the vast majority of cases,
the proposed approach achieves state-of-the-art performance
compared to other SVD-based algorithms. Furthermore,
we include a computational analysis across these compressed
architectures (DistilBERT, MobileBERT, and TinyBERT)
detailing the significant reduction in both MFLOPS/token
and total parameter count.

Il. RELATED WORK

Several approaches have been proposed to compress trans-
former architectures [9] in pre-trained LLMs [1], [2], [3], [4],

6107

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

[5]1, [171, [18], [19]. Broadly, these methods fall into four
categories.

Pruning methods [20], [21], [22], [23] aim to eliminate
as many parameters as possible, effectively zeroing out
the corresponding weights in the model’s transformation
matrices. On the one hand, unstructured pruning removes
individual parameters without constraints, but typically
requires specialized hardware for efficient deployment.
On the other hand, to improve hardware compatibility,
structured pruning removes entire rows or columns from
weight matrices, which aligns well with standard hardware
architectures optimized for fast matrix multiplication.

Distillation-based methods [14], [16], [24] leverage
knowledge distillation [25] to reduce the number of neural
network (NN) parameters by training a smaller model to
mimic the behavior of the original. While often effective,
this approach can be computationally expensive, as it requires
retraining a model from scratch.

Third, and most relevant to our work, low-rank approxi-
mation methods [26] approximate transformer weight matri-
ces using singular value decomposition (SVD), factorizing
them into the product of two low-rank matrices. Standard
SVD treats all entries as equally important for minimizing
reconstruction error. FWSVD [12] improves on this by
weighting parameters according to their importance to the
model’s output. Parameter importance is determined via
differentiating the task loss with respect to the parameter
and taking the magnitude of the gradient, a process that
requires additional access to a calibration dataset. A more
recent study [27] revealed that most transformer matrices are
not low rank, and thus, when trying to compress them via
low-rank approximation, the resulting compressed networks
exhibit significant performance drops. However, it was found
that the opposite holds for intermediate token representations,
which appear to have a low rank structure. Since the rank
of a matrix product is less than or equal to the minimum
among the ranks of individual matrices participating in
the multiplication, DRONE [28], ASVD [29], and SVD-
LLM [30] approached compression from the perspective of
functional equivalence, minimizing errors in the result of
matrix multiplications. However, DRONE required caching
intermediate feature activations, resulting in large memory
requirements. SVD-LLM alleviated this restriction by relying
only on their covariance matrix. At the same time, SVD-LLM
ensured faithful estimation of the matrix multiplication error
based on the truncated singular values, a limitation of ASVD.
Yet, in its initial version, SVD-LLM relied on Cholesky
decomposition, which (a) requires positive-definite matrices,
a requirement that is not always fulfilled, and (b) can suffer
from numerical instabilities during iterative optimization.
Both issues were addressed by SVD-LLMv2 [13], using
a two-step SVD algorithm. Low-rank approximation has
also been combined with knowledge distillation in [31].
Our approach combines SVD-LLMv2, the best performing
method among the previously discussed state-of-the-art, with
ideas inspired from FWSVD.

6108

In low-rank approximation approaches, a fundamental
hyperparameter that controls the compression rate - per-
formance tradeoff is the rank of the compressed matrix.
Since the network itself has varying sensitivity with respect
to the different matrices across layers, distributing the
compression rate across matrices for optimal performance
typically requires an exhaustive sensitivity analysis, which
is practically infeasible. Some of the approaches [12], [30]
simply distribute the compression rate evenly across layers,
while other approaches [13], [28], [29] heuristically simplify
the exhaustive search in more manageable terms. Our
approach is computationally efficient and builds on top of the
rank selection algorithm of SVD-LLMv2.

Fourth, and orthogonal to the previous approaches for LLM
compression, is weight quantization [32], [33], [34], [35],
which typically reduces the memory requirements to perform
model inference by quantizing the parameters of the LLM
under a fixed budget of binary digits. Recent advances
in post-training quantization (PTQ) [36], demonstrate that
high-accuracy LLM quantization can be achieved without
retraining. In parallel, quantization-aware training (QAT)
techniques [37] tailored for LLMs further improve robustness
by modeling quantization noise during fine-tuning. Similar to
other low-rank approximation techniques, our approach can
additionally benefit from such schemes.

Ill. BACKGROUND

In this section, we provide foundational components to
understand our approach. We begin by revisiting core
elements of the Transformer architecture [9], followed by
a description of BERT [2], the Language Model that
will become the basic subject of our experiments and an
overview of the architectures of DistilBERT, MobileBERT,
and TinyBERT, given their role as additional models for
our compression method. We then review SVD [10] and
its application as a post-training compression technique.
Finally, we provide an overview of two prominent SVD-
based methods, FWSVD [12] and SVD-LLMv?2 [13], which
serve both as comparison baselines and inspiration for the
development of the proposed method.

A. THE TRANSFORMER ARCHITECTURE

In transformer architectures, a token is the smallest unit of
input (such as a word, subword, or character) that the model
processes after being mapped to an embedding vector. Let
X € RP*N denote a matrix of N tokens, each one represented
by a D-dimensional vector in the embedding space.

The core of a Transformer is a stack of layers. Each
transformer layer or block contains two main components:
a self-attention mechanism and a feed-forward network
(FFN). The self-attention mechanism uses two matrices,
namely the query O = WEX and key K = W,T<X to
weigh the importance of each token to the others and create a
contextualized representation by linearly combining a matrix
of values V. = WIX. The output of the self-attention
mechanism is subsequently transformed by a linear layer with

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

weight matrix W,. The feed-forward network, also referred
to as the multi-layer perceptron (MLP) block, then processes
the previous output to learn higher-level features. In the
self-attention mechanism, four weight matrices are involved,
which are amenable to compression, namely Wo, Wk,
Wy, and W, while the feed-forward block introduces two
additional matrices, with the first performing up-projection
and the second down-projection. We refer to those matrices
as W, and W4, respectively.

These two components of the transformer block are
wrapped in a residual connection, and each one is followed
by layer normalization, which both are essential for stable
training and scaling to the deep architectures that characterize
modern LLMs.

B. NEURONS AND PRE-ACTIVATIONS

A neuron in a NN can be understood as a simple function
that computes the inner product between an input vector
and a weight vector. If the input is an embedding vector
x € RP corresponding to a token representation, and the
neuron’s weights are w € RP, the output is given by y =
wT x, which is a scalar representing the neuron’s output, also
sometimes referred to as the neuron’s pre-activation due to
often becoming the input to a non-linear activation function
such as the rectified linear unit (ReLU) [38].

At a layer level, many neurons are organized together, and
their weights form a weight matrix W € RP*Y'| where D'
corresponds to the number of neurons in the layer. Addition-
ally, a collection of N input token representations may be
arranged in a matrix X € RPN, Then, the layer’s output
computation can be expressed compactly as ¥ = WX,
where the output Y € RPXN s a matrix, and each element
of Y corresponds to the output of a single neuron for a single
token. Typically, a transformer layer is comprised of a set of
weight matrices, each one being responsible for supporting a
different mechanism, such as the self-attention mechanism or
the transformation of the feed-forward network. Still, we will
be referring to these individual weight matrices as layers due
to stacking a collection of neurons. In most cases, we will
be mentioning transformer layers explicitly, but occasionally
whether the term layer refers to them can be inferred from
context.

C. BERT-BASED ARCHITECTURES

The standard Bidirectional Encoder Representations from
Transformers (BERT) model is an encoder-only architecture
composed of 12 identical Transformer blocks, all following
the description given in Section III-A. BERT pre-training
involves bi-directional mask-language modeling, i.e. training
the network to predict masked tokens by conditioning both
on the left and on the right context of the masked token,
and additionally performing next sentence prediction, i.e.
to predict whether a second sentence is a natural continuation
of the first one. This pre-training scheme allows BERT

VOLUME 14, 2026

to excel in NLU tasks with subsequent fine-tuning and a
minimal computation budget.

DistilBERT is essentially a compact version of BERT,
successfully distilled down to 6 layers half the size of the
original resulting in 40% fewer parameters. The trick is
knowledge distillation: the small student model is trained not
just on text, but also on the outputs of the larger BERT teacher,
which allows it to retain a remarkable ~ 97% of the original
model’s language understanding capability.

MobileBERT was designed specifically for speed and
efficiency on mobile devices. Its unique structure uses a
bottleneck design by introducing an intermediate projection
layer that significantly narrows the Transformer’s hidden
dimensions, coupled with factorized self-attention mech-
anisms. This innovative layer decomposition reduces the
parameter count and latency dramatically, allowing it to
maintain strong performance while being highly efficient.

TinyBERT adopts a more aggressive strategy for model
compression, aiming to substantially reduce model size while
preserving downstream performance. Its training relies on a
comprehensive two-stage knowledge distillation framework.
In the first stage, the student model learns from the
teacher’s internal representations by distilling information
from intermediate Transformer layer outputs. In the second
stage, it captures the teacher’s behavior by distilling its
attention distributions. By jointly aligning both hidden states
and attention patterns with those of the teacher, TinyBERT
achieves significant compression often up to 7.5x smaller
than BERT base while maintaining strong task performance.

D. LOW-RANK APPROXIMATION FOR MODEL
COMPRESSION

A common approach to reduce the size of large neural
networks is via SVD and low-rank approximation. A weight
matrix W € R™>" can be approximated as W' = U rZ,VrT,
where U, € R™ and V, € R"™" are truncated orthogonal
matrices, ¥, € R is a diagonal matrix of the top r
singular values, and r < rank(W). The singular values in X,
ordered from largest to smallest, represent the contribution of
the corresponding components of U, and V, in the original
matrix W.

This technique is used to compress the large, weight
matrices found in models like BERT. Instead of storing the
full original matrix W € R™*", we can store two smaller
matrices, A € R™*" and B € R"*", which, when multiplied,
approximate the original matrix (W =~ AB). This can be done
by simply setting A = U, /=, and B = \/E_,VrT, with /',
denoting the matrix with all elements equal to the square root
of ¥,.

According to our definition, the original model’s matrix
W has mn parameters. The total number of parameters in A
and B is mr + rn = r(m + n), where r is the chosen rank
for the approximation. For effective compression, the new
parameter count must be less than the original. This condition
is met when: mr 4+ rn < mn. This concludes that r must be
chosen such that r < (mn)/(m + n). A smaller r decreases

6109

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

parameter count and speeds up computations, but increases
approximation error, which can affect performance.

The foundational method for low-rank approximation
within the Transformer architecture is truncated SVD (tSVD),
which is deterministic. tSVD works by isolating and keeping
only the most important singular components (vectors
and values) while discarding the rest. The complexity of
tSVD is managed by utilizing specialized Krylov-based
algorithms [39] that focus computation exclusively on these
dominant components, avoiding the cost of calculating the
full matrix spectrum. An alternative approach is randimized
SVD (rSVD) [40], which uses random projections to create a
smaller, sampled version of the matrix, significantly reducing
the computation time. While rSVD offers a notable speed
advantage, our methodology relies on the deterministic tSVD
because it provides the essential guarantee of optimality
(Eckart-Young theorem) and numerical stability. This stabil-
ity is crucial for zero-shot compression tasks.

E. FWSVD

Fisher-Weighted Singular Value Decomposition (FWSVD)
extends low-rank approximation by integrating the concept
of parameter importance. While the SVD method assumes
that all parameters of a model’s weight matrix W have the
same importance to the matrix reconstruction error, FWSVD
leverages the Fisher information matrix to quantify the
importance of each parameter in W to the task loss, ensuring
that the most critical components for model performance are
better preserved during the compression process.

For a single parameter w;; at the location (i, j) in a model’s
weight matrix W, the Fisher Information, denoted as fw,_,j,
measures the amount of information that a dataset D provides
about the parameter. This is computed as the sample average
of the squared partial derivative of the task’s loss function
L(d;; wij) with respect to wy;, given by:

ID|

I 12(8 L))2 (1)
"i = D] & \gwy

with d; denoting the i-th sample of the dataset and |D| its total
number of samples.

The Fisher-Weighted approach changes the optimization
objective from a generic mathematical one to a task-specific
one. While the standard SVD objective is to find a low-rank
approximation W' that minimizes the reconstruction error,
expressed as miny||[W — W[y, the FWSVD objective
is given by minW/||iW o (W — W)||p with 1,, a matrix
with elements fwl,. and o denoting the Hadamard product.
However, this optimization problem does not have a closed-
form solution. For this reason, the authors of [12] proposed
an approximation: mmwr||I W —Iw’ ||7, with Ia d1ag0nal
matrix whose diagonal element I; in row i is equal to I =

N>y i bwi- In this way, each neuron i is assigned an importance

weight 1; based on the Fisher information that the dataset
provides regarding its parameters. The approximation holds

6110

due to the fact that whenever all elements in a row of W share
the same importance, the Hadamard product can be written as
a standard matrix product with a diagonal matrix.

F. SVD-LLMv2

The most prominent SVD-based work is SVD-LLMv2,
which combines the concepts of data-aware low-rank approx-
imation with a computationally efficient and effective rank
allocation algorithm, an algorithm that assigns ranks to
each one of the approximated matrices under a predefined
parameter budget. Instead of minimizing the error on the
weight matrix (as SVD and FWSVD do), the optimization
objective of SVD-LLMv2 is defined on the layer’s output pre-
activations, given by miny/||WX — W'X ||,, with X denoting
a matrix of token representations to be transformed by the
layer’s matrix W. The SVD-LLMv2 approach, by focusing
on the layer’s functional behavior, has been shown to better
preserve task performance.

Additionally, the algorithm for matrix approximation that
was introduced by SVD-LLMv2 ensures that the error in
the layer’s output pre-activations can be directly predicted
from the truncated singular values. This is a significant
improvement over previous approaches [28], [29], which
suffer from a sharp drop in performance when truncating
the smallest singular values due to the fact that they are
not directly related to the truncation error of the layer’s
pre-activations.

Rather than applying a uniform compression ratio to every
layer, which can be inefficient given that the sensitivity
of the network with respect to different layers may vary,
SVD-LLMvV2 considers a heterogeneous allocation. It first
groups the weights by their type, regardless of transformer
layer index (e.g Wk, Wo, Wy, W,, W,, Wy, etc.). Then it
assigns a target rank to each of the weight matrices in the
group by using the error in the layer’s pre-activations under
uniform rank allocation as a proxy for the layer’s sensitivity
with respect to rank reduction. This approach considers
the matrix sensitivity to rank reduction from a functional
perspective, resulting in a better trade-off between model
size and performance preservation. What makes this grouping
strategy efficient is that matrices within the same group
share the same target parameter sub-budget, i.e. a parameter
sub-budget is defined for each group based on the overall
target compression ratio, and subsequently this sub-budget is
distributed across matrices within the group.

IV. MOTIVATION

A. COMBINING NEURON IMPORTANCE WITH
DATA-AWARE LOW RANK APPROXIMATION

Summarizing the discussion of the previous Section, to com-
pute the low-rank approximation of a weight matrix, on the
one hand, FWSVD considers the effect of each parameter on
the task loss, which we refer to as parameter importance
(PI). On the other hand, SVD-LLMv2 considers the effect of
the parameters on the layer’s output pre-activations, aiming

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

for a functional equivalence of the layer before and after
the compression. In this work, we are inspired by both
methods in order to explore an approach that combines ideas
from both perspectives. In particular, instead of minimizing
miny ||WX —W’X||r aiming for low reconstruction error on
the layer’s output, i.e. the functional equivalence objective of
SVD-LLMv2, we also consider the effect of the layer’s output
pre-activation on the task loss. This leads to the following
optimization objective minyy- | |i yo(WX — W' X)||F, with I y
denoting a matrix containing the importance of each neuron’s
output to the task loss.

Solving this optimization problem faces the same limita-
tion as the original formulation of FWSVD, i.e. a lack of
closed-form solution. For this reason, we also approximate
the Hadamard product by considering standard multiplication
with a diagonal matrix I whose diagonal element in row i
is equal to the overall importance of the i-th neuron to the
task loss. The latter is computed by aggregating the neuron’s
importance over several samples in a calibration dataset.
Thus, in our approach, we find W’ that minimizes ||i WX —
IW'X||r. A first intuitive choice for computing the diagonal
elements of I is to aggregate parameter importances for
each neuron, as it is done in FWSVD. However, in the
experiments, we provide statistically significant evidence
that this is suboptimal, leading to compressed networks
that perform worse than when using data-aware low-rank
approximation alone. As we discuss in Section V-A, we were
able to improve on that by considering a different strategy.
This strategy is based on a direct way to measure neuron
importance (NI) that does not rely on the parameter
importance previously considered by FWSVD.

B. DYNAMIC RANK ALLOCATION ACROSS MATRICES

Each target compression ratio (CR) can be directly translated
to a total parameter budget under which the compressed
LLM should fit. In low-rank approximation, the number of
parameters in a layer is directly controlled by the rank of the
approximation. Thus, distributing the total available param-
eters to individual layers can be accomplished by deciding
on the rank of the approximation for each weight matrix.
Performing rank allocation, that is, distributing target matrix
ranks under a fixed parameter budget to individual layers, is a
combinatorial and practically intractable problem, as optimal
allocation relies on exhaustive search.

Previous approaches either resorted to proportionally
equivalent reduction of parameters across layers [12], [30]
(which we call uniform allocation), or based their decision
on algorithms that were inspired by studies in a reduced
search space. For instance, [29] found that optimal rank
allocation varies both with layer depth and the layer’s
functional type (i.e. if it corresponds to Wo, Wy, W,, W,
etc.). Meanwhile, [28] found that compression distortions
from lower layers may result in progressively accumulative
errors towards the latter layers, implying that rank allocation
should vary with depth and compressing lower layers should
be more conservative compared to higher ones. Additionally,

VOLUME 14, 2026

[13] focused on allocating ranks for layers in the same
functional group, exploiting the fact that the matrices in
the same group share the same size. Despite the reduction
in the search space, the rank allocation algorithm of [28]
is still computationally expensive and is driven by model
performance instead of parameter budget. Even though
the rank allocation algorithm of [13] is computationally
efficient, adapting it to a different grouping strategy requires
addressing the challenge of matrix size variability among
matrices in the same group. Our approach addresses these
challenges by building on the findings of [28], while adapting
the computationally efficient algorithm of [13] to group
layers by their depth index instead of their functional role.

V. PROPOSED METHOD

Our proposed hybrid compression methodology is a post-
training, SVD-based pipeline that fuses key concepts from
recent advancements to achieve more efficient and effective
compression. As shown in Figure 1, our approach synthesizes
data-aware low-rank approximation with the concept of
Fisher-weighted neuron importance. We also introduce a
heterogeneous rank allocation that improves upon previous
methods by adapting compression on a per-layer basis.
The following subsections detail the core components of
our pipeline, outlining our complete process from the
computation of neuron importance to the final data-aware
low-rank approximation and rank allocation algorithm.

A. NEURON IMPORTANCE ESTIMATION

We propose to estimate neuron importance by computing the
amount of Fisher Information that a dataset provides about
the neuron’s output pre-activation, instead of the neuron’s
parameters. Following the notation of Section IV-A, we cal-
culate the element of y at the position (i, j) for the k-th sample
of the dataset dj, as:

R d 2
Iy, = (EL(yij(dk))) 2
with L the task loss function and y;; a spatial element in the
matrix of layer outputs: ¥ = W’ X. We subsequently form
the neuron importance matrix I,a diagonal matrix with its
element in row i being equal to the importance of neuron i:

DI

1 R
li= ﬁ ZEJ[Iyij|dk] (&)

k=1

B. DATA-AWARE LOW RANK APPROXIMATION DRIVEN BY
NEURON IMPORTANCE

We adapt the weight truncation algorithm of SVD-LLMv2
by integrating the neuron importance matrix I of the
previous section into the process of low-rank approximation.
Algorithm 1 summarizes the process of decomposing a
matrix W to its low-rank approximation W = AB and is a
generalization over the algorithm proposed by SVD-LLMv2,
with the two algorithms being identical whenever the neuron
importance matrix is equal to the identity matrix.

6111

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

Algorithm 1 Weight Truncation Algorithm
Input: W: Original weight matrix
X: Matrix of layer input activations
I: Diagonal matrix of neuron importances
R: Target rank for the low-rank approximation
Output: A, B, W’: Low rank approximation factors A, B
and compressed weight matrix W',
procedure Weight_Truncation(W, X, I, R)
S < xxT > Construct matrix S from X
Ug, SS; V, < SVD(S) © Perform SVD on matrix S

A

D <~ IWU /S, > Construct matrix D

Uiy, Sws, Vs < SVD(D) > Perform SVD on
matrix D

6 U, S, V! < Truncate(U,ys, Sys, Vs, R) > Per-

form SVD truncation based on target rank approximation
R -1
7. A<1 U!./S!, v The first matrix of low-rank
approximation
1., .
8 B <« /S V! /S U;' o Thesecond matrix of
low-rank approximation
9: W’ < AB > Reconstructed low-rank approximation
W/
10: return A, B, W’
11: end procedure

Let L = |IWX — IWX||p denote the weighted
compression loss when approximating W with a low rank
matrix W’. For any given rank of the approximation, the
theoretical minimum loss is given by the error induced
by the truncated SVD decomposition of IWX, denoted as
[ISVDAWX)||F.

Theorem 1: If Uy, Sg, V¢ are obtained by the SVD decom-
position of XX7 and U!,S! , V' are obtained by the

ws? Fws?

A

truncated SVD decomposition of I WU /S, the compressed
weight matrix W' = I v imSimV’Wﬂ/S_;lU ! minimizes
the weighted compression loss L.

Proof: Let Uy, Sy, V. denote the matrices from the SVD
decomposition of X. Since XX7 is symmetric, Uy = V.
Moroever, U, = U, and S, = +/S;. Let also C = U,./S,
which implies that C~! = \/S_;IU s_l. It is easy to show
that C~'X = V, which is orthogonal and thus does not
affect the Frobenius norm under matrix multiplication. For
the proposed choice of W’ the weighted compression loss L
becomes:

L=|IWX —IWX||r
A an—1 -1 __
= | IwWXx —II U S V! /S, U;'X||r

ws

7 - -1
=|Iwcc'x —U! S V! CT'X||F

ws=ws

= ||[dWC - U' 8! V! YCT'X||F

ws=ws

= ldWC - U, S, Vi)l

= [ISVDAWO)||F
= ISVDAWU /S,)l|F

6112

= |ISVDAWU,S,)||r
= |ISVDAWU.S.V.)l|F
= |ISVDAWX)||F

which is equal to the theoretical minimum. g

Algorithm 1 computes W’ based on Theorem 1 and
suggests a low rank matrix approximation that minimizes the
weighted compression loss.

C. DYNAMIC RANK ALLOCATION

Following Section III-F, and based on the findings of [28]
we propose an adaptation of the rank allocation algorithm
of [13] by changing the grouping strategy of the weight
matrices to be based on transformer layer index (i.e. layer’s
depth in the transformer’s sequence of layers). This change
in the grouping implies that a target parameter sub-budget is
defined for all matrices within a transformer layer, instead
of matrices with the same functional role. The algorithm still
distributes this sub-budget to each matrix in the group based
on matrix sensitivity to rank reduction, as it was proposed
in [13].

Our layer index-based rank allocation method groups all
weight types (e.g. Wo, Wi, Wy, W,, W, and W) with the
same transformer layer index /, by treating each one of the
transformer layers in the BERT-family models as a distinct
group. This layer-wise approach modifies the algorithm to
derive a compression ratio r for each weight matrix and
ensures iterative refinement for optimal balance.

Algorithm 2 summarizes our layer index-based rank allo-
cation strategy. The algorithm requires as an input the original
LLM, a representative set of input activations resulting from
the calibration dataset, and the effective compression ratio.
The effective compression ratio is calculated to account
for parameters non amenable to compression, possibly due
to the high sensitivity of the network with respect to
these parameters, while still aiming for a specific overall
target compression ratio. The algorithm first groups the
model’s weights by their layer (line 2) and then computes
a normalized theoretical loss (lines 6-10), which serves as a
proxy for that layer’s sensitivity to rank reduction. For a given
matrix W, the theoretical loss function first translates the
target compression ratio (R) into the corresponding retained
SVD rank (k) to compute its low-rank approximation W'.
It then uses W’ to calculate the error on the layer’s output pre-
activations Lyin = |WX — W'X ||, indicated as theoretical
loss. Compression ratios are then distributed proportionally
to these normalized errors (lines 12-15), ensuring that layers
deemed more sensitive to rank reduction receive higher ranks.
Line 18 performs the necessary transformation from the
calculated proportional ratios (Ry) into the specific, non-zero
integer SVD ranks (k) required for each weight matrix W
in the model (M). To further meet the consistency with
the global compression target, the iterative refinement loop
(lines 23-34) adjusts matrix ranks to ensure that the desired
ratio is achieved. The update rule (lines 28-29) ensures

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

Algorithm 2 Layer Index-Based Rank Allocation Algorithm
Input: M: Original LLM
X: Input activations
R: Effective target compression ratio
Output: R;: Compression rank allocation per layer (list of lists)

1: procedure Rank_Allocation(M, X, R)

2: G <« Group(M) > Group weights by layer index
3: Ry <0 > Initialize the compression ratio list
4: for g in G do

5: Lg < 0 > Initialize the loss list in the group
6: for W in g do

7T:

Lyin < Theoretical_Loss(W, X, R) > Compute per
weight theoretical loss

8: Lg < Lg U Ly, > Append loss to list
9: end for
10: Lg < 1/Log(Lg) > Normalize Lg
11: layer_ratios <— () Initialize layer compression ratios
list
12: for L,,;, in Lg do
13: r < Len(Lg) X R X Ly, /Sum(Lg) > Allocate
ratios proportionally to normalized loss
14: layer_ratios < layer_ratios U r > Append ratio to
list
15: end for
16: Ry < Ry U layer_ratios > Append layer_ratios list to
Rd list

17: end for
18: R; < Convert_Ratios_to_Ranks(M, R;) > Convert ratios
to ranks for each weight

19: total_params <— Count_Total_Parameters(M) > Count all
the parameters of the model

20: comp_params < Count_Compressed_Parameters(M, Ry)
> Count all the parameters of the compressed model

21: achieved_ratio <— 1 — comp_params [total_params) >
Compute achieved ratio after rank allocation

22: i< 0

23: while |achieved_ratio — R| > ¢ do

24: sign <— achieved_ratio — R

25: scale <— (1 — R)/(1 — achieved _ratio) > Compute
scaling factor

26: for layer_ranks in Ry do

27: for r in layer_ranks do

28: r < r + sign-i » Iteratively adjust rank based
on error direction

29: Ry < Update(Ry4, r) > Update rank allocation
list

30: end for

31: end for

32: i< i+1

33: end while

34: return R,

35: end procedure

convergence by increasing/decreasing matrix ranks whenever
the compressed model is under/over the target parameter
budget. This dynamic adjustment makes the allocation
procedure adaptive and computationally efficient, avoiding
exhaustive search strategies.

Overall, our layer index-based rank allocation algorithm
balances two objectives: (i) preserving the most critical
layers through proportional loss-aware rank allocation, and
(i) meeting the global compression constraint through
iterative refinement.

VOLUME 14, 2026

VI. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

We evaluate the effectiveness of our method by compress-
ing the standard 12-layer BERT transformer architecture.
We consider BERT, fine-tuned on 8 datasets of the GLUE-
Benchmark [41], namely cola, mnli-m, mnli-mm, mrpc, gnli,
qqp, sst-2 and sts-b. Each dataset corresponds to a different
task, and the performance of the (compressed) models is
evaluated under a task-specific metric. Single sentence tasks,
cola and sst-2 are measured by Matthew’s correlation and
classification accuracy, respectively. The sentence similarity
tasks mrpc and qgp are assessed by F-1 score, while
sts-b, using Pearson-Spearman correlation. Finally, natural
language inference tasks mnli-m, mnli-mm and gnli are
measured by accuracy.

For each one of the layers in the BERT architecture,
the matrices that we consider for compression are the
ones discussed in Section III-A, namely Wg, Wo, Wy, W,
W,, W4, We do not consider compressing the token
embedding matrix, nor the matrices involved in the layer-
normalization blocks. To compute the uncentered covari-
ance matrix S in Algorithm 1, we randomly sample a
(balanced) dataset of 256 text samples from the dataset’s
training split. We also compute neuron importances (NIs)
using the full training split of the dataset, as it is done
in FWSVD for parameter importances (PIs). In contrast
to FWSVD or SVD-LLMv2 which additionally consider
fine-tuning the compressed models to recover performance,
we emphasize results and comparisons without a fine-tuning
step. Even though fine-tuning may boost the results of any
previous SVD-based method, including ours, we want to
highlight the benefits of the proposed approach, namely
Neuron Importance driven Data-Aware SVD (NIDA-SVD),
under a low computation budget which does not involve
finetuning. Nevertheless, we report results with fine-tuning
when compressing MobileBERT and TinyBERT.

The experimental setup is extended to include the
structurally similar DistilBERT, as well as the specialized
MobileBERT and TinyBERT architectures. Since these
models are direct descendants of BERT, they are also
fine-tuned and evaluated on specific subsets of the GLUE
Benchmark using the corresponding task-specific metrics
described above. Specifically, the models are evaluated on the
following subsets: DistilBERT on mnli-mm, mrpc, gqnli, qqp,
and sst2, MobileBERT on mrpc, gnli, qgp, sst2, and stsb, and
TinyBERT on mnli-mm, mrpc, gnli, qgp, sst2, and stsb. For all
models, compression is applied to their Transformer encoder
blocks and dense layers. The methodology for computing the
matrix S and the neuron importance I remains identical for
all models.

In the following subsections, we present experimental
results comparing our method with the recent state-of-the-
art in low-rank approximation: SVD, FWSVD, and SVD-
LLMv2, and conduct ablation studies under different strate-
gies regarding parameter importance, neuron importance,
and rank allocation. Since the algorithm of SVD-LLMv2

6113

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

Wq Ranks Across Layers for Different Compression Strategies

242
240
238
236 A

£

c

S
232
230 —=— NIDA-SVD (index-based)
228 --+- Uniform

—+— SVD-LLMv2 (role-based)

4 8 10

6
Layer Index

(a) Wo

Wy Ranks Across Layers for Different Compression Strategies

240
237 //.

£
<
g 231
228
—=— NIDA-SVD (index-based)
» --+- Uniform
. —+— SVD-LLMv2 (role-based)
0 2 4 6 8 10
Layer Index
Wy
W, Ranks Across Layers for Different Compression Strategies
“e —=— NIDA-SVD (index-based)
432 --- Uniform
a3 —+— SVD-LLMv2 (role-based)
416
2 408
I
o
400
392
384
376 .\h\ /"_/*\A
S
A

6
Layer Index

ew,

Wy Ranks Across Layers for Different Compression Strategies

232

230 —=— NIDA-SVD (index-based)

228 --+- Uniform

- —+— SVD-LLMv2 (role-based)
0 2 4

8 10

Rank

6
Layer Index

(b) Wg

W, Ranks Across Layers for Different Compression Strategies
248
240

232 \/‘
224

—=— NIDA-SVD (index-based)
e --- Uniform

208 —+— SVD-LLMv2 (role-based)

Rank

0 2 4 6
Layer Index

(d) W,

W,y Ranks Across Layers for Different Compression Strategies
384 \/¥\
376
—=— NIDA-SVD (index-based)

--- Uniform
—+— SVD-LLMv2 (role-based)

Rank

344

336

328

°

4 6
Layer Index

(H W,

FIGURE 2. Visualization of BERT model ranks under 30% compression on QNLI dataset, comparing SVD-LLMv2 (role-based), Uniform, and NIDA-SVD

strategies: (a) Query, (b) Key, (c) Value, (d) Attention, (e) Up, (f) Down.

performs rank allocation based on the layer’s functional role
in the transformer block, we call it role-based allocation.
Contrariwise, our algorithm approaches rank allocation from
the perspective of the layer’s depth index, and thus we refer
to it as index-based allocation.

B. COMPARISON AGAINST THE STATE-OF-THE-ART

Table 1 summarizes performance metrics for the BERT model
compressed under different Compression Ratios (CR) with
a uniform rank allocation strategy. Overall, in 35 out of
40 cases (87.5%), our method is ranked first; the compressed
model retains most of its task performance when compressed
with our method. In the rest of the cases, our method is
ranked second, remaining competent to the top-performing
method, which is always SVD-LLMv2. We emphasize the

6114

improvement that our method offers compared to the previous
state-of-the-art, especially in the highest compression rate
(0.5): +3.15% absolute improvement in cola, +4.16% in
mnli-m, +4.82% in mnli-mm, 4+1.54% in mrpc, +2.48% in
gnli, +2.35% in qqp, and +2.33% in stsb.

Similarly, Table 2 summarizes performance metrics for
the BERT model compressed either with our method or the
previous state-of-the-art, SVD-LLMv2. In this comparison,
we consider each method to use its own rank allocation
algorithm: role-based allocation for SVD-LLMv2 and index-
based allocation for the proposed method. For the extended
experiments presented below, Table 3 (DistilBERT), Table 4
(MobileBERT), and Table 5 (TinyBERT), each utilized
its own rank allocation strategy (role-based for SVD-
LLMv2 and index-based for NIDA-SVD). For BERT,

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

W,y Ranks Across Layers for Different Compression Ratios

520

480

440

400

Rank

320
280 L

240

200 M
Layer Index

(@ W,

W, Ranks Across Layers for Different Compression Ratios
> M
325

300

275 —eo— CRO.1
20 CRO0.2
I R T (oot SO P S PO heeeennend Aeeeeeit *gi--CR 043
<2 D | S—

225) W A ey

200 —< CRO.5

—— e — e — T g —

175

150

125

Layer Index

(b) Wy

FIGURE 3. Visualization of BERT model weight ranks across different compression ratios (layer-based strategy) on the MRPC dataset: (a) Down, (b) Value.

TABLE 1. Compressed model performance metrics for different compression ratios (CR) on the BERT base model under uniform rank allocation. In 35 out
of 40 cases (87.5%), our method (NIDA-SVD) achieves state-of-the-art performance. The best results are in bold, while the second-best are underlined.

CR Method Rank Allocation cola mnli-m mnli-mm mrpc qnli qqp sst2 stsb
N/A BERT base N/A 0.562 0.847 0.849 0.906 0.916 0.88 0.923 0.891
SVD 02372 0.7745 0.7363 0.3693 0.7151 0.8043 0.8864 0.8028
01 FWSVD uniform 0.3488 0.8289 0.8148 0.8877 0.8936 0.8667 0.8933 0.8677
’ SVD-LLMv2 0.5548 0.8407 0.8423 09075 09115 0.8740 0.9174 (.8838
NIDA-SVD 0.5600 0.8434 0.8418 0.9157 09119 0.8747 09162 0.8846
SVD 0.1010 0.6744 0.6183 0.0282 0.5663 0.7145 0.8761 0.7025
02 FWSVD uniform 0.0657 0.7987 0.7526 0.8675 0.8500 0.8359 0.8761 0.8375
’ SVD-LLMv2 0.5254 0.8349 0.8335 09071 0.9009 0.8652 0.9151 0.8729
NIDA-SVD 0.5094 0.8383 0.8352 0.9128 0.9068 0.8684 0.9185 0.8740
SVD 0.0358 0.4895 0.4284 0.0000 0.4980 0.6083 0.8245 0.5043
03 FWSVD uniform 0.0270 0.7065 0.6275 0.8320 0.6760 0.7488 0.8360 0.7871
’ SVD-LLMv2 0.4543 0.8210 0.8152 0.8863 0.8755 0.8514 0.9025 0.8239
NIDA-SVD 0.4451 0.8245 0.8203 0.9003 0.8898 0.8561 0.9048 0.8420
SVD -0.0028 0.3850 0.3614 0.0000 0.4946 0.5764 0.6559 0.4276
0.4 FWSVD uniform 0.0207 0.5562 0.5152 0.6867 0.4978 0.6952 0.7213 0.7102
’ SVD-LLMv2 0.3206 0.7766 0.7691 0.8376 0.8088 0.8197 0.8876 0.7295
NIDA-SVD 0.3271 0.7901 0.7851 0.8657 0.8359 0.8322 0.8979 0.7652
SVD -0.0252 03713 0.3703 0.0000 0.4946 0.5743 0.5126 0.2265
05 FWSVD uniform -0.0172 0.3541 0.4778 0.0000 0.4949 04345 0.6032 0.5981
’ SVD-LLMv2 0.2079 0.6727 0.6678 0.8176 0.6875 0.7602 0.8772 0.6426
NIDA-SVD 0.2394 0.7143 0.7160 0.8330 0.7113 0.7837 0.8704 0.6659

In 35 out of 40 cases (87.5%), our method outperforms SVD-
LLMv2 while remaining comparable to SVD-LLMv2 in the
remaining 5. In this case, under the highest compression
ratio (0.5), our method makes an absolute improvement
of +4.41% in cola, +4.94% in mnli-m, +5.01% in mnli-
mm, +1.82% in mrpc, +4.14% in gnli, +1.92% in ggp and
+6.41% in stsb.

Table 3 presents the DistilBERT results, comparing our
NIDA-SVD against the SVD-LLMv2. Our method shows
a clear performance advantage, achieving the best result
in 23 out of 25 comparisons (92%). This advantage is
especially pronounced at the compression ratio of 0.3, where
NIDA-SVD delivers significant absolute improvements,
including 4+0.90% in mnli-mm and +2.43% in gnli.

The MobileBERT results, detailed in Table 4 , compare
our NIDA-SVD approach against the SVD-LLMv2. Our
methodology demonstrates a clear performance advantage in
21 of the 25 total comparisons (84%). This general advantage
is mostly observed across 0.3 compression ratio, including
qqp (+3.68%), stsb (+2.03%), and sst2 (+1.03%).

VOLUME 14, 2026

The compression performance on the highly reduced
TinyBERT architecture is documented in Table 5 . Comparing
NIDA-SVD against the SVD-LLMv2, NIDA-SVD exhibits a
robust performance advantage, securing the superior metric in
17 out of 18 total comparisons (94.4%). The most substantial
performance gains are concentrated at the compression ratio
of 0.2. At this level, NIDA-SVD registers notable absolute
increases, specifically +1.43% in gnli, +0.98% in mnli-mm,
and +0.54% in gqp, confirming the efficacy of the data-aware
approach even on extremely compact models. Note that Tiny-
BERT, being a highly distilled and compact model (14.3M
parameters), was only compressed up to a compression ratio
of 0.3 (70% parameter reduction), as pushing for a higher
compression ratio would likely lead to catastrophic perfor-
mance collapse due to its limited architectural redundancy.

While the primary focus of this work is post-training
compression, it is informative to examine how well the
performance of highly compressed models is recovered
by subsequent fine-tuning. Table 6 presents the results
after a single fine-tuning epoch on both MobileBERT and

6115

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

TABLE 2. Comparison of our method (NIDA-SVD) against the previous state-of-the-art (SVD-LLMv2) for BERT base model under different compression
ratios (CR). Each method is complemented with its own rank allocation algorithm. In 34 out of 40 cases (85%), our method outperforms SVD-LLMv2,

especially in high compression ratios. The best results are in bold.

CR Method Rank Allocation cola mnli-m mnli-mm mrpc qnli qqp sst2 stsb
N/A BERT base N/A 0.562 0.847 0.849 0.906 0.916 0.88 0.923 0.891
01 SVD-LLMv2 role-based 0.5573 0.8419 0.8429 0.9087 09126 0.8736 09139 0.8841
) NIDA-SVD index-based 0.5522 0.8456 0.8444 0.9078 09121 0.8739 0.9162 0.8866
0.2 SVD-LLMv2 role-based 0.5325 0.8369 0.8340 09134 09002 0.8657 09110 0.8722
' NIDA-SVD index-based 0.5147 0.8396 0.8387 0.9090 0.9068 0.8690 0.9116 0.8793
03 SVD-LLMv2 role-based 0.4556 0.8206 0.8171 0.8907 0.8766 0.8531 0.9002 0.8242
' NIDA-SVD index-based 0.4736 0.8283 0.8224 09026 0.8923 0.8576 0.9013 0.8608
04 SVD-LLMv2 role-based 0.3276 0.7802 0.7715 0.8366 0.8103 0.8199 0.8944 0.7231
' NIDA-SVD index-based 0.3486 0.7954 0.7907 0.8708 0.8458 0.8345 0.8956 0.8031
05 SVD-LLMv2 role-based 0.2039 0.6762 0.6750 0.8176 0.6917 0.7698 0.8727 0.6435
' NIDA-SVD index-based 0.2480 0.7255 0.7251 0.8358 0.7331 0.7890 0.8704 0.7076

TABLE 3. Comparison of our method (NIDA-SVD) against the previous state-of-the-art (SVD-LLMv2) for DistilBERT base model under different
compression ratios (CR). Each method is complemented with its own rank allocation algorithm. In 23 out of 25 cases (92%), our method outperforms
SVD-LLMv2, especially in high compression ratios. The best results are in bold.

CR Method Rank Allocation mnli-mm mrpc gnli qqp sst2
N/A DistilBERT base N/A 0.8232 0.8892 0.8874 0.80643 0.9128
0.1 SVD-LLMv2 role-based 0.8147 0.8851 0.8720 0.8569 0.9101
’ NIDA-SVD index-based 0.8172 0.8877 0.8724 0.8579 0.9105
02 SVD-LLMv2 role-based 0.8055 0.8866 0.8420 0.8490 0.9092
) NIDA-SVD index-based 0.8088 0.8870 0.8561 0.8497 0.9082
03 SVD-LLMv2 role-based 0.7742 0.8756 0.7761 0.8317 0.9036
’ NIDA-SVD index-based 0.7832 0.8766 0.8004 0.8320 0.9059
0.4 SVD-LLMv2 role-based 0.7016 0.8396 0.6421 0.7591 0.8841
) NIDA-SVD index-based 0.7132 0.8467 0.6615 0.7694 0.8876
05 SVD-LLMv2 role-based 0.5592 0.8040 0.5335 0.5101 0.8463
) NIDA-SVD index-based 0.5727 0.8053 0.5387 0.4919 0.8532

TABLE 4. Comparison of our method (NIDA-SVD) against the previous state-of-the-art (SVD-LLMv2) for MobileBERT base model under different
compression ratios (CR). Each method is complemented with its own rank allocation algorithm. In 22 out of 25 cases (88%), our method outperforms
SVD-LLMv2, especially in high compression ratios. The best results are in bold.

CR Method Rank Allocation mrpc qnli qqp sst2 stsb
N/A° MobileBERT base N/A 0.8888 0.9068 0.8670 0.9128 0.8773
01 SVD-LLMv2 role-based 0.8625 0.8224 0.7856 0.8830 0.8191
) NIDA-SVD index-based 0.8603 0.8506 0.8042 0.8841 0.8452
02 SVD-LLMv2 role-based 0.8277 0.7940 0.7437 0.8337 0.7741
) NIDA-SVD index-based 0.8290 0.8065 0.7664 0.8451 0.7972
03 SVD-LLMv2 role-based 0.8218 0.7298 0.6971 0.8027 0.7570
) NIDA-SVD index-based 0.8284 0.7346 0.7339 0.8130 0.7773
0.4 SVD-LLMv2 role-based 0.8183 0.5976 0.6750 0.7717 0.6691
) NIDA-SVD index-based 0.8210 0.5991 0.6782 0.7740 0.7053
05 SVD-LLMv2 role-based 0.6895 0.5081 0.5834 0.7419 0.4664
’ NIDA-SVD index-based 0.6919 0.5092 0.5735 0.7488 0.3867

TABLE 5. Comparison of our method (NIDA-SVD) against the previous state-of-the-art (SVD-LLMv2) for TinyBERT model under different compression
ratios (CR). Each method is complemented with its own rank allocation algorithm. In 17 out of 18 cases (94%), our method outperforms SVD-LLMv2,

especially in high compression ratios. The best results are in bold.

CR Method Rank Allocation mnli-mm mrpc qnli qqp sst2 stsb
N/A TinyBERT base N/A 0.7955 0.8881 0.837 0.8512 0.8704 0.8731
01 SVD-LLMv2 role-based 0.7759 0.8722 0.8107 0.8405 0.8612 0.8647
) NIDA-SVD index-based 0.778 0.8736 0.8125 0.8421 0.8646 0.8672
02 SVD-LLMv2 role-based 0.6456 0.8278 0.6761 0.7837 0.8486 0.8202
' NIDA-SVD index-based 0.6554 0.8291 0.6904 0.7891 0.8451 0.8233
03 SVD-LLMv2 role-based 0.3721 0.8122 0.5215 0.5406 0.5676 0.1146
' NIDA-SVD index-based 0.3802 0.8122 0.5216 0.5422 0.5745 0.115

TinyBERT, compressed at 0.5 and 0.3 compression ratio,
respectively. Even after introducing the fine-tuning step,
NIDA-SVD generally maintains better results than SVD-
LLMv2. For MobileBERT, NIDA-SVD registers meaningful

6116

gains in gnli and sst2 (both achieving an approximate +1.26%
improvement over SVD-LLMyv2). Similarly, on TinyBERT,
NIDA-SVD captures an advantage in the inference tasks
(mrpc and gnli), with the gnli metric recovering +0.92%

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

TABLE 6. Single-epoch fine-tuning comparison of NIDA-SVD and
SVD-LLMv2 on MobileBERT at 0.5 compression ratio and TinyBERT at
0.3 compression ratio. The results (F1/Accuracy on MRPC, QNLI, SST-2)
show that fine-tuning after NIDA-SVD compression achieves better
accuracy in 4 out of 6 cases (66.6%), demonstrating robust performance
despite the substantial compression level.

CR Method mrpc qnli sst2
N/A~ MobileBERT 0.8888 0.9068 0.9036
05 SVD-LLMv2 0.8145 0.8281 0.8543
) NIDA-SVD 0.8096 0.8407 0.8669
N/A TinyBERT 0.8881 0.837 0.8704
03 SVD-LLMv2 0.816 0.6148 0.8325
' NIDA-SVD 0.8222 0.624 0.8176

better than the baseline. Overall, across the six task-model
pairs evaluated, the NIDA-SVD compressed models yield
better accuracy in four instances, underscoring the robustness
of our data-aware, importance-driven initialization.

C. ABLATION STUDIES

In Table 7 we provide experimental evidence that under uni-
form rank allocation, naively combining FWSVD with SVD-
LLMv2 (NIDA-SVD (PI)) in 26 out of the 40 cases (more
than half of them), the compressed model’s task performance
is inferior compared to when not using PI at all (in which
case the algorithm is equivalent to vanilla SVD-LLMv2).
We note that NIDA-SVD (PI) is equivalent to Algorithm 1
but with I computed as discussed in Section III-E, whereas in
NIDA-SVD (NI), Iis computed as discussed in Section V-A.
Overall, in 38 out of 40 cases (95%), NI is more effective than
PI, and in 35 it improves upon SVD-LLMv2, while remaining
competent in the rest of them.

Tables 8 and 9 summarize experimental results regarding
the efficacy of our proposed index-based rank allocation,
compared to other strategies that were previously considered.
The experiments show that regardless of the compression
algorithm being SVD-LLMv2 or NIDA-SVD, index-based
allocation is a better choice for the majority of the cases (more
than 67.5% of them). Furthermore, a row-wise comparison
of Tables 8 and 9 reveals that, in most cases, NIDA-SVD
outperforms SVD-LLMv2 under any rank allocation algo-
rithm. While for uniform rank allocation this was discussed
in the previous section, for role-based allocation, NIDA-
SVD outperforms SVD-LLMv2 in 34 cases (85%) while
for index-based allocation in 33 (82.5%). In many cases the
improvement is substantial, especially at high compression
ratios: by up to +4.54% absolute improvement in role-based
rank allocation and 4-7.97% for index-based rank allocation.

D. RANK ALLOCATION ANALYSIS

The rank allocation analysis indicates that the index-based
strategy (NIDA-SVD) offers advantages over the role-based
approach (SVD-LLMv2), mainly because the role-
based method handles matrix ranks in a more uniform manner
across all transformer layers (especially in Figure 2 (a),(b)
and (e), resulting in a flatter rank profile that fails to capture
the intrinsic heterogeneity in network’s sensitivity among
layers. This results in role-based ranks being consistently

VOLUME 14, 2026

closer to uniform values, reflecting a more uniform
compression approach across the network. In contrast,
the index-based strategy, as detailed in Section V-C and
Algorithm 2, groups all compressible weight types by indi-
vidual layer index, allowing for a more targeted distribution
of ranks that adaptively varies according to the specific
redundancy and importance of each layer. This approach
enables the index-based method to exploit layer-specific
redundancies more effectively, as demonstrated in the plots of
Figure 2 (a)-(f). Particularly in Figure 2 (e), the role-based
ranks align much more closely with the uniform values when
compared to the index-based ranks.

In Figure 2 (a) and (b), the two images illustrate the rank
allocations for the down projection and value weight matrices
across the 12 layers of the BERT model under varying
compression ratios (0.1 to 0.5) using the index-based strategy.
For all compression ratios, the behavior of ranks within the
same weight type follows a consistent pattern. Specifically,
for the W, (Figure 3 (a)), the earlier layers (e.g. 0-5) are
more sensitive to compression, requiring more parameters
to maintain performance, in contrast to the later layers
(e.g. 6-11). Also, for the Wy (Figure 3 (b)), the earlier layers
are less sensitive to compression than the later layers. As we
can see, there are different patterns for different weight types
across the layers.

Generally, we cannot assume that a weight will exhibit a
specific behavior in rank compression across layers, as the
sensitivity to compression can vary depending on the weight
type and its index within the model. Our rank allocation
algorithm identifies these distinct patterns by analyzing
the intrinsic redundancy and importance of each layer,
dynamically adjusting the ranks to optimize performance.

E. MEMORY AND COMPUTATIONAL ANALYSIS

The primary motivation for model compression is to min-
imize memory and inference time, especially for deploy-
ment on resource-constrained devices. To quantify the
advances achieved by our low-rank approximation methods,
we conducted a complexity analysis measuring both the
memory requirements, represented by total parameters (in
millions), and the computational cost, measured in MFLOPS/
token. This analysis conducted in DistilBERT and Mobile-
BERT for comrpession ratio 0.5, and TinyBERT for com-
pression ratio 0.3, comparing the uncompressed base models
against the two SVD-based (SVD-LLMv2 and NIDA-SVD)
compression approaches.

The results presented in Table 10 clearly demonstrate
the reduction in model size. For DistilBERT, compression
reduces the total parameters from 66.9 million to approx-
imately 33.4 million, achieving the targeted 50 reduction.
Similarly the memory size of the MobileBERT reduced
from 24.5 million to about 12.1 million. This parameter
reduction directly translated to a massive decrease in
computational cost, as the MFLOPS/token for DistilBERT
drops from 86 MFLOPS to just 19 MFLOPS, corresponding
to a speedup factor of approximately 4.5. The most dramatic

6117

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

TABLE 7. Ablation study under different compression ratios (CR): NIDA-SVD (ours) using Parameter Importance (PI) as suggested in FWSVD, and our
proposed Neuron Importance (NI). In 38 out of 40 cases (95%), NI is more effective than Pl and in 35 (87.5%) it improves upon SVD-LLMv2. In 26 out of
40 cases (65%), using Pl makes the results worse than not using it at all (NIDA-SVD (PI) vs SVD-LLMv2). The best results are in bold, while the second-best

are underlined.

CR Method Rank Allocation cola mnli-m mnli-mm mrpc qnli qqp sst2 stsb
SVD-LLMv2 0.5548 0.8407 0.8423 09075 09115 0.8740 0.9174 0.8838
0.1 NIDA-SVD (PI) uniform 0.5482 0.8416 0.8389 09109 09108 0.8734 0.9139 0.8830
NIDA-SVD (NI) 0.5600 0.8434 0.8418 0.9157 09119 0.8747 09160 0.8846
SVD-LLMv2 0.5254 0.8349 0.8335 0.9071 0.9009 0.8652 09151 0.8729
0.2 NIDA-SVD (PI) uniform 0.4975 0.8334 0.8284 09159 0.9033 0.8658 0.9048 0.8704
NIDA-SVD (NI) 0.5094 0.8383 0.8352 09128 0.9068 0.8684 0.9185 0.8740
SVD-LLMv2 0.4543 0.8210 0.8152 0.8863 0.8755 0.8514 0.9025 0.8239
0.3 NIDA-SVD (PI) uniform 0.3650 0.8141 0.8022 0.8970 0.8791 0.8489 0.8922 0.8285
NIDA-SVD (NI) 0.4451 0.8245 0.8203 0.9003 0.8898 0.8561 0.9048 0.8420
SVD-LLMv2 0.3206 0.7766 0.7691 0.8376 0.8088 0.8197 0.8876 0.7295
0.4 NIDA-SVD (PI) uniform 0.2937 0.7687 0.7473 0.8652 0.8160 0.8174 0.8887 0.7433
NIDA-SVD (NI) 0.3271 0.7901 0.7851 0.8657 0.8359 0.8322 0.8979 0.7652
SVD-LLMv2 0.2079 0.6727 0.6678 0.8176 0.6875 0.7602 0.8772 0.6426
0.5 NIDA-SVD (PI) uniform 0.1932 0.6685 0.6615 0.8384 0.6732 0.7612 0.8566 0.6024
NIDA-SVD (NI) 0.2394 0.7143 0.7160 0.8330 0.7113 0.7837 0.8704 0.6659

TABLE 8. Ablation study: Our index-based rank allocation algorithm improves vanilla SVD-LLMv2 compared to other allocation strategies in 27 out of
40 cases (67.5%). The best results are in bold, while the second-best are underlined.

CR Method Rank Allocation cola mnli-m mnli-mm mrpc qnli qqp sst2 stsb
uniform 0.5548 0.8407 0.8423 09075 09115 0.8740 0.9174 0.8838
0.1 SVD-LLMv2 role-based 0.5573 0.8419 0.8429 0.9087 09126 0.8736 0.9139 0.8841
index-based 0.5490 0.8420 0.8435 0.9089 0.9088 0.8737 09174 0.8842
uniform 0.5254 0.8349 0.8335 0.9071 0.9009 0.8652 0.9151 0.8729
0.2 SVD-LLMv2 role-based 0.5325 0.8369 0.8340 09134 09002 0.8657 0.9110 0.8722
index-based 0.5334 0.8387 0.8356 09115 09028 0.8670 0.9116 0.8727
uniform 0.4543 0.8210 0.8152 0.8863 0.8755 0.8514 0.9025 0.8239
0.3 SVD-LLMv2 role-based 0.4556 0.8206 0.8171 0.8907 0.8766 0.8531 0.9002 0.8242
index-based 0.4796 0.8255 0.8179 0.8874 0.8810 0.8544 0.9005 0.8237
uniform 0.3206 0.7766 0.7691 0.8376 0.8088 0.8197 0.8876 0.7295
04 SVD-LLMv2 role-based 0.3276 0.7802 0.7715 0.8366 0.8103 0.8199 0.8944 0.7231
index-based 0.3446 0.7835 0.7770 0.8496 0.8222 0.8265 0.8948 0.7234
uniform 0.2079 0.6727 0.6678 0.8176 0.6875 0.7602 0.8772 0.6426
0.5 SVD-LLMv2 role-based 0.2039 0.6762 0.6750 0.8176 0.6917 0.7698 0.8727 0.6435
index-based 0.2336 0.6846 0.6797 0.8237 0.7054 0.7657 0.8772 0.6441

TABLE 9. Ablation study: Our index-based rank allocation algorithm improves NIDA-SVD compared to other allocation strategies in 28 out of 40 cases

(70%). The best results are in bold, while the second-best are underlined.

CR Method Rank Allocation cola mnli-m mnli-mm mrpc qnli qqp sst2 stsb
uniform 0.5600 0.8434 0.8418 0.9157 09119 0.8747 09160 0.8846
0.1 NIDA-SVD role-based 0.5656 0.8450 0.8416 09141 09110 0.8749 09174 0.8852
index-based 0.5522 0.8456 0.8444 0.9078 09121 0.8739 0.9162 0.8866
uniform 0.5094 0.8383 0.8352 0.9128 0.9068 0.8684 0.9185 0.8740
0.2 NIDA-SVD role-based 0.5198 0.8386 0.8363 0.9056 0.9066 0.8687 0.9185 0.8754
index-based 0.5147 0.8396 0.8387 0.9090 0.9068 0.8690 0.9116 0.8793
uniform 0.4451 0.8245 0.8203 0.9003 0.8898 0.8561 0.9048 0.8420
0.3 NIDA-SVD role-based 0.4365 0.8247 0.8221 0.9063 0.8896 0.8569 0.9059 0.8433
index-based 0.4736 0.8283 0.8224 0.9026 0.8923 0.8576 0.9013 0.8608
uniform 0.3271 0.7901 0.7851 0.8657 0.8359 0.8322 0.8979 0.7652
04 NIDA-SVD role-based 0.3325 0.7911 0.7879 0.8698 0.8367 0.8329 0.8967 0.7685
index-based 0.3486 0.7954 0.7907 0.8708 0.8458 0.8345 0.8956 0.8031
uniform 0.2394 0.7143 0.7160 0.8330 0.7113 0.7837 0.8704 0.6659
0.5 NIDA-SVD role-based 0.2424 0.7152 0.7163 0.8348 0.7127 0.7849 0.8715 0.6648
index-based 0.2480 0.7255 0.7251 0.8358 0.7331 0.7890 0.8704 0.7076

efficiency improvement is seen in TinyBERT, where a 30% computational overhead. Both methods achieve nearly

parameter reduction (from 14.3M to 10.0M) results in a
spectacular 90% reduction in computational cost, dropping
from =~ 9 MFLOPS/token down to less than 1 MFLOP/token.

Finaly, the comparison between our NIDA-SVD method
and the SVD-LLMv2 method reveals that our importance-
aware rank allocation strategy does not impose a measurable

6118

identical parameter counts and, consequently, highly similar
MFLOPS/token values across all architectures. This is
an expected outcome, as the fundamental change to the
network’s architecture (replacing a dense matrix W with two
smaller matrices A and B) is the same for both approaches,
regardless of how the compression rate is distributed, since

VOLUME 14, 2026

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

IEEE Access

TABLE 10. Computational and memory analysis. Comparison of MLFLOPS/token and total parameters (in Millions) for base and compressed DistilBERT,

MobileBERT, and TinyBERT models.

Architecture GLUE CR Compression Method ~ MLFLOPS/token Total Parameters
N/A base 85.96 66.9
mrpc 05 SVD-LLMv2 18.99 334
) NIDA-SVD 18.99 33.4
N/A base 85.97 66.9
distilBERT qnli SVD-LLMv2 18.99 334
05 NIDA-SVD 19.07 335
N/A base 85.56 66.9
sst2 05 SVD-LLMv2 18.59 334
i NIDA-SVD 18.73 335
N/A base 41.17 24.5
mrpc 0.5 SVD-LLMv2 16.33 12.1
) NIDA-SVD 16.48 12.2
N/A base 41.18 24.5
mobileBERT qnli SVD-LLMv2 16.33 12.1
05 NIDA-SVD 16.48 122
N/A base 40.89 24.5
sst2 05 SVD-LLMv2 16.05 12.1
i NIDA-SVD 16.24 12.2
N/A base 9.38 14.3
mrpc 03 SVD-LLMv2 0.75 10.0
) NIDA-SVD 0.73 10.0
N/A base 9.38 14.3
tinyBERT qnli SVD-LLMv2 0.75 10.0
03 NIDA-SVD 0.73 100
N/A base 9.27 14.3
sst2 03 SVD-LLMv2 0.64 10.0
) NIDA-SVD 0.62 10.0

the total computational budget for a fixed compression ratio
remains constant. This confirms that in the rank allocation
proccess, the performance efficacy of NIDA-SVD in contrast
to other SVD-based methods is achieved solely through a
smarter distribution of ranks (resources) across layers, not
by increasing the computational expense.

VII. CONCLUSION

In summary, this work introduced NIDA-SVD, a novel
framework to compress LLM matrices that integrates
neuron importance with data-aware low-rank approximation,
alongside a computationally efficient algorithm for dynamic
rank allocation. Experimental results demonstrate that
NIDA-SVD consistently outperforms prior state-of-the-
art methods under diverse allocation strategies, while our
proposed rank allocation algorithm also independently
strengthens both NIDA-SVD and previous approaches.
Together, these contributions establish a robust and versatile
compression solution, achieving substantial performance
gains, especially at high compression ratios, paving the way
for a more effective deployment of large-scale language
models in resource-constrained setups.

REFERENCES

[1] A.Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “‘Improving lan-
guage understanding by generative pre-training,” OpenAl, San Francisco,
CA, USA, Tech. Rep., 2018.

[2] J. Devlin and M. Chang, “BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics, Hum. Lang. Technol., 2018, pp. 4171-4186.

[3] M. Riviere et al., “Gemma 2: Improving open language models at a
practical size,” 2024, arXiv:2408.00118.

[4] A.Kamath et al., “Gemma 3 technical report,” 2025, arXiv:2503.19786.

VOLUME 14, 2026

[5]

[6]

[71

[8

—

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and efficient foundation
language models,” 2023, arXiv:2302.13971.

L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy, and
G. Tortora, “Claude 2.0 large language model: Tackling a real-world
classification problem with a new iterative prompt engineering approach,”
Intell. Syst. Appl., vol. 21, Jan. 2024, Art. no. 200336.

M. Gupta and P. Agrawal, “Compression of deep learning models for text:
A survey,” ACM Trans. Knowl. Discovery Data, vol. 16, no. 4, pp. 1-55,
Aug. 2022.

X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on model com-
pression for large language models,” Trans. Assoc. Comput. Linguistics,
vol. 12, pp. 15561577, Nov. 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2025, pp. 5998-6008.

A. Hoffman, “A generalization of the Eckart-Young-Mirsky matrix
approximation theorem,” Linear Algebra Appl., vol. 88, pp.317-327,
Jan. 1987.

L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A
contemporary survey,” IEEE Access, vol. 7, pp. 94215-94237, 2019.
Y.-C. Hsu, H. Ting, S. Chang, Q. Lou, Y. Shen, and H. Jin, “Language
model compression with weighted low-rank factorization,” in Proc. Int.
Conf. Learn. Represent., 2022, pp. 1-11.

X. Wang, S. Alam, Z. Wan, H. Shen, and M. Zhang, “SVD-LLM
v2: Optimizing singular value truncation for large language model
compression,” in Proc. Conf. Nations Americas Chapter Assoc. Comput.
Linguistics, Human Lang. Technol., 2025, pp. 4287-4296.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a
distilled version of BERT: Smaller, faster, cheaper and lighter,” 2019,
arXiv:1910.01108.

D. Chen and J. Zhou, “LightMobileBert: A secondary lightweight model
based on MobileBert,” J. Intell. Fuzzy Syst., vol. 44, no. 2, pp. 2117-2129,
Jan. 2023.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “TinyBERT: Distilling BERT for natural language understand-
ing,” in Proc. Findings Assoc. Comput. Linguistics, EMNLP, 2020,
pp. 4163-4174.

6119

IEEE Access

A. Ntovas et al.: Compressing What Matters: Neuron Importance Meets Data-Aware Low Rank Approximation

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

6120

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized BERT
pretraining approach,” 2019, arXiv:1907.11692.

P. He, X. Liu, J. Gao, and W. Chen, “DeBERTa: Decoding-enhanced BERT
with disentangled attention,” in Proc. Int. Conf. Learn. Represent., 2020.
P. He, J. Gao, and W. Chen, “DeBERTaV3: Improving DeBERTa
using ELECTRA-style pre-training with gradient-disentangled embedding
sharing,” in Proc. 11th Int. Conf. Learn. Represent., 2021.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, ““Sparsity in
deep learning: Pruning and growth for efficient inference and training in
neural networks,” J. Mach. Learn. Res., vol. 22, no. 241, pp. 1-124, 2021.
S. Ashkboos, M. L. Croci, M. G. Nascimento, T. Hoefler, and J. Hensman,
“SliceGPT: Compress large language models by deleting rows and
columns,” in Proc. Int. Conf. Learn. Representations (ICLR), 2024.

T.F. Van Der Ouderaa, M. Nagel, M. Van Baalen, and T. Blankevoort, “The
LLM surgeon,” in Proc. 12th Int. Conf. Learn. Represent., 2023, pp. 1-9.
E. Frantar and D. Alistarh, “SparseGPT: Massive language models can be
accurately pruned in one-shot,” in Proc. Int. Conf. Mach. Learn., 2023,
pp. 10323-10337.

L. Hou, Z. Huang, L. Shang, X. Jiang, X. D. Chen, and Q. Liu,
“DynaBERT: Dynamic BERT with adaptive width and depth,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, pp. 9782-9793.

J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vis., vol. 129, no. 6, pp. 1789-1819, 2021.

G. Cai, J. Li, X. Liu, Z. Chen, and H. Zhang, “Learning and compressing:
Low-rank matrix factorization for deep neural network compression,”
Appl. Sci., vol. 13, no. 4, p. 2704, Feb. 2023.

H. Yu and J. Wu, “Compressing transformers: Features are low-rank, but
weights are not!” in Proc. AAAI Conf. Artif. Intell., 2023, vol. 37, no. 9,
pp. 11007-11015.

P. Chen, H. Yu, I. S. Dhillon, and C. Hsieh, “DRONE: Data-aware low-rank
compression for large NLP models,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 34, 2021, pp. 29321-29334.

Z. Yuan, Y. Shang, Y. Song, D. Yang, Q. Wu, Y. Yan, and G. Sun,
“ASVD: Activation-aware singular value decomposition for compressing
large language models,” 2023, arXiv:2312.05821.

X. Wang, Y. Zheng, Z. Wan, and M. Zhang, “SVD-LLM: Truncation-
aware singular value decomposition for large language model compres-
sion,” in Proc. 13th Int. Conf. Learn. Represent., 2024, pp. 1-7.

M. B. Noach and Y. Goldberg, “Compressing pre-trained language models
by matrix decomposition,” in Proc. 1st Conf. Asia—Pacific Chapter Assoc.
Comput. Linguistics 10th Int. Joint Conf. Natural Lang. Process., 2020,
pp. 884-889. [Online]. Available: https://aclanthology.org/2020.aacl-
main.88

Z. Liu, C. Zhao, I. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi,
V. Chandra, Y. Tian, and T. Blankevoort, “SpinQuant: LLM quantization
with learned rotations,” in Proc. 13th Int. Conf. Learn. Represent., 2025,
pp. 1-8.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate
post-training quantization for generative pre-trained transformers,” 2022,
arXiv:2210.17323.

J. Lin, J. Tang, H. Tang, S. Yang, G. Xiao, and S. Han, “AWQ:
Activation-aware weight quantization for on-device LLM compression and
acceleration,” in Proc. Mach. Learn. Syst., vol. 28, 2025, pp. 12-17.

H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu, M. Lyu,
and I. King, “BinaryBERT: Pushing the limit of BERT quantization,” in
Proc. 59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint Conf.
Natural Lang. Process., 2021, pp. 4334-4348.

E. Kim, K.-H. Lee, and W.-K. Sung, “Optimizing spatial shift point-wise
quantization,” IEEE Access, vol. 9, pp. 68008-68016, 2021.

M. Chen, W. Shao, P. Xu, J. Wang, P. Gao, K. Zhang, and P. Luo,
“EfficientQAT: Efficient quantization-aware training for large language
models,” in Proc. 63rd Annu. Meeting Assoc. Comput. Linguistics, 2025,
pp. 10081-10100.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

J. Baglama and L. Reichel, “Augmented implicitly restarted Lanczos
bidiagonalization methods,” SIAM J. Sci. Comput., vol. 27, no. 1,
pp. 19-42, Jan. 2005.

N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217-288, Jan. 2011.

[41] A.Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “GLUE:
A multi-task benchmark and analysis platform for natural language
understanding,” in Proc. EMNLP Workshop BlackboxNLP, Analyzing
Interpreting Neural Netw. NLP, 2018, pp. 353-355.

ATHANASIOS NTOVAS received the Diploma
degree from the Computers and Communication
Engineering Department, University of Thessaly
(UTH), in 2019.

Since April 2020, he has been a Research Assis-
tant with the Information Technologies Institute
(ITI), Centre for Research and Technology Hellas
(CERTH). His research interests include artificial
intelligence, computer vision, and digital signal
processing.

ALEXANDROS DOUMANOGLOU received the
Diploma degree in electrical and computer engi-
neering from the Aristotle University of Thes-
saloniki (A.U.Th.). He is currently pursuing the
Ph.D. degree in explainable and interpretable
artificial intelligence with the Department of
Advanced Computing Sciences, Maastricht Uni-
versity, under the supervision of Prof. Kurt
Driessens. He joined the Information Technologies

? ! Institute (ITI) in 2012, where he has since worked
as a Research Assistant in the areas of computer vision, 3D graphics, and
machine learning. Concurrently with his Ph.D. studies, he remains affiliated
with ITI as a Senior Researcher. His current research interests include
computer vision, unsupervised and representation learning, mechanistic
interpretability, and explainable and interpretable methods for deep learning
models.

PETROS DRAKOULIS received the B.Sc. degree
in informatics from International Hellenic Uni-
versity and the M.Sc. degree in digital media
and computational intelligence from the Aristotle
University of Thessaloniki.

In 2018, he joined the Visual Computing Labo-
ratory, CERTH-ITI, where he has been a Research
Associate ever since. His main research interests
include software engineering, visual computing,
machine learning, and graphics.

DIMITRIS ZARPALAS received the Diploma
degree in electrical and computer engineering
from the Aristotle University of Thessaloniki
(AUTH), the M.Sc. degree in electrical engi-
neering (focusing on computer vision) from The
Pennsylvania State University, and the Ph.D.
degree in medical informatics from the Health
Science School, Department of Medicine, AUTH.

He joined the Information Technologies Insti-
tute, in 2007. He is currently a Researcher (Grade
C). His research interests include real-time tele-immersion applications (3D
reconstruction of moving humans and their compression), 3D computer
vision, 3D medical image processing, shape analysis of anatomical
structures, 3D object recognition, and motion capturing and evaluation, while
in the past he has also worked in indexing, search and retrieval, classification
of 3D objects, and 3D model watermarking.

VOLUME 14, 2026

