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a b s t r a c t 

Background: Exercise-based rehabilitation plays a key role in improving the health and quality of life of 

patients with Cardiovascular Disease (CVD). Home-based computer-assisted rehabilitation programs have 

the potential to facilitate and support physical activity interventions and improve health outcomes. 

Objectives: We present the development and evaluation of a computerized Decision Support System (DSS) 

for unsupervised exercise rehabilitation at home, aiming to show the feasibility and potential of such 

systems toward maximizing the benefits of rehabilitation programs. 

Methods: The development of the DSS was based on rules encapsulating the logic according to which 

an exercise program can be executed beneficially according to international guidelines and expert knowl- 

edge. The DSS considered data from a prescribed exercise program, heart rate from a wristband device, 

and motion accuracy from a depth camera, and subsequently generated personalized, performance-driven 

adaptations to the exercise program. Communication interfaces in the form of RESTful web service oper- 

ations were developed enabling interoperation with other computer systems. 

Results: The DSS was deployed in a computer-assisted platform for exercise-based cardiac rehabilitation 

at home, and it was evaluated in simulation and real-world studies with CVD patients. The simulation 

study based on data provided from 10 CVD patients performing 45 exercise sessions in total, showed 

that patients can be trained within or above their beneficial HR zones for 67.1 ± 22.1% of the exercise 

duration in the main phase, when they are guided with the DSS. The real-world study with 3 CVD pa- 

tients performing 43 exercise sessions through the computer-assisted platform, showed that patients can 

be trained within or above their beneficial heart rate zones for 87.9 ± 8.0% of the exercise duration in the 

main phase, with DSS guidance. 

Conclusions: Computerized decision support systems can guide patients to the beneficial execution of 

their exercise-based rehabilitation program, and they are feasible. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Substantial evidence suggests that regular physical activity

elps to improve the health and well-being of both healthy and

hronically ill individuals [1] . Exercise-based rehabilitation in pa-

ients with Cardiovascular Disease (CVD) is widely recommended

y the medical community in order to reduce their mortality and

https://doi.org/10.1016/j.cmpb.2018.04.030
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improve their quality of life [2,3] . Today, exercise-based Cardiac Re-

habilitation (CR) is mainly performed by patient groups in a con-

trolled environment (e.g., a specialized rehabilitation centre), under

the supervision of physiotherapists or cardiac nurses. However, low

uptake and poor adherence to exercise-based CR is a major prob-

lem which is caused by several barriers, including transport, cost,

dislike of group sessions, and self-efficacy issues [4] . 

A potential solution to the issue of patient adherence to exer-

cise therapy, is the uptake of computerized interventions which

can be utilised within the home environment [5] . Computerized

interventions enhanced with new and widely available sensing

technologies, such as smart watches and depth cameras, can en-

able physical activity self-tracking on a daily basis without con-

stant supervision by health professionals [6] . In this context, a ma-

jor challenge is to identify robust ways of assisting patients in un-

supervised exercise-based rehabilitation programs to reach their

goals, through the processing and evaluation of sensed physical ac-

tivity data along with potentially available other clinical and be-

havioural information. 

The aim of this paper is to present the design, development

and evaluation of a computerized decision support system (DSS),

targeting at the personalized and beneficial execution of exercise-

based CR programs by CVD patients at their home. The system

uses a rule-based approach in order to: a) Process clinical data,

as well as data from sensors such as a smart watch and a depth

camera, and b) generate actions in terms of adapting the CR pro-

gram according to the patient’s performance. Communication in-

terfaces in the form of web service operations were adopted to-

ward developing an interoperable and extensible system which can

be integrated in future home-based exercise platforms. The system

has been successfully deployed in PATHway (Physical Activity To-

wards Health) [7] , a computer-assisted platform employing a vir-

tual coach for exercise-based CR at home. Results from the evalu-

ation of the DSS are presented, in terms of performance and guid-

ance of individuals to exercise within or above their beneficial HR

zones, as obtained from both simulation and real-world studies. 

To the best of our knowledge, this is one of the first studies il-

lustrating the development and evaluation outcomes of a technical

infrastructure dedicated for computerized decision support in un-

supervised exercise-based CR. Other studies employing rule-based

systems have focused on conditions other than CVD. The systems

described by Lim et al. [8] , for tailored message generation, and

Song et al. [9] , for autonomous bicycle ergometer training, focus on

diabetes and COPD, while Salvi et al. focused on educational and

motivational aspects of exercise-based CR [10] . Long-term physi-

cal activity outcomes of interventions utilizing computerized deci-

sion support have been widely reported [11,12] , however it is less

known how decision support components should be developed to

contribute to the effectiveness of those interventions. To this end,

our system is the first-of-its-kind which uniquely processes and

evaluates sensed data, e.g., heart rate (HR) and motion accuracy,

along with other clinical and behavioural information (e.g., exer-

cise prescription, self-reports on exertion, patient performance his-

tory) during unsupervised exercise, toward the beneficial execution

of exercise-based rehabilitation programs. 

2. Methodology 

2.1. Background 

According to international guidelines, an optimal personalized

exercise prescription for rehabilitation includes a detailed descrip-

tion of four exercise characteristics, namely Frequency, Intensity,

Type, and Time (FITT) [13] . One of the biggest challenges around

exercise prescription is making the patients train at the right in-

tensity, i.e., within their beneficial HR zones, which is key for ef-
ectiveness [1] . Beneficial HR zones are ideally formulated based

n the results of a cardiopulmonary exercise test (CPET). The types

f exercises are chosen by the supervisor taking into account ba-

ic demographic characteristics of the patients, co-morbidities, and

he fitness level of the average participants, as well as the exe-

ution during previous sessions. Optimally, the trainer proposes a

ariety of aerobic and resistance exercises targeting all body parts

legs, arms, trunk, etc.), with different levels of difficulty. Perceived

xertion and enjoyment should also be considered when structur-

ng exercise programs [14,15] . 

.2. DSS development 

We followed an iterative approach for developing the DSS, in

hich engineers and experts in medical informatics (authors AT,

F, AC, DZ, PD, KM, IC, NM) as well as experts in CR, exercise

hysiology and health and exercise psychology (authors JC, RB, VC,

W, CW) collaborated to identify the functional requirements of

he system. In this context, during the initial stage of the devel-

pment, a review of the clinical guidelines and recommendations

13] , was combined with expert knowledge, in order to determine

he response of the system according to specific input data (e.g.,

ensed data, exercise prescription, etc.). The clinical knowledge was

oded into deterministic rules in the format of condition-action

IF-THEN), and subsequently the communication interfaces of the

ystem were developed. We chose a rule-based approach mainly

ecause we expected that domain-specific rules would be easily

o-designed and understood by experts in CR, exercise physiology

nd health and exercise psychology, and require limited develop-

ent effort. Furthermore, rule-based approaches have been used

or exercise-based rehabilitation and they have shown their feasi-

ility [16] . To this end, rules were identified by the domain experts

oward the safe, beneficial (in terms of patient guidance toward ex-

rcising within their optimal HR zones), and personalized (in terms

f long-term adaptation of the exercise program) execution of the

xercise program. 

The DSS development was underpinned by health psychology

heory, namely the Behaviour Change Wheel (BCW) [17] . At the

ore of the BCW, lies a theoretical model describing the catalysts

or behaviour, based on “Capability”, i.e., the individual’s ability (ei-

her physical or psychological) to enact a behaviour, “Opportunity”,

.e., the physical (e.g., opportunity afforded by the environment)

nd social environment (e.g., cultural norms) that enables the be-

aviour, and “Motivation”, i.e., the reflective (e.g., intention and

hoice) and automatic mechanisms (e.g., habit), that activate or

nhibit Behaviour (COM-B) [18] . This model has been used across

everal studies to aid intervention design and has demonstrated

eliability [19] . The BCW has also been used in other studies in

he area of decision support for healthcare [20,21] . Further infor-

ation about the adoption of the BCW and COM-B in PATHway

an be found in [22] . 

.3. DSS architecture 

The target was to develop an intelligent middleware which

onitors performance and progress of a patient who uses com-

uterized exercise-based CR, and personalizes the weekly exercise

rogram ( Fig. 1 ) [23] . There are three key rule-based components

hich are working towards these objectives: 

(a) Prescreening component: Triggered before the beginning of

an exercise session, the prescreening component aims to en-

sure patient safety. To this end, HR along with blood pres-

sure measurements are obtained through a blood pressure

device, and in case of detected abnormal values according

to clinical recommendations [13,24] , the patient is instructed
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Fig. 1. DSS architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

otherwise disengage. 
to rest and take the blood pressure again at a later time.

When blood pressure readings are high at multiple, con-

sequent readings, the patient is instructed to communicate

with a health professional. Self-reports for medication com-

pliance (patient should take his/her prescribed medicines on

the day of exercise) and food intake (patient should eat in

the last 4 hours before starting exercise), are also obtained

to increase the safety while exercising. 

(b) Real-time component: Triggered during an exercise session,

the real-time component targets at guiding patients toward

exercising within their optimal HR zones, according to the

patient’s exercise prescription (e.g., 150 min of moderate

intensity exercise weekly). The real-time component uses

computerized exercise selection to dynamically adjust an ex-

ercise session based on a pool of available short-duration

(e.g., 1-min) exercises, with different intensities (e.g., high-

knee running versus walking on the spot), difficulty (in

terms of different required levels of balance and coordina-

tion), type (aerobic, strength, stretch), and involved body

parts (legs, arms, trunk). For example, an exercise of high

intensity (e.g., high-knee running) will be dynamically se-

lected in real-time, if the patient is below the beneficial HR

zones, while an exercise of low intensity (e.g., walking on

the spot) will be selected, if the patient is above the benefi-

cial HR zones. 

Additionally, applying motion analysis algorithms in real-

time motion capture data acquired with skeleton tracking

techniques and depth-sensing devices, results in exercise

performance accuracy (motion accuracy) evaluation. The ac-

curacy is estimated and acquired per exercise repetition and

cumulatively (repetition set), based on the detection of a pri-

ori known physical exercise repetition instances within a se-

quence of motion data using machine learning techniques

(e.g., Adaptive Boosting and Random Forest Regression). Sub-

sequently, the motion data of the detected exercise repeti-

tion is being analysed and evaluated, providing numerical

and semantic feedback regarding the exercise performance

accuracy. Detailed description of the exercise detection al-

gorithms has been given in [25] . The exercise performance
evaluation is used in order to evaluate the degree of adher-

ence to the exercise form [26] , as well as for motivating the

patients toward good execution of the exercise through se-

mantic feedback. In this regard, an exercise of low difficulty

will be selected in real-time for execution (e.g., jumping),

if the detected cumulative motion accuracy (i.e., the aver-

age accuracy of the performed exercise repetitions) during

a previous exercise is very low. Finally, the duration of each

exercise type and exercised body part is considered (“Time”

characteristic in FITT), to ensure variety and balance in exer-

cise selection [1] . 

(c) Off-line DSS: The off-line DSS is triggered after the comple-

tion of an exercise session and targets at long-term adap-

tions of the exercise program, based on the performance and

behaviour of the user (“capability” component of the BCW).

As such, the off-line DSS adapts the frequency and duration

of required exercise sessions in a week, based on achieved

performance according to the exercise prescription goal. Fur-

thermore, the off-line DSS excludes specific exercises from

the program when detected motion accuracy is low repeat-

edly for specific exercises (i.e., user faces difficulty in exe-

cuting these exercises with the correct form). Based on the

acquisition of self-reports for perceived exertion (Borg scale

0–10 [15] ) and enjoyment (scale 0–4) at the end of the exer-

cise session, in case of recurring extremely high exertion or

extremely low enjoyment, patients are recommended to per-

form a different type of physical activity, e.g., outdoors (“op-

portunity” component of the BCW). Motivational feedback is

also triggered for the users when they are close or not to

reach their physical activity goals (e.g., on a weekly basis ac-

cording to their exercise prescription), or when they reach

higher goals than the previous week, in order to encourage

them accordingly (“motivation” component of the BCW). Fi-

nally, if the patient is consistently non-compliant in reaching

his/her weekly goals (e.g., 4 weeks in a row), a reduction

of 10% in the weekly goal (in terms of required minutes of

physical activity), is initiated, thus assigning a ‘graded task’

which seems feasible to achieve for participants who may
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Table 1 

Example rules within the prescreening and off-line DSS components (BP: Blood Pressure, MA: Threshold for acceptable motion accuracy set e.g., to 0.4 in 

the scale 0–1). 

Table 2 

Example rules with assigned system identifiers within the real-time DSS during exercise main phase (A: resting HR, C: Threshold for lower HR beneficial zone based on 

Heart Rate Reserve, E: Threshold for upper HR beneficial zone, D: (C + E)/2, G: Peak HR, B: C − 0.3 ∗ (C − A), F: G − 0.3 ∗ (G − E), W1: Decreasing HR trend slope threshold 

( −30 °), W2: Increasing HR trend slope threshold ( + 30 °)). 

Rule conditions Actions (for next exercise) 

ID Accuracy Heart Rate Intensity Difficulty 

#1 Medium/high ( HRmean < C AND HRmean > B AND slope > W2 ) OR ( HRmean > C AND 

HRmean < D AND slope > W2 ) OR ( HRmean > D AND HRmean < E AND 

slope < W1 ) OR ( HRmean > E AND HRmean < F AND slope < W1 ) 

− ↑/ −

#2 Medium/high ( HRmean < B ) OR ( HRmean > B AND HRmean < C AND slope < W1 ) OR 

(HRmean > C AND HRmean < D AND slope < W1) 

↑ −

#3 Medium/high ( HRmean > D AND HRmean < E AND slope > W2 ) OR ( HRmean > E AND 

HRmean < F AND slope > W2 ) OR (HRmean > F ) 

↓ −

#4 Low (HRmean > E AND slope > W2) OR HRmean > F ↓ ↓ 
#5 Low (HRmean < F AND HRmean > E) AND slope < W2 − ↓ 
#6 Low (HRmean < C AND slope < W2) OR HRmean > B ↑ ↓ 
#7 Low (HRmean > B AND HRmean < C) AND slope > W1 − ↓ 
#8 If none of rules 1–7 applies − −

−: Same, ↑ : Increase, ↓ : Decrease 
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2.4. Technical infrastructure for exercise program adaptation 

All rules in the DSS were coded as condition-action in the for-

mat IF-THEN in the Python programming language, and they were

assigned an identifier. Python was selected because of the useful

characteristics it provides, such as dynamic and efficient memory

management, cross-platform availability, and excellent code read-

ability, all contributing to rapid prototyping. Examples of rules for

the prescreening and off-line DSS components are given in Table 1 ,

and for the real-time component in Table 2 . Specific zones were
onsidered for motion accuracy (low, medium, high) for each ex-

rcise according to thresholds set by experts in the scale 0–1 (e.g.

 0.4 can be low accuracy based on the virtual coach reference ac-

uracy), and for HR as a percentage of the Heart Rate Reserve (cal-

ulated as: Peak HR – resting HR) based on the CPET. Thresholds

or the least mean squares linear fit slope were used to denote a

ecreasing or increasing trend of the HR signal [27,28] . 

We adopted a service-oriented architecture, in which DSS com-

unication interfaces were developed as RESTful web service op-

rations, which can enable the interoperability and easy extension
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Fig. 2. Example of tested DSS response (JSON syntax) in the real-time component for exercise selection, using Postman. An exercise with lower intensity is provided as 

output due to user’s high heart rate according to rule 2. 
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f communication systems [29] . In this direction, web service op-

rations linked to the prescreening, real-time, and off-line com-

onents of the DSS (e.g., getPreScreeningEvaluation(), getRealTimeE-

aluation(), getAfterSessionExcludedExercises(), etc.) were developed, 

nabling their call by client applications or systems. The JSON for-

at 1 was used to represent acquired input data (rule conditions)

nd generated response data (rule actions) of the DSS, mainly be-

ause it is lightweight for data interchange and easy to parse. We

sed the Postman tool, 2 an easy-to-use testing environment for

eb interfaces, in order to test the response of all DSS web service

perations ( Fig. 2 ), and fix any input/output errors during the de-

elopment process, prior to their deployment in the system’s pro-

uction server. The DSS runs in a Python 2.7 WSGI capable server

nd requires 16GB of memory as well as a 64-bit Windows 8/10 or

inux environment to ensure its smooth operation. System usage

ogs were implemented and used to capture the fired rules during

ser interaction with the system, enabling the automatic collection

f all DSS responses for exercise program adaptation. The devel-

pment of the RESTful communication interfaces enabled the in-

egration of the DSS in the PATHway platform 

3 ( Fig. 3 ), in which

ommunication was required with the system client (front-end)

pplication to deliver the adaptations of the CR program, e.g., dy-

amic exercise selection in real-time. In PATHway, the Microsoft

box One Kinect sensor [30] (as depth-sensing device) and the Mi-

rosoft Band HR tracking device [31] (as smart watch) were used

o meet requirements for valid motion capture and HR monitoring.

ince we adopted a RESTful interoperable architecture, the selec-

ion of specific sensing devices does not affect the DSS operation,

nd therefore other devices can also be integrated in the future. 
1 JSON: https://www.json.org/ , last accessed on 22nd March 2018. 
2 PostMan Tool: https://www.getpostman.com/ , last accessed on 9th October 

017. 
3 Demonstration of the PATHway system: http://pathway2health.eu/demos/ , last 

ccessed on 9th October 2017. 
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f  
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.5. Methodology for system evaluation in simulation and real-world 

tudies 

In the context of system evaluation, we firstly performed a

imulation study to explore the feasibility of the system and the

sefulness of the adopted rule-based approach, in terms of guid-

ng CVD patients to exercise within their beneficial HR zones. To

his end, we recruited CVD patients participating in a community

xercise-based CR program (Thessaloniki, Greece), in order to cap-

ure their HR response during exercise, according to the instruc-

ions of a trainer. HR was tracked via a wristband device, Scosche

hythm ( Scosche Industries, Oxnard, California, USA ), which has been

ound to be accurate [31] . A Kinect sensor was also used to capture

he exercise execution and to annotate the exercises (i.e., their in-

ensity and difficulty) retrospectively according to trainers’ exper-

ise. To this end, individual exercises were manually tagged with a

ow (A) or high (B) intensity label after watching the Kinect record-

ngs. Ethical approval for the conduction of the study was granted

y the research committee of the Aristotle University of Thessa-

oniki, Greece (Prot. No.: 39768/2016). After completing data col-

ection and annotation, we followed a linear modelling approach

ased on the HR response for exercises of intensity A and B, re-

orted in our previous work [28] , to determine the percentage of

ime spent within or above the beneficial HR zones when the rules

f the real-time component ( Table 2 ) are utilized. 

We further explored the use and initial outcomes of comput-

rized exercise selection in the real-time component of the DSS,

n an ethically approved clinical trial with CVD patients perform-

ng unsupervised exercise-based CR at home through the PATHway

ystem. The protocol of the clinical trial is reported in [7] . The re-

ults of the exercise response from participants in terms of heart

ate and motion accuracy, as well as the fired rules, were acquired

rom the system usage logs from August to October 2017. The sys-

ematic assessment of the off-line DSS according to its capabilities

n the long-term decision horizon described above, will be pre-

ented after the completion of the trial. 

https://www.json.org/
https://www.getpostman.com/
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Fig. 3. The PATHway client (front-end) application. The application communicates with the DSS via a RESTful interface and the virtual coach instructs different exercises 

according to DSS response (real-time component), in order to guide patients to exercise within their beneficial heart rate zones. 
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3. Results 

3.1. Technical evaluation 

The technical evaluation of the system focused on the perfor-

mance of the DSS web service operations in terms of measuring

their response time. We used the JMeter tool 4 to perform con-

current testing with 10, 20, and 100 users for 10 tests each, us-

ing a ramp-up period of 1 s, for which the most-used operation of

our system, i.e., the real-time selection of exercises which is trig-

gered every minute ( getRealTimeEvaluation() ) had a max response

time of 164, 4 4 4, and 2842 milliseconds respectively on average.

Other DSS operations linked to the pre-screening component ( get-

PrescreeningEvaluationResult() ) and the off-line DSS (e.g., getAfterS-

essionExcludedExercises() ), had max response times of 29, 31, and

331 milliseconds, and 43, 100, and 2244 milliseconds on average

respectively, yielding also acceptable results. 

3.2. Simulation study 

The study was based on the exercise response of 10 (6 male, 4

female) CVD patients (70.3 ± 6.5 years). In total, 45 half-hour ex-

ercise sessions were monitored, in which a trainer instructed dif-

ferent short-duration exercises (30.1 ± 11.5 seconds for low inten-

sity, 30.2 ± 10.5 seconds for high intensity exercises). CPET results

were obtained from all participating patients (mean resting HR:

69 ± 12, mean peak HR: 129 ± 18) in order to specify the beneficial

HR zones according to the Karvonen’s formula [13] . Based on train-

ers’ feedback, the intensity of the program was moderate, while

monitored patients did not face any difficulty in executing the in-

structed exercises. As such, a medium/high motion accuracy was

assigned for all monitored participants when performing their ex-

ercise session. 

We modelled the HR response during exercise at an in-

tensity level of A and B, expressing the linear change of HR

based on the starting HR in each exercise and its intensity (R-
4 JMeter Tool: http://jmeter.apache.org/ , last accessed on 9th October 2017. 

3  

p  

m  
quared = 0.24 ± 0.14; Root Mean Square Error (RMSE) = 4.5 ± 1.5

nd R-squared = 0.25 ± 0.17; RMSE = 4.7 ± 2.5, for linear models of

ntensity A and B exercises, respectively) ( Fig. 4 a). Then, we ap-

lied the Monte Carlo technique [32] for 10 3 repetitions to explore

ow the model responds to randomly-generated inputs ( Fig. 4 b).

inally, we computed the average percentage of time CVD patients

ere exercising within or above their beneficial HR zones, based

n the simulated HR data with three options: Option 1: application

f the DSS rules, option 2: alternation of the exercises during the

ain phase in a 2:1 pattern (two exercises of intensity B followed

y one exercise of intensity A, option 3 : random sequence of exer-

ises ( Table 3 ). 

The average percentage of time CVD patients were exercising

ithin or above their beneficial HR zones in the community reha-

ilitation programs supervised by a trainer (real-life sessions) was

qual to 48.9 ± 31.5% of the exercise main phase duration (i.e., ex-

luding the duration of warm-up and cool-down phases). Based on

he results we obtained after applying the simulation technique

escribed above, CVD patients can be trained within or above their

eneficial HR zones for 67.1 ± 22.1% of the exercise duration in

he main phase, when they are guided with the DSS rules dur-

ng real-time. In Fig. 5 , the participants’ percentage of the exer-

ise main phase duration their heart rate remained within or above

he beneficial zones in real-life sessions and simulated sessions af-

er applying the DSS rules and the Monte Carlo technique, can be

een. The simulation performed particularly well in those patients

hose performance in real-life sessions was low (participants 2, 6

nd 7). In participant 4, the simulation yielded similar results with

he real-life sessions, possibly because of a high RMSE detected

n the linear models of low and high intensity for this particular

articipant. 

.3. Exercise sessions by CVD patients interacting with PATHway 

In total, we were able to analyse 43 exercise sessions of at least

0 min duration (sessions were done on different days by each

articipant) by 3 CVD patients (1 male, 2 female), in which the

edian perceived exertion in the Borg Scale (0: nothing at all, 10:

http://jmeter.apache.org/
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Fig. 4. (a) Linear fit for a study participant to predict heart rate change in exercises of low (A) and high (B) intensity, (b) Simulated heart rate for a study participant after 

applying the DSS rules and Monte-Carlo. 

Table 3 

Time spent within or above beneficial HR zones (% of the main phase duration). 

Option 1 (rules) Option 2 (2:1 pattern) Option 3 (random) Real-life sessions 

Percentage of time within or above beneficial HR zones (%) 67.1 ± 22.1 61.4 ± 26.9 56.6 ± 28.7 48.9 ± 31.5 
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e  

b  

t  
aximal) was equal to 4 (somewhat strong), and median enjoy-

ent in a 0–4 scale (0: not at all enjoyable, 4: very enjoyable) was

qual to 2 (quite enjoyable). The participants had a median rest-

ng HR of 54 beats per minute (range 45–55) and median peak HR

f 164 beats per minute (range 108–179) based on CPET results

 Table 4 ). 

Patients achieved to be within or above their beneficial heart

ate zones for 87.9 ± 8.0% of the duration of the exercise main

hase on average, which is considerably better than the thresh-

ld of 50% we have set in our rules for acceptable exercise ses-

ions in terms of HR response ( Table 1 , row 2). Most fired rules

ere rule #1 (572 times) to increase/maintain difficulty and rule

3 (410 times) to lower intensity, while less fired rules were those
or decreasing difficulty (72 times), and rule #2 for progressing to

n exercise with higher intensity (21 times), which shows that pa-

ients had high accuracy in performing their exercises and they

ere constantly achieving to be within or above their beneficial HR

ones. Interestingly, participant 1 seemed to be constantly above

he beneficial HR zones, and as a result rule #3 was fired in 395

ccasions. 

In order to measure the effectiveness of the DSS in patient

uidance, we introduced two metrics: a) Recovery from low HR

vents , which measures the percentage of occasions (number of ex-

rcises) in which the DSS guides the patient to exercise within the

eneficial HR zones immediately after a low HR event , i.e., when

he average HR is below the beneficial HR zones, and b) Recovery
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Fig. 5. Participants’ percentage of the exercise main phase duration, their heart rate remained within or above the beneficial zones in real-life sessions, and simulated 

sessions after applying the DSS rules and the Monte Carlo technique. 

Table 4 

CVD patients’ performance in unsupervised exercise during interaction with PATHway. 

Participant Resting HR (beats 

per minute) 

Peak HR (beats per 

minute) 

Number of 

monitored exercise 

sessions 

Average session 

duration (minutes) 

Average % time of 

main phase 

duration that 

participant is 

within or above 

beneficial HR zones 

1 45 108 21 39 (range 31 - 64) 99.2 ± 1.1 

2 55 164 17 32 (range 31 - 35) 82.5 ± 14.5 

3 54 179 5 31 (range 31 - 32) 81.9 ± 9.0 

Table 5 

Recovery from low HR and low motion accuracy events. 

Participant Low HR events 

(Number of 

exercises that 

average HR is 

below beneficial 

HR zones) 

Recovery from low 

HR event – 1 min 

time window 

Recovery from low 

HR event – 2 min 

time window 

Recovery from low 

HR event – 3 min 

time window 

Low motion 

accuracy events 

(Number of 

exercises that 

average motion 

accuracy is below 

set threshold) 

Recovery from low 

motion accuracy 

event – 1 min time 

window 

Recovery from low 

motion accuracy 

event – 2 min time 

window 

1 2 (100%) 2 (100%) – – 50 (100%) 44 (88%) 50 (100%) 

2 55 (100%) 25 (46%) 47 (86%) 52 (95%) 37 (100%) 29 (79%) 37 (100%) 

3 20 (100%) 10 (50%) 16 (80%) 18 (90%) 8 (100%) 7 (88%) 8 (100%) 

Average recovery percentage 65% 83% 93% 85% 100% 
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from low motion accuracy events , which measures the percentage of

occasions in which the DSS guides the patient to exercise in a good

form (as indicated by motion accuracy thresholds set by health

professionals for every exercise), immediately after a low motion

accuracy event . As illustrated in Table 5 , the recovery from low HR

events in a 2-min and 3-min window reached to 83% and 93% re-

spectively, while the recovery from low motion accuracy events in

a 1-min and 2-min time window reached to 85% and 100% respec-

tively, which shows the value of the DSS in unsupervised exercise

guidance. 

4. Discussion 

Patients’ adherence to exercise therapy is considered to be a

key factor in improving their health and well-being. Computer-

assisted physical activity interventions deployed at home or other

environments [8,33] have been found to facilitate patient engage-
ent with regular physical activity and bring benefits in everyday

atient monitoring and coaching. The capability to use such inter-

entions conveniently, anytime and without supervision, adds sig-

ificant value to their usefulness and facilitates patient indepen-

ent living [34] . In this direction, computer systems for exercise-

ased rehabilitation are required to be smart, personalized, robust

nd adaptive, to correspond to changing patient requirements and

ring expected health outcomes. 

DSSs have traditionally focused on assisting health professionals

n clinical decision making [35,36] . The shift of focus to the patient

37] , in conjunction with the advent of pervasive computing tech-

ology [38] – mobile devices, smart sensors, smart watches, etc. –

as enabled the development of DSSs for patients [39,40] , which

an be used to assist them in daily self-management of their con-

ition. The current work contributed in the development of such

ystems by presenting a rule-based DSS for patient guidance in un-

upervised exercise-based rehabilitation. 
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A multi-component, interoperable and performance-driven DSS

oward enhancing computerized exercise-based rehabilitation pro-

rams at home, was presented. The development framework of our

ystem, e.g., formulation of simple rules, communication interfaces

o interoperate with other systems, and system usage logs to cap-

ure the way the system is adapted, was shown, to increase the un-

erstanding about the development of robust DSSs. An additional

dvantage of the proposed system is that this is not tightly cou-

led to specific sensing devices, and therefore it can be sustainable

s technology evolves. Besides presenting the generic capabilities

f the system, we focused on achieving a beneficial response dur-

ng exercise through dynamic program adaptations. In this context,

oth simulation and real-world studies were conducted to evaluate

he DSS. The simulation study provided a proof-of-concept for the

sefulness of the DSS rules in guiding patients to exercise within

heir beneficial heart rate zones. The real-world pilot study with

VD patients provided evidence on the effectiveness of our rule-

ased approach for unsupervised exercise-based CR, by showing

he use and outcomes of computerized exercise selection based on

ser’s heart rate and motion accuracy. 

Our work is limited in terms of the number of subjects partic-

pating in the described studies and their duration. Therefore, lon-

itudinal studies with a larger number of participants are needed

o further explore the effectiveness of our system especially on the

ong-term decision horizon. Given that sufficient amount of data

s collected in such studies, specific personal models of exercise

hich benefit specific individuals the most can be identified. Ma-

hine learning algorithms can be applied to predict patient per-

ormance on the short-term (within an exercise session) and out-

omes on the long-term (e.g., improvement of cardiovascular fit-

ess as identified in CPET results), and feed their results to the

SS operation by enabling the formulation of new rules. Upon the

vailability of high heart rate events by several patients, i.e., oc-

asions in which the heart rate trends toward reaching the peak

eart rate, we would be able to examine whether the DSS rules

ontribute in patient safety. Finally, the association of motivational

essages and behavioural information such as exertion and enjoy-

ent, with patient adherence and clinical outcomes in the long-

erm, will facilitate additional insights on the usefulness of DSSs in

ersonalized exercise-based rehabilitation. 

In conclusion, the aim of this paper was to present a com-

uterized system capable of collecting, processing and evaluat-

ng diversified data, and generating personalized, performance-

riven adaptations to unsupervised exercise-based rehabilitation

rograms, which can be shared with other systems or compo-

ents. Experimental results showed the effectiveness of the system

n beneficial home-based exercise therapy. The operation of such

ystems and their real-life evaluation can contribute in increasing

ur understanding on the way optimal benefits from the use of

hysical activity interventions can be achieved. In this direction,

esearchers and designers of computer-assisted exercise-based re-

abilitation systems can leverage the described approach, in order

o achieve improved rehabilitation outcomes. 

ummary points 

What was already known on the topic? 

• Exercise-based cardiac rehabilitation improves health and qual-

ity of life. Computer-assisted rehabilitation programs delivered

at home have the potential to increase effectiveness of as well

as adherence to regular exercise. 

What this study added to our knowledge? 

• To the best of our knowledge, there has been no systematic ap-

proach to the design, development and evaluation of dedicated
computerized systems in tailoring exercise-based cardiac reha-

bilitation programs for the home environment. 
• A computerized decision support system was developed, adopt-

ing a rule-based approach to evaluate sensed data such as heart

rate and motion accuracy, along with other clinical and be-

havioural information, in order to deliver a safe, personalized

and beneficial execution of an exercise program. 
• Simulation and real-world experimental studies with patients

with cardiovascular disease showed the feasibility and effec-

tiveness of the computerized decision support system. 
• Computerized decision support systems can guide patients to

the beneficial execution of their exercise-based rehabilitation

program, and they are feasible. 
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