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Abstract—This paper presents a novel approach, which relies
on content-based guided image filtering and weighted semi-global
optimization for fast and accurate disparity estimation. The
approach uses a pixel-based cost term that combines gradient,
Gabor-Feature and color information. The pixel-based matching
costs are filtered by applying guided image filtering, which relies
on rectangular support windows of two different sizes. In this
way, two filtered costs are estimated for each pixel. Among
the two filtered costs, the one that will be finally assigned to
each pixel, depends on the local image content around this
pixel. The filtered cost volume is further refined by exploiting
weighted semi-global optimization, which improves the disparity
estimation accuracy. Finally, the disparity refinement in outlier
regions relies on a straightforward and time efficient outliers
handling scheme and on a simple approach which deals with the
disparity outliers at depth discontinuities. Experimental results
on the Middlebury online stereo evaluation benchmark and 27
additional Middlebury stereo pairs, prove that our method is able
to generate disparity maps with high accuracy while keeping the
computational cost low.

Index Terms—stereo vision, stereo matching, disparity esti-
mation, semi-global optimization, guided image filter, disparity
refinement, outliers handling

I. INTRODUCTION

Stereo reconstruction is one of the most active research
fields in computer vision [1] and it is exploited in a wide
range of applications, such as mobile robot navigation [2],
augmented reality [3], [4], automotive [5] and telepresence
[6], [7] applications . Although various methods have been
proposed so far, the estimation of dense disparity maps from
stereo image pairs is still a challenging task and there is further
space for improving accuracy, minimizing the computational
cost and handling more efficiently occlusions, textureless areas
and light variations. Section I-A reports on existing methods
in the field. Paper’s contribution is described in section I-B.
While, section I-C highlights the main differences of the pro-
posed method with respect to other state-of-the-art methods.
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A. Review of previous work

The work in [1] presents a complete taxonomy of ap-
proaches used for stereo disparity estimation. The catego-
rization of the approaches is based on the following four
generic steps, into which most of the stereo algorithms can
be decomposed: 1. matching cost computation; 2. cost aggre-
gation; 3. disparity computation/optimization; and 4. disparity
refinement.

The matching cost computation step is based on the uti-
lization of a matching metric, which is usually formed as a
combination of individual pixel-based cost measures. Pixel-
based cost measures include the absolute difference of im-
age intensity values [8], gradient-based measures [8], Gabor-
feature-based measures [9] and non-parametric transforms
such as CENSUS [10]. Disparity estimation approaches, which
use combinations of individual cost measures in order to form
a final cost metric that inherits the advantageous characteristics
of each measure, have been proposed. In specific, the works
in [11], [12], [13] exploit a combination of absolute intensity
differences, as well as the hamming distance of CENSUS
transform coefficients. The cost term used in [14], [15]
combines absolute intensity differences and a gradient based
measure. The work in [16] uses a combination of CENSUS,
color and gradient based cost measures.

The matching cost values over all pixels and all candidate
disparities form the initial cost volume. In order to reduce
matching ambiguity, the pixel-based matching costs are locally
aggregated in the initial cost volume. The performance eval-
uation on different cost aggregation approaches, which was
presented in [17], shows that until 2008, Adaptive support
weight [18] and Segment-support [19] approaches outper-
formed the rest of cost aggregation approaches. The adaptive
support weight method [18] adjusts the weights based on color
similarity and proximity principles. In the segment-support
approach [19], [20], pixels that belong to the same segment as
the support window’s central pixel are assigned a weight equal
to 1, while the remaining ones are given a weight based on
their color similarity to the central pixel. Despite their good
disparity accuracy, the main drawback of [18] and [19] is their
high computational cost.

Cost aggregation methods that use a support window with
variable size and/or shape, adaptive to the image content, can
also be found in the literature. In [21] a fast method, where an
upright cross local support skeleton is adaptively constructed
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for each anchor pixel, is presented. Then, given the local
cross-decision results, a shape-adaptive full support region is
dynamically constructed by merging horizontal segments of
the crosses in the vertical neighborhood.

In recent years, several approaches perform cost aggregation
by filtering the initial cost volume. For instance, the work
in [22] proposes a recursive implementation of the bilateral
filter [23], where the computational complexity is linear in
both input size and dimensionality. Recently, the use of more
efficient filters has been proposed. The edge preserving guided
image filter [24] has been exploited in [15] and [25]. While,
the constant weighted median filter has been proposed and
exploited in [26].

The disparity optimization step includes local and global
methods. Local methods [12], [15], [18], [19], [21], [25],
[27] give emphasis on the matching cost computation and the
cost aggregation steps. On the other hand, global optimization
methods aim at assigning a disparity label to each pixel, so that
a global cost function is minimized over the whole image area.
Efficient global optimization techniques include Graph Cuts
[28], Belief Propagation [14] and cooperative optimization
[29]. Several works propose approaches for reducing the
computational cost of global methods. For instance the work
in [30] proposes a hierarchical bilateral disparity structure
approach in order to reduce the computational complexity
and slightly improve the accuracy of the Graph Cuts algo-
rithm.Local methods usually fail on ambiguous low texture
areas, while global methods, although more accurate, require
much higher processing time. Semi-global optimization ap-
proaches [13], [20], [31], [32] incorporating advantages of
both groups, provide a good compromise between complexity
and accuracy.

The disparity results have to be refined, since they are
“polluted” with outliers in occluded areas, uniform areas
and depth discontinuities. Several stereo algorithms, such as
those in [31], [33], use segmented regions for reliable outlier
handling. The work in [13] uses iterative region voting and
proper interpolation to fill outliers.

Stereo vision methods, except for still stereo pairs, can also
use as input stereo video sequences. Several works, imple-
mented in GPU or FPGA, are able to generate disparity in-
formation from stereo videos in real-time. The method in [13]
is able to generate disparity information from low-resolution
video at a rate of 10 frames per second (fps). The work in
[34], which describes a FPGA implementation architecture of
a semi-global matching method, is able to generate disparity
maps from VGA images at a rate of 30 fps. The paper in [35]
presents a hardware-oriented disparity estimation algorithm
that uses iterative refinement. The implementation of [35] in
FPGA can process XGA images at a rate of 60 fps.

B. Contributions of this paper
In this paper, a methodology for fast and accurate dense

disparity estimation is proposed. Most significant contributions
of this work include:
• A novel strategy for exploiting guided image filtering

[24]. In brief, the guided image filtering is applied sepa-
rately for support windows of two different sizes and the

appropriate support window size for each pixel is selected
based on the texture homogeneity within the local region
around this pixel. The texture homogeneity is examined
by exploiting the mean-shift segmentation maps [36] of
the stereo pair.

• An innovative weighted variant of the semi-global opti-
mization method of [31], where the path costs of a pixel
may have different weights, depending on the pixels that
precede this pixel along each path direction. Furthermore,
in the proposed variant, possible depth discontinuities are
identified according to an adaptive threshold that depends
on the intensity of the examined pixel. These two features
improve the overall performance of the original approach.

Additional secondary contributions include: a) an efficient
matching cost metric that can be rapidly estimated, which
combines horizontal gradients, Gabor features and a sampling-
insensitive dissimilarity measure; b) a disparity refinement
approach that comprises: i) a simple outliers-handling scheme,
which examines whether the pixels on the right or the left
side of an outlier pixel are more similar in terms of color
to that pixel, before assigning a disparity value to it and ii)
an efficient technique for correcting disparity outliers at depth
discontinuities.

This work, by encompassing the aforementioned contribu-
tions, manages to generate quite fast disparity maps of high
accuracy, as it is verified in section III.

C. Proposed methodology in comparison to state-of-the-art
methods

Several methods require iteration cycles in order to improve
gradually the accuracy of the estimated disparity maps [29],
[37], [38], [39]. Consequently, the number of iterations affects
the computational cost of an approach. On the contrary,
the proposed method gives accurate disparity results without
performing any repetitive refinement.

Plenty of methods, such as [14], [29], [40], [41], exploit im-
age segmentation algorithms to separate images into segments
and then solve the disparity estimation problem by assigning a
disparity plane to each estimated segment. In contrast to this
class of approaches, the proposed method does not require
plane fitting to give accurate disparity results.

Many methods, such as [9], [13], [14], [19], [20], [21],
[29], [37], [38], are evaluated using just the four stereo pairs
of the Middlebury Stereo Online Evaluation Benchmark and
some of them [13], [14], [29] manage to rank among the
top methods. In this work, for more thorough evaluation, 27
additional stereo pairs for assessing the overall performance
are used.

The rest of this paper is organized as follows. In section
II, the proposed method is presented in detail. Section III
provides information on the parameters used and presents the
experimental results, while conclusions are drawn in section
IV.

II. PROPOSED METHOD

An overview of the proposed method is given in the
schematic flow diagram of Fig. 1. As depicted in the diagram,
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Fig. 1: Schematic flow diagram of the proposed method.

Mean-Shift segmentation is applied to the input stereo images
as a pre-processing step of the algorithm, necessary for several
of the subsequent steps. The core algorithm is then divided
into four sequentially applied components: a) Matching cost
computation, based on the image gradient, gabor features and
the RGB information (via the Birchfield-Tomasi dissimilarity
measure); b) Cost filtering using content-based guided image
filtering that is applied for rectangular support windows of
two different sizes; c) Disparity optimization via weighted
semi-global optimization, where the path costs of a pixel may
have different weights depending on the pixels that precede
the considered pixel along a path direction; d) Disparity
Refinement relying on: i) outliers handling based on back-
ground and generic outliers handling and ii) disparity edges
refinement using disparity histograms. These algorithmic steps
are analyzed in sections II-B through II-D.

A. Preprocessing step

a) Mean-shift segmentation: In this work, the stereo
images are initially segmented into non-overlapping regions
by running the Mean Shift algorithm [36], which relies on
color and edge information. The parameters used for the
mean-shift segmentation are the segmentation spatial radius
σs, which is set to σs = 3 and the segmentation feature
space radius σR, which is set to σR = 3. The selection of
these strict values ensures that the segmentation map will
be of high reliability, meaning that most likely a segment
will not overlap a depth discontinuity, and this fact is also
verified in [19] and [42]. Except for these strict values, other
sets of segmentation parameters have been also tested in
subsection III-B4. The segmentation maps of the left and
the right image are computed once and then used in the
subsequent algorithmic steps. As an example of mean-shift
segmentation, the segmentation map for the “Tsukuba” left
image is visualized in Fig. 3a.

B. Content-based guided image filtering

1) Matching cost computation: This subsection describes
the definition of the combined matching cost term, which is
used for the computation of the initial cost volume. The initial
cost volume is then filtered relying on content-based guided
image filtering.

Let Ic
l and Ic

r be the left and right color images of the stereo
pair, while Il and Ir are their respective grayscale images.
Given a pixel p on the left image (reference image), the

corresponding pixel on the right image (target image) for a
candidate disparity value d is denoted as pd. This step defines
a matching cost metric for estimating the similarity between
two pixels. The proposed cost metric is composed of three
individual pixel-based cost terms: (i) a gradient-based cost
term, (ii) a Gabor-Feature-Image based term [9] and (iii) a
Birchfield-Tomasi dissimilarity term [43].

The gradient-based cost term for a pixel p and disparity d
is given by:

Cgra(p, d) = |∇H(Il(p))−∇H(Ir(pd))|, (1)

where ∇H(I(p)) denotes the gradient in horizontal direction
at pixel p on the grayscale image I .

The second term, as in [9], is based on the Gabor-Feature-
Image, which is extracted after applying a Gabor filter on an
image. Let GH(Il(p)) and GH(Ir(pd)) denote the outputs of
the vertically-varying Gabor kernel (detection of horizontal
features) for Il and Ir, respectively (see the supplementary
appendix for more details). The cost term Cgab(p, d) for pixel
p at disparity d is given by:

Cgab(p, d) = |GH(Il(p))−GH(Ir(pd))|. (2)

The third term is given by:

CBT(p, d) =
∑

c=R,G,B

D c(p,pd)

3
, (3)

where Dc(p,pd) is the Birchfield-Tomasi dissimilarity mea-
sure between pixels p and pd [43] (see the supplementary ap-
pendix for more details on the Birchfield-Tomasi dissimilarity
measure).

The combined matching cost term, merging Eq. (1), Eq. (2)
and Eq. (3) is expressed as:

C(p, d) = α1 ·min (Cgra(p, d), Tgra) +
α2 ·min (Cgab(p, d), Tgab) +
(1− α1 − α2) ·min (CBT(p, d), TBT)

(4)

where α1, α2 are balance weights and Tgra, Tgab, TBT are
truncation thresholds. Experiments on the selection of optimal
values for balance weights α1, α2 in Eq. (4) are given in
subsection III-A. The reasons for using these three terms to
compute C(p, d) are the following:
• The gradient-based cost term shows high robustness to

illumination changes, has strong local minima and can
be estimated very fast [8].

• The Gabor-Feature-Image, according to [9] is appropriate
for texture representation and discrimination, robust to
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illumination changes, insensitive to image noise and can
be calculated quite fast.

• The Birchfield-Tomasi dissimilarity measure, presented
in [43], is insensitive to image sampling and can be
estimated fast at the same time.

The combined cost term of Eq. (4), which was firstly
introduced and evaluated in our preceding work presented in
[44], is inspired by previous works in the literature. In more
detail, the horizontal gradient term and the absolute color
difference term have been combined in [9], [15] to estimate
the initial cost volume. An additional Gabor-based term, which
helps to improve the final disparity estimation results, is used
in [9]. Our prior work in [44] proposes a modification of the
combined matching cost term of [9]. In specific, it proposes
the replacement of the absolute color difference term with the
Birchfield-Tomasi dissimilarity term. The modified combined
matching cost term leads to better disparity estimation results,
than using the one of [9], as it is experimentally verified
in [44]. The Gabor-feature term is complementary to the
horizontal gradient term, since it performs edge detection in
the vertical direction. Therefore, edge information on both
horizontal and vertical direction is exploited in the combined
matching cost term. On the other hand, the Birchfield-Tomasi
dissimilarity term is used to exploit the color information,
complementing the horizontal gradient and the Gabor-feature
terms that rely on the gradient information and not on the color
information. In the supplementary appendix, the combined
matching cost of Eq. (4) is compared against the combined
matching costs proposed in [9], [15], [25] and is proved that
the use of Eq. (4) helps to acquire more accurate disparity
maps.

The initial cost volume C(p, d) is a three dimensional array
which stores the matching costs for all pixels and all possible
disparity candidates. The initial disparity map of Fig. 2 is
acquired after applying Winner-Take-All (WTA) to C(p, d),
i.e. selecting for a pixel p the disparity d that minimizes
C(p, d). The initial disparity map of Fig. 2 is heavily corrupted
by estimation-error noise.

2) Guided image filtering: In order to reduce matching
ambiguity that results to noisy disparity maps, the matching
costs C(p, d) are filtered over support windows using the
guided image filter [15]. In detail, the filtered cost value of
pixel p at a fixed disparity d is given by:

C
′
(p, d) =

∑
q

W (p,q)C(p, d), (5)

where the filter weights W (p,q) depend on the color guidance
image I . The reference (left) stereo image is used as the
“guidance image”, which is referred to as such because its
content influences (“guides”) the filtering of the matching
costs. These weights are given from [15]:

W (p,q) = 1
|wk|2

∑
(p,q)∈wk

(
1 + (I(p)− µk)

T
(Σk + εU)

−1
(I(q)− µk)

)
,

(6)
where |wk| is the total number of pixels in a support window
wk centered at pixel k and ε is a smoothness parameter. Σk

Fig. 2: Initial disparity map.

and µk are the covariance and the mean of pixels colors within
wk. I(p), I(q) and µk are 3×1 (color) vectors, while Σk and
the unary matrix U are of size 3× 3.

The selection of the appropriate support window size for
each pixel, based on its local image content, is discussed in
the next subsection. With the term “local image content” of
a pixel, we refer to the image content within a local region
around this pixel.

3) Selection of the window size based on local image
content: This subsection proposes a novel scheme for ex-
ploiting guided image filtering. First of all, the shape of the
support window is selected to be rectangular and the largest
dimension of the support window to be the horizontal one
(width). The window’s width is twice its height. A support
window elongated along the horizontal dimension, i.e. along
the dimension in which disparity varies, is used in order to
increase the discriminating ability of the window. This fact is
experimentally verified in subsection III-B2.

Except for the rectangular shape, in our solution, windows
of two sizes are used. The small window size is
RS x dRS/2e and the large one is 2RS x RS. The guided
image cost filtering is performed separately for both window
sizes. Given the two filtered costs that were estimated after
applying guided image filtering for both window sizes, the
filtered cost that is finally assigned to a pixel, depends on the
local image content around this pixel. In specific, the preferred
support window size for each pixel is selected according to the
information about the texture homogeneity within the local
region around the pixel. Hence, if the neighborhood around a
pixel is homogeneous, then the large support window size,
which contains more information, shall be preferred. The
criterion to decide which support window is appropriate for a
pixel depends on image’s segmentation map, which provides
information about the homogeneity of the image region around
a pixel.

In detail, based on image’s segmentation map, for each pixel
p the lengths of its “arms” stretching to the left (Fl), right (Fr),
up (Fu) and down (Fd) directions are estimated as visualized in
Fig. 3a: Given a pixel p and a direction Fi, i ∈ (l, r, u, d), the
arm length of p along the considered direction is given by the
number of pixels between p and the end of the segment where
p belongs. The arm length is denoted as Mi(p), i ∈ (l, r, u, d).
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The average length of the arms is given by:

M̄(p) =

(
Ml(p) + Mr(p) + Mu(p) + Md(p)

)
/4 (7)

If M̄(p) > RS then p is assumed to lie inside a homo-
geneous area. Hence, the large window of size 2RS x RS is
considered as the appropriate support window for p, in order
to contain more information. For pixels with M̄(p) ≤ RS, the
appropriate support window is the one with size RS x dRS/2e.
In Fig. 3b the pixels for which the appropriate support window
has size 2RS x RS are visualized with red.

(a) (b)
Fig. 3: (a) Arms lengths for a pixel p on a segmentation map and
(b) Pixels with support region of 2RS x RS

Let the filtered cost using the small window be denoted as
C1

′
(p, d), while C2

′
(p, d) denotes the filtered cost using the

large one. The final filtered cost C
′
(p, d) at pixel p is set equal

to the filtered cost that corresponds to the support window size
that is appropriate for this pixel.

In subsection III-B2 the selection of rectangular support
windows of two sizes is experimentally justified. Provably,
more than two window sizes could be used. However, this
would increase the computational cost of the algorithm. More-
over, two window sizes are enough to achieve high disparity
estimation accuracy.

4) Comparison with related State of the art methods: A
relevant work that uses adaptive guided image filtering is
presented in [25]. However, there are significant differences
between [25] and the proposed method regarding the selection
of the support window for each pixel. In [25] the support
window for each pixel is based on a skeleton that is built from
four arms stretching in four directions, where the borders of
the support window are determined directly by the endpoints
of the arms. Therefore, for each pixel, a different support
window is used, resulting into increased computational effort.
On the contrary, our method that uses two window sizes, is
expected to perform fast, as explained directly below.

A main advantage of the guided filter is that the computation
cost is independent to the size of the selected support window
[24]. This is because Eq. (5) can be expressed as a linear
transform as follows:

C
′
(p, d) =

1

|wk|
∑

p∈wk

(akI (p) + bk), (8)

where:

ak = (Σk + εU)−1

(
1

|wk|
∑

p∈wk

I(p)C(p, d)− µkC(k, d)

)
,

(9)

bk = C(k, d)− aT
kµk. (10)

Here C(k, d) is the mean of the d -th slice of C within wk.
Moreover, a factor that increases the speed of the guided
image filter is that the summations in equations Eq. (8), Eq.
(9) and Eq. (10) can be computed using box filters with a
fixed window size [24]. Our method runs the guided image
filtering for two fixed support windows sizes, therefore it
can use box filters. On the other hand, the method in [25]
that uses support windows of random sizes needs to estimate
the summations for each pixel separately, an operation that
increases the computational cost of [25].

In the experimental results section (see subsection III-B4),
evaluation results using our methodology with one modifica-
tion, are provided. Instead of using our scheme for performing
guided image filtering, the scheme from [25] is used. The
results show that the exploitation of our scheme within the
proposed methodology leads to better disparity estimation
results than using the scheme from [25].

C. Disparity optimization relying on weighted semi-global
optimization

1) Outliers detection: The left disparity map dLR(p) (Fig.
4a) is acquired after applying Winner-Take-All (WTA) to the
cost volume C

′
(p, d), i.e. selecting for a pixel p the disparity

d that minimizes C
′
(p, d). If the right image is considered

as reference, then the disparity map dRL(p) of Fig. 4b is
acquired. The computation of dLR(p) and dRL(p) is fully inde-
pendent. The disparity maps dLR(p) and dRL(p) are taken into
consideration to detect problematic areas, especially outliers
in occluded regions and depth discontinuities. A prevalent
strategy for detecting outliers is the Left-Right consistency
check [20].

(a) (b)
Fig. 4: (a) dLR(p) and (b) dRL(p) disparity maps

In this strategy, the outlier pixels have disparity values that
are not consistent between the two disparity maps (dLR(p) and
dRL(p)) and therefore, they do not satisfy the relation:

|dLR(p)− dRL(p− dLR(p))| ≤ TLR, (11)

where p is the location of the considered pixel. The threshold
for the outliers detection in Eq. (11) is set equal to TLR = 0.
Fig. 5a shows the outliers map OTLR

1 (p) that is generated for
TLR = 0. The blue regions in OTLR

1 (p) denote the outlier
pixels for which the relation in Eq. (11) does not hold, while
the red regions denote the inlier pixels, i.e. pixels for which
Eq. (11) holds.
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2) Weighted Semi-global Optimization: The optimization of
the filtered cost volume C

′
(p, d) is based on the semi-global

optimization method of [31], which aggregates matching costs
in 1D from multiple path directions. While the original semi-
global method aggregates matching costs equally from multi-
ple direction, in our approach a weighted aggregation, which
improves the disparity estimation results, is used.

This work considers four path directions r, namely left-
to-right, right-to-left, up-to-down and down-to-up, which are
denoted as rlr = [+1, 0]T, rrl = [−1, 0]T, rud = [0,+1]T and
rdu = [0,−1]T, respectively (see Fig. 5b).

(a) (b)

Fig. 5: (a) Outliers map OTLR
1 (p) for threshold TLR = 0 and (b)

Path directions used for cost volume optimization.

Let Lr be a path that is traversed in the direction r ∈
{rlr, rrl, rud, rdu}. The path cost Lr(p,d) of pixel p at disparity
d is computed recursively from:

Lr(p,d) = C
′
(p, d) + min

{
Lr(p− r,d), Lr(p− r,d± 1)+

π1(p), min
di
Lr(p− r,di) + π2(p)

}
−

min
di
Lr(p− r,di)

(12)
where di ∈ [disparity range] and p - r denotes the previous
pixel along the path direction. π1(p) and π2(p) are two
smoothness penalty terms (with π1(p) ≤ π2(p)) for penalizing
disparity changes of neighboring pixels.

In more detail, in Eq. 12, C
′
(p, d) is the filtered cost value

of pixel p at disparity d (see Eq. 5), while the second term of
the equation adds the lowest path cost of the previous pixel
p - r of the path, including the appropriate smoothness penalty
terms π1(p) and π2(p) for penalizing disparity discontinuities.
Finally, the minimum path cost min

di
Lr(p − r,di) of the

previous pixel is subtracted from the whole term, so that the
values of Lr do not permanently increase along the path. More
details regarding Eq. 12 can be found in [31].

The smoothness penalty terms π1(p) and π2(p) are defined
according to:

(
π1(p), π2(p)

)
=



(Π1,Π2) , if
(
∇(p) ≤ τl(Il(p)) &

∇(pd) ≤ τr(Ir(pd))
)

(
Π1

4 ,
Π2

4

)
, if

(
∇(p) ≤ τl(Il(p)) &

∇(pd) > τr(Ir(pd))
)

(
Π1

4 ,
Π2

4

)
, if

(
∇(p) > τl(Il(p)) &

∇(pd) ≤ τr(Ir(pd))
)(

Π1

10 ,
Π2

10

)
, otherwise,

(13)
where Π1 = 0.002, Π2 = 0.006 are constant parameters. ∇(p)
and ∇(pd) are the intensity differences between a considered
pixel and the preceding one along the path direction, on the
two images, respectively, and they are defined as:

∇(p) = |Il(p)− Il(p− r)| (14)

and
∇(pd) =

∣∣Ir(pd)− Ir(pd − r)
∣∣ , (15)

where Il and Ir are the images in grayscale. The idea of
using ∇(p) and ∇(pd) is based on the assumption that a
disparity change (depth discontinuity) often coincides with an
intensity edge [13], [20]. Therefore, the intensity difference
between neighboring pixels is able to indicate the presence of
an intensity edge.

The thresholds τl and τr in Eq. 13 are adaptive to Il(p)
and Ir(pd), respectively. The rationale behind using adaptive
thresholds is that for areas with low intensity it is more difficult
to discriminate regions that may belong to different depths,
while for areas with high intensity this discrimination is more
evident. Therefore, the intensity threshold τ , which denotes a
depth discontinuity, should be low for a low intensity pixel
and increase as the intensity of the considered pixel increases.
More details on how the adaptive intensity threshold τ is
defined are given in the following paragraph.

A fixed intensity threshold for identifying disparity edges,
equal to 10/255 (the pixel intensity range is [0, 1]), is used
in [20]. The proposed methodology proposes an adaptive
threshold τ(I(q)) whose value varies around the average value
of 10/255 depending on the intensity I(q) of the considered
pixel q. The adaptive intensity threshold has a minimum
value of 5/255 and maximum value of 15/255, so that its
range is tight around the value of 10/255. The adaptive
threshold τ(I(q)) is set to 5/255 when I(q) < 30/255,
while τ(I(q)) is set to 15/255 when I(q) ≥ 210/255. For
30/255 ≤ I(q) < 210/255 the adaptive threshold τ(I(q))
increases linearly with I(q), from its minimum value 5/255
to its maximum value 15/255.

Based on the above, the equation of the intensity-based
adaptive threshold τ(I(q)) is given from:

τ(I(q)) =


5/255, if I(q) < 30/255((

10
180

)
· (I(q) · 255− 30) + 5

)
/255, if 30/255 ≤ I(q) < 210/255

15/255, if I(q) ≥ 210/255,

(16)
while the graphical representation of Eq. (16) is displayed in
Fig. 6.
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Fig. 6: Graphical representation of τ(I(q)).

After computing the four path costs (Lrlr , Lrrl , Lrud , Lrdu )
using Eq. (12), the final cost volume C

′′
(p, d) is calculated

from:

C
′′
(p, d) =

1

4
·
[
wlr(p) · Lrlr(p,d) + wrl(p) · Lrrl(p,d)+

+ wud(p) · Lrud(p,d) + wdu(p) · Lrdu(p,d)
]

(17)

where wlr(p) + wrl(p) + wud(p) + wdu(p) = 4.
In the original approach of the semi-global optimization

[31]: wlr(p) = wrl(p) = wud(p) = wdu(p) = 1, while in
our approach these weights may not be equal. Practically, if
along a path direction, the non-outlier pixels that belong to
the same surface as the considered pixel p, are much more
than the non-outliers pixels of other directions, we assume
that this direction should get a higher weight since it will
give more accurate estimates. Therefore, for a pixel p and a
specific direction, the total number of non-outlier pixels that
precede p along this direction and at the same time they belong
to the same surface as p, is computed. The total number of
non-outlier pixels for directions rlr, rrl, rud and rdu for pixel p
is denoted as M

′

l (p), M
′

r(p), M
′

u(p) and M
′

d(p), respectively.
M
′

l (p), M
′

r(p), M
′

u(p) and M
′

d(p) are computed as described
in the next paragraph.

Let that the arms lengths of a pixel p, as estimated in subsec-
tion II-B3, are Ml(p), Mr(p), Mu(p) and Md(p). The number
of the pixels across an arm, which are outliers according to
the outliers map OTLR

1 (p) (see Fig. 5a), is subtracted from the
size of the arm. The sizes of the arms, after subtracting the
number of outlier pixels, are denoted as M

′

l (p), M
′

r(p), M
′

u(p)
and M

′

d(p), respectively.
Let M

′

max(p) denote the maximum value among M
′

l (p),
M
′

r(p), M
′

u(p) and M
′

d(p), while M
′

sec(p) denotes the second
highest value. Based on M

′

max(p) and M
′

sec(p), the following
conditions are defined:

M
′

max(p)/M
′

sec(p) > 2 and M
′

max(p) > RS/2 (18)

The first condition confirms that a direction has much more
non-outlier pixels than the other directions, while the second
condition confirms that there is a sufficient number of non-
outlier pixels along this direction. In case both conditions in
Eq. (18) are satisfied, then a higher weight is given to the path

cost that corresponds to the direction from which M
′

max(p) has
been derived.

For example, if M
′

max(p) is equal to M
′

u(p), which corre-
sponds to direction rud, then the weights used in Eq. (17) will
be set as: wud(p) = wα and wlr(p) = wrl(p) = wdu(p) = wβ ,
where wα > wβ and wα + 3 · wβ = 1. That is, a higher
weight is given to the direction that has much more pixels that
belong to the same surface as p, when compared to the other
directions, which at the same time are non-outliers. If any of
the conditions in Eq. (18) is not satisfied, then all weights are
set equal to 1. Experiments on the selection of optimal values
for wα and wβ are given in subsection III-A.

To summarize, two novel ideas regarding the semi-global
optimization have been introduced in this subsection. The
first idea concerns the introduction of a scheme for defining
the weights of each path cost, contrary to the methods in
[13], [20], [31] that do not assign weights to the path costs.
The second idea concerns the employment of an adaptive
threshold for the detection of depth discontinuities, contrary
to the methods in [13], [20] that use a static threshold.

The output of the Winner-Take-All (WTA) on C
′′
(p, d),

which has been estimated from Eq. (17), gives the disparity
map d

′

LR(p) (see Fig. 7a). If the right image is considered as
the reference image, then the disparity map d

′

RL(p) (see Fig.
7b) is acquired.

(a) (b)

Fig. 7: (a) d
′
LR(p) and (b) d

′
RL(p) disparity maps after weighted

semi-global optimization.

D. Disparity refinement in outlier regions

The disparity maps after cost volume optimization may
contain a large number of outliers in occluded regions, uniform
areas and near depth discontinuities. With the algorithmic
steps, described through this section, these problematic areas
can be handled efficiently in order to get a disparity map of
high accuracy.

1) Outliers Handling:
a) Outliers detection: The disparity maps of the left

image d
′

LR(p) (see Fig. 7a) and the right image d
′

RL(p)
(see Fig. 7b) are taken into account so as to detect
problematic areas. According to the Left-Right consistency
check:

∣∣∣d ′LR(p)− d ′RL(p− d ′LR(p))
∣∣∣ ≤ TLR, the outliers map

OTLR
2 (p) (see Fig. 8) is acquired for TLR = 0. The blue regions

in Fig. 8 denote the outlier pixels for which above relation does
not hold, while the red regions denote the inlier pixels.

The detected outliers are filled with reliable disparities
from neighboring areas by combining “Background outliers



DRAFT

8

Fig. 8: Outliers map OTLR
2 (p) for threshold TLR = 0.

handling” and “Generic outliers handling”. The filled outliers
are then smoothed using bilateral filtering.

b) Background outliers handling: One of the simplest
schemes for handling an outlier pixel p, which may belong to
the pixels of the occluded background, is to set its disparity
d(p) equal to the minimum disparity between the disparities
of its spatially closest consistent (inlier) pixels on its left and
its right side [15]. Practically, if pl and pr stand for the
nearest consistent (inlier) pixels on the left and the right side
of p, respectively, the disparity value of min(d(pl), d(pr)) is
assigned to d(p).

c) Generic outliers handling: The outliers may corre-
spond to mismatches and not to background occlusion. In
order to handle possible mismatches, we have introduced
a straightforward scheme which precedes the “Background
outliers handling” scheme. The “Generic outliers handling”
scheme does not presume that an outlier pixel p belongs to
the background, but it checks whether its left or right side has
more similar (in term of intensity) pixels to that pixel, before
assigning a disparity value to p. In more detail, for an outlier
pixel p, separately for the left and right side, the inlier pixels,
for which the condition in Eq. (19) is verified, are counted.
The condition in Eq. (19) examines whether pixels p and p+s
are close in intensity.

|Il(p)− Il(p + s)| < τ(Il(p)), (19)

In Eq. (19), τ(Il(p)) is defined according to Eq. (16), s =
(−sxl , 0)T, sxl ∈ [1, slmax

(p)) stand for the left side and s =
(sxr , 0)T, sxr ∈ [1, srmax

(p)) stand for the right side. slmax
(p)

and srmax(p) are the integer values for which the condition of
Eq. (19) fails for the first time when examining the left and
the right sides, respectively. For the pixels on the left side of
p, the weights βl(p + s) are calculated from:

βl(p + s) =

{
1, if p + s is inlier
0, if p + s is outlier.

(20)

Afterwards, for the left side the following disparity his-
togram is generated:

Hl(p, di) =
∑

p+s: d(p+s) == di

βl(p + s), (21)

where di ∈ [disparity range]. Each bin in the Hl(p, di)
histogram corresponds to a specific disparity value di ∈
[disparity range], where the value (height) of the bin is equal
to the total number of the left inlier pixels whose disparity is
equal to the specific di disparity value.

In an analogous manner, the disparity histogram Hr(p, di)
is generated for the right side. Let now the maximum val-
ues of the left and the right histograms be hlmax

(p) =

max
di

{
Hl(p, di)

}
and hrmax(p), respectively and the disparity

values, which correspond to the histogram bins with the
maximum values, be dlmax

(p) = argmax
di

{
Hl(p, di)

}
and

drmax
(p), respectively. Based on the above, the new disparity

estimate d(p) is given from:

d(p) =

{
dlmax

(p), if (hlmax
(p) > hrmax

(p) & hlmax
(p) > RS/2)

drmax(p), if (hlmax(p) < hrmax(p) & hrmax(p) > RS/2)
(22)

The second part of the conditions in Eq. (22) (hlmax(p) >
RS/2 or hrmax

(p) > RS/2) confirms that there is a sufficient
number of inlier pixels on either the left or the right side of
p that have the most frequent disparity value, before setting
d(p) equal to this most frequent disparity value.

d) Combination of “Generic outliers handling” and
“Background outliers handling”: The disparity map of Fig.
7a, after applying “Generic outliers handling”, is visualized in
Fig. 9a. The outlier pixels that have been handled using Eq.
(22) are considered now as inliers. For the remaining outliers
(i.e. none of the conditions in Eq. (22) holds), the scheme in
paragraph “Background outliers handling” (II-D1b) is applied.

e) Bilateral smoothing of the handled outliers: The out-
liers handling, which is based on the combination of “Generic
outliers handling” and “Background outliers handling”, may
generate artifacts in the disparity map. Therefore, a bilateral
filter is used to smooth the handled outliers. The bilateral filter
weights are given by:

Wp,q =
1

k
· exp

(
−
(

∆sp,q

γs
+

∆cp,q

γc

))
, (23)

where k is a normalization factor, ∆sp,q and ∆cp,q denote the
spatial distance and the color difference, respectively, between
pixels p, q and γs, γc are constant parameters that adjust
the spatial and color distance. The parameters of the bilateral
filter are set as in [15]: γs = 9, γc = 0.1 and the window
size is RS ×RS. The disparity map of Fig. 9a after applying
“Background outliers handling” and bilateral smoothing is
visualized in Fig. 9b.

(a) (b)
Fig. 9: Disparity map after applying: (a) “Generic outliers handling”
and (b) “Background outliers handling” plus bilateral smoothing.

2) Disparity edges refinement: Disparity edges, which cor-
respond to depth discontinuities, may contain disparity outliers
[13]. Therefore, a simple and efficient approach to refine the
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Image ResolutionDisp. levelsProposedTSGO[45]JSOSP+GCP [46]KADI [47]ADCensus [13]AdaptiveGF [25]Appr. in [44]VariableCross [21]Appr. in [30]
Tsukuba 384 x 288 15 1.9 3 143.4 24.33 2.5 2.12 1.5 0.9 1.23
Venus 434 x 383 20 3.6 7 249.0 49.25 4.5 2.96 2.8 1.6 2.45
Teddy 450 x 375 60 9.7 20 262.8 154.23 15.0 8.78 7.3 2.4 7.23
Cones 450 x 375 60 9.6 20 306.6 154.78 15.0 8.76 7.2 2.4 7.05

TABLE I: Computational time in seconds.

disparity results at the disparity edges is introduced. Initially,
the pixels that belong to disparity edges are assumed to have
absolute disparity difference greater or equal to 1 with at least
one of their 4-adjacent pixels. Fig. 10a shows with red the
disparity edges extracted from the disparity map of Fig. 9b.

Around each pixel pc of the disparity edge, a circular region
of radius 4 is defined. The color similarity between the center
pixel pc and a pixel q within the circular region is estimated
as:

w(pc,q) = e

(
−∆I(pc,q)

γc

)
, (24)

where

∆I (pc,q) =

√ ∑
c∈{R,G,B}

|Ic(pc)− Ic(q)|2. (25)

A disparity histogram is generated for each pc, where the
values of its disparity bins are computed as follows:

Hpc
(pc, di) =

∑
q: d(q) == di

w (pc,q) , (26)

where di ∈ [disparity range]. Let now the maximum and
the second maximum value of Hpc

(pc, di) be hmax(pc) =

max
di

{
Hpc

(pc, di)
}

and hsec(pc), respectively, and the cor-

responding disparity value for hmax(pc) be dhmax
(pc) =

argmax
di

{
Hpc

(pc, di)
}

. If hmax(pc)/hsec(pc) > 2 then

d(pc) = dhmax(pc), otherwise the disparity value of d(pc) does
not change.

The disparity result after the disparity edges refinement is
depicted in Fig. 10b. A median filter, using a 3x3 neighbor-
hood, is applied to the disparity result of Fig. 10b in order to
remove spurious disparities before acquiring the final disparity
map, which is depicted in the upper-left image of Fig. 11.

(a) (b)
Fig. 10: (a) Disparity edges and (b) disparity map after disparity
edges refinement.

E. Computational cost

A C++ implementation of the algorithm is used to report on
the required computational time. The algorithm was executed
on a desktop PC with Core i7-3770 3.40 GHZ CPU and 8 GB
RAM. The low computational time, using as input each of
the four stereo pairs of the Middlebury evaluation benchmark
[48], is indicated in the column “Proposed” of Table I. The
measured time is the average of 10 separate runs and includes
both the time for performing mean-shift segmentation (see
subsection II-A) and the time for executing the algorithmic
steps of the methodology (see subsections II-B to II-D).

The reason that the proposed approach has low computation
time is fourfold. Firstly, the combined matching cost metric
of Eq. (4) can be rapidly estimated, since it is formed by
three terms which can be computed fast (see subsection
II-B1). Secondly, guided image filtering, which is used for
the cost filtering in subsection II-B2, has the advantage that
its computational cost is independent to the size of the
support window. This is because guided image filtering can
be expressed as a linear transform according to subsection
II-B4. While the computational complexity of guided image
filtering is independent to the size of the support window,
in the cost aggregation approaches of [13], [18], [19], [20],
[21] the computational cost increases as the size of the
support window increases. Thirdly, semi-global optimization
(see subsection II-C2) helps to notably increase the disparity
estimation accuracy at low computational cost as it is also
verified in [13], [19], [32]. Fourthly, the outliers handling
(see subsection II-D1) and the disparity edges refinement (see
subsection II-D2) techniques, which belong to the disparity
refinement step, have low computational complexity and at the
same time they are applied just to outliers areas and disparity
edges, respectively, and not to the complete disparity map.

The steps of the algorithm with increased computational
cost include the content-based guide image filtering (see
subsection II-B2) and the semi-global optimization (see sub-
section II-C2). However, these parts can be implemented in
Graphics Processing Units (GPU) as can be verified in [15],
[25] for the guided image filtering and in [13], [49] for the
semi-global optimization. Therefore, the proposed methodol-
ogy is appropriate for real-time GPU implementation.

III. EXPERIMENTAL RESULTS

In this section, the experimental results on multiple datasets
are presented. In more detail, the four stereo pairs of the
Middlebury online stereo evaluation benchmark [48] are used
for the evaluation of this method. Furthermore, this section
presents experimental results on 27 additional Middlebury
stereo pairs, in order to verify the efficiency of the proposed
approach.
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BestAdapt. Windows as in [25]S-G as in [13]S-G as in [20]Outliers handl. as in [15]
Avg. Rank 16.8 23.4 19.1 18.0 20.1

Nonocc (%)1.91 2.12 1.94 1.95 1.95
All (%) 4.68 4.85 4.71 4.70 4.72

Disc (%) 6.28 6.24 6.29 6.26 6.32
APBP (%) 4.29 4.41 4.31 4.30 4.33

TABLE II: Evaluation results.

(α1, α2) (0.75, 0.20)(0.70, 0.20)(0.75, 0.15)(0.70, 0.25)(0.80, 0.15)(0.80, 0.20)(0.75, 0.25)
Avg. Rank 16.8 21.4 18.8 21.5 17.8 29.5 30.2

Nonocc (%) 1.91 2.01 1.95 1.98 1.97 2.16 2.11
All (%) 4.68 4.83 4.77 4.74 4.75 4.94 4.87

Disc (%) 6.28 6.39 6.40 6.29 6.39 6.91 6.70
APBP (%) 4.29 4.41 4.37 4.33 4.37 4.67 4.56

TABLE III: Balance weights α1, α2 testing.

A. Set of optimal parameters

The parameters used for the experiments are the same
for all tested stereo pairs. More specifically, the parameters
used for the estimation of the cost term (see subsection
II-B1) are selected equal to: {α1, α2, Tgra, Tgab, TBT} =
{0.75, 0.20, 2/255, 4/255, 7/255}. The variables used for the
cost filtering are the smoothness parameter ε (see subsection
II-B2), which is set to ε = 0.0001 (ε has the same value as in
[15]) and the parameter RS that defines the size of the rectan-
gular window (see subsection II-B3), which is set to RS = 17.
The selection of RS = 17 is based on the experiments de-
scribed in subsection III-B2. The weights wα, wβ that are used
to define the weights wlr(p), wrl(p), wud(p), wdu(p) in Eq. (17)
(see subsection II-C2) are set to (wα, wβ) = (1.6, 0.8).

In the column “Best” of Table II, the numeric results from
the Middlebury Stereo evaluation for the disparity maps ex-
tracted using these optimal parameters, are given. The results
include the overall performance measure (“Avg. Rank”), the
error in non-occluded regions (“Nonocc (%)”), the error in all
regions (“All (%)”), the error near depth discontinuities (“Disc
(%)”) and the average percent of bad pixels (“APBP (%)”).

In the following, the results that justify the selection of
optimal values for (α1, α2) and (wα, wβ) are presented.

Table III presents the results of testing the balance weights
α1 and α2 of Eq. (4) (see subsection II-B1). The results
show that optimal parameters (α1, α2) = (0.75, 0.20) give
better results compared to the results obtained using balance
parameters with values that are slightly below or slightly
above the optimal balance parameters. Additionally, from the
last two columns

(
(α1, α2) = (0.80, 0.20) and (α1, α2) =

(0.75, 0.25)
)
, where the values of the balance parameters

cause the elimination of the Birchfield-Tomasi dissimilarity
term from Eq. (4), it can be deduced that the disparity
estimation accuracy reduces considerably after eliminating
the Birchfield-Tomasi dissimilarity term. This fact shows the
importance of using the Birchfield-Tomasi dissimilarity term
in Eq. (4).

Table IV presents the results of testing weights wα and
wβ . The weights wlr(p), wrl(p), wud(p) and wdu(p) of Eq. (17)
are defined according to wα and wβ (see subsection II-C2).
The results show that optimal weights (wα, wβ) = (1.6, 0.8)
give better results compared to the results obtained using
weights with values that are close to the optimal path direction
weights. The last column of Table IV gives results for weights
(wα, wβ) = (1.0, 1.0). For (wα, wβ) = (1.0, 1.0), the weights
in Eq. (17) are uniformly set as wlr(p) = wrl(p) = wud(p) =

(wα, wβ) (1.6, 0.8)(1.3, 0.9)(1.45, 0.85)(1.75, 0.75)(1.9, 0.7)(1.0, 1.0)
Avg. Rank 16.8 18.1 17.3 17.1 17.6 19.4
Nonocc(%) 1.91 1.92 1.91 1.91 1.91 1.96

All(%) 4.68 4.70 4.69 4.68 4.68 4.72
Disc(%) 6.28 6.28 6.29 6.29 6.32 6.31

APBP (%) 4.29 4.30 4.30 4.30 4.31 4.33

TABLE IV: wα, wβ weights testing.

wdu(p) = 1. Obviously, the last column of Table IV gives
worse results than the rest of its columns. Therefore, it
can be deduced that the use of different values for weights
wlr(p), wrl(p), wud(p) and wdu(p) in Eq. (17) helps to achieve
better disparity estimation results than using uniform values.

B. Middlebury Online Stereo Evaluation Benchmark

1) Disparity results: The disparity results of the proposed
method, for the optimal parameters set, accompanied with the
disparity error maps as extracted by the Middlebury evaluation
system are visualized in Fig. 11. Errors in non-occluded and
occluded regions are marked in black and gray respectively.

Table V displays the Middlebury online evaluation results
of several approaches, for error threshold equal to 1. The
“nonocc (%)” error measure stands for the average estimation
error only at the non-occluded regions of the left image, i.e.
the regions of the left image that are also visible in the right
image. The “disc (%)” measure considers the error only at the
regions close to depth discontinuities. Finally, the “all (%)”
error measure is calculated considering the whole left image.
The subscript blue values, next to the percentages of error
pixels, give the relative ranks in each column. The “Avg. Rank”
is given by the average of the blue subscript values. Finally,
the “APBP (%)” acronym stands for the average percent of
bad pixels in “all” regions and is given by the average of the
error percentages that are provided in the “all (%)” column.
For further details, the reader is referred to [1]. The first
seven approaches (which are displayed above the dashed line
in Table V) correspond to the top ranked methods of the
Middlebury evaluation benchmark. The rest four approaches
(which are displayed below the dashed line) do not rank among
top methods, but they are mentioned for comparison purposes.

The ranking results in the “Avg. Rank” column of Table V
indicate that the proposed method is 5th out of 164 methods
that are included in the Middlebury Stereo Evaluation. The
2nd ranked method TSGO [45] proposes a two-step energy
minimization procedure: first a fully connected model is used
for cost filtering and then a locally connected model is applied
to compute the final disparity maps. The 3rd ranked method
JSOSP+GCP [46] presents a stereo framework that handles a
scene as a set of 3D entities with compact and smooth dispar-
ity distributions. The 3D entity-based representation enables
the exploitation of a GCPs-plane constraint, a joint second-
order smoothness prior and a soft segmentation constraint
to estimate the 3D entities. The 4th ranked method KADI
[47] presents a two-phase strategy for combining separate
cost volumes, a mean-shift segmentation-driven approach for
handling disparity outliers and disparity histogram analysis for
fostering low-textured area plane fitting. Notice that [50] was
under review at the time of this paper’s writing. Therefore, the
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Fig. 11: Disparity maps generated with the proposed algorithm and their corresponding disparity error maps for error threshold equal to 1.

Algorithm Pos. Avg.
Rank

Tsukuba
nonocc(%) all(%) disc(%)

Venus
nonocc(%) all(%) disc(%)

Teddy
nonocc(%) all(%) disc(%)

Cones
nonocc(%) all(%) disc(%) APBP(%)

IGSM[50] 1 10.5 0.93 10 1.37 13 5.05 12 0.07 2 0.17 5 1.04 2 4.08 20 5.98 10 11.4 21 2.14 9 6.97 14 6.27 8 3.79
TSGO[45] 2 13.8 0.87 4 1.13 1 4.66 6 0.11 11 0.24 15 1.47 14 5.61 47 8.09 21 13.8;40 1.67 2 6.16 3 4.95 2 4.06
JSOSP+GCP[46] 3 15.2 0.74 1 1.34 10 3.98 1 0.08 4 0.16 1 1.15 4 3.96 18 10.1 41 11.8 22 2.28 20 7.91 38 6.74 23 4.18
KADI[47] 4 15.6 1.02 17 1.23 4 5.51 18 0.08 3 0.20 8 1.11 3 5.16 38 9.43 35 13.0 34 2.07 4 7.16 19 5.97 4 4.33
Proposed 5 16.8 1.01 16 1.32 9 5.17 15 0.08 5 0.21 11 1.17 6 4.35 24 9.83 38 12.3 27 2.19 14 7.35 22 6.43 15 4.29
SSCBP[51] 6 18.2 1.05 20 1.39 15 5.57 20 0.10 8 0.16 2 1.39 11 3.44 14 8.32 26 9.95 15 2.60 35 7.13 18 7.23 34 4.03
ADCensus[13] 7 18.8 1.07 24 1.48 22 5.73 27 0.09 6 0.25 19 1.15 4 4.10 21 6.22 11 10.9 18 2.42 26 7.25 21 6.95 27 3.97
AdaptiveGF[25] 21 36.8 1.04 19 1.53 25 5.62 22 0.17 34 0.41 47 1.98 32 5.71 51 11.3 57 14.3 47 2.44 28 8.22 48 7.05 31 4.98
Approach in [44] 23 37.5 1.66 80 2.01 72 6.58 51 0.11 9 0.30 26 1.50 15 5.05 33 10.4 42 13.9 43 2.39 23 7.71 31 6.85 25 4.87
VariableCross[21] 115 109.9 1.99 101 2.65 99 6.77 57 0.62107 0.96105 3.20 78 9.75132 15.1129 18.2111 6.28140 12.7132 12.9128 7.60
Approach in [30] Undef. Undef. 6.18 6.88 13.70 5.69 6.43 12.20 13.60 20.90 28.20 6.80 13.30 14.00 12.30

TABLE V: This table provides the average rank position and the average rank on the online Middlebury stereo evaluation benchmark and
the percentages of error pixels in non-occluded regions (“Nonocc (%)”), all regions (“All (%)”) and regions near depth discontinuities (“Disc
(%)”), respectively, for the four evaluated stereo image pairs. The subscript blue values, next to the percentages of error pixels, give the
relative ranks in each column. The last column gives the average percent of bad pixels (“APBP (%)”).

proposed method ranks 4th among already published methods.
This is an important achievement bearing in mind the reduced
computational complexity of this algorithm and its suitability
to be implemented in GPU. Moreover, although our method
is less accurate than TSGO, JSOSP+GCP and KADI, it is
faster than them. This fact is evident in Table I that shows
the computational times of the proposed method and the
approaches in TSGO, JSOSP+GCP and KADI (the respective
computational times were obtained from [45], [46] and [47]).
Table V shows that the proposed approach has better ranking
SSCBP[51]. The computational complexity of SSCBP[51] is
not available to compare it against our approach. Table I also
includes the CPU computation time of the ADCensus [13]
approach that is listed in Table V.The proposed method has
better ranking than ADCensus [13] and at the same time it
is faster than this approach. The approach in [25], which
also exploits the guided image filter, is slightly faster than
our approach as confirmed from Table V. However, it ranks
21th in the Middlebury online evaluation benchmark, while
our approach ranks 5th. The error rates of [25] are given in
Table V. As it is evident in Table I, our preceding work in
[44] is about 25% faster than the current approach, mainly
due to the fact that the work in [44] computes the guided
image filter for just one support window, while the current
approach computes the guided image filter for two different
support windows. However, the work in [44] ranks 23rd and

it is notably less accurate than the approach presented in this
article with respect to all columns of Table V. There are other
approaches that have evidently lower computational cost than
the presented approach, such as VariableCross [21] and the
approach in [30] in Table I, but they have significantly lower
disparity estimation accuracy as it is evident in Table V. The
value for the average ranking is undefined for [30] in Table
V, since this approach is not included in Middlebury online
evaluation system. The values in the rest columns of Table V,
regarding [30], were adopted from the corresponding paper.

For the stereo pairs of the Middlebury Stereo Evaluation
benchmark, the proposed method ranks: 12th for the “Tsukuba”
image pair, 6th for the Venus image pair, 29th for the Teddy
image pair and 15th for the “Cones” image pair.

2) Experiments on the definition of support windows: In
order to prove why the exploitation of rectangular support
windows of two sizes (as suggested in subsection II-B3)
enhances the disparity estimation results, we have performed
experiments using support windows of either rectangular or
square shape.

In specific, the following cases of defining support windows
have been examined:
• Case 1: Use one rectangular support window with size
RS x dRS/2e.

• Case 2: Use one square support window with size RS x
RS.
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Fig. 12: Average Rank against RS for four different cases of defining support windows sizes.

• Case 3: Use two rectangular support windows with sizes
RS x dRS/2e and 2RS x RS.

• Case 4: Use two square support windows with sizes RS

x RS and 2RS x 2RS.
Those four cases affect subsection II-B3. In more detail,

when using just one support window (“Case 1” or “Case 2”)
the selection of the appropriate support window size for each
pixel is not required, while when using two support windows
(“Case 3” or “Case 4”) the condition “If M̄(p) > RS” (see
subsection II-B3) is examined to decide which of the two
windows is more appropriate to determine the filtered cost
of each pixel.

The curves in Fig. 12 show the Average Rank (as estimated
according to the online Middlebury evaluation) for each of
the above four cases, for different values of RS. An important
finding is that between “Case 1” and “Case 2”, “Case 1”
(rectangular support window) gives better Average Rank than
“Case 2” (square support window). Moreover, by comparing
“Case 1” and “Case 2” with “Case 3” and “Case 4”, it is
evident that the use of two support windows sizes gives a
better Average Rank. Finally, it is shown that “Case 3” (this is
the case proposed in subsection II-B3) gives the best disparity
estimation results among all cases. The value of RS for which
the best Average Rank is accomplished is RS = 17.

3) Evaluation of the methodology: The initial disparity
map that is generated from the initial cost volume (which
is computed via the matching cost computation step (Phase
A)) is heavily corrupted with noisy disparities. Based on
the Middlebury online benchmark, this subsection examines
how the initial disparity map is improved after applying
sequentially: (1) content-based guided image filtering (Phase
B), (2) disparity optimization relying on weighted semi-global
optimization(Phase C), (3) outliers handling (Phase D), (4)
disparity edges refinement (Phase E) and (5) median filtering
(Phase F). Outliers handling (Phase D) and disparity edges
refinement (Phase E) constitute the disparity refinement step.

The blue lines in Fig. 13 depicts how the average percent of
bad pixels in the disparity map decreases after applying each
of the above phases. Fig. 13 includes results for non-occluded

regions (see Fig. 13a), all regions (see Fig. 13b) and regions
near depth discontinuities (see Fig. 13c).

The content-based guided image filtering in “Phase B”
significantly enhances the initial disparity map. This is evident
in the results of Fig. 13, where the average percent of bad
pixels drastically reduces from “Phase A” to “Phase B”. The
disparity map is further improved in “Phase C” after applying
disparity optimization. The improvement is stronger for the
regions near depth discontinuities. Outliers handling in “Phase
D” further reduces the average percent of bad pixels. The
decrease is more pronounced for all regions, which is rational
since all regions include the occluded regions. The disparity
edges refinement in “Phase E” helps to further lower the
average percent of bad pixels, but in a less degree than the
preceding steps, since it is applied locally to disparity edges.
Finally, median filtering in “Phase F” slightly reduces the
average percent of bad pixels.

In the following, the improvement in the disparity map
quality, introduced by the aforementioned steps, is visually
demonstrated. The initial disparity map, which is acquired via
the matching cost computation step, is heavily corrupted with
estimation-error noise, as it is obvious in Fig. 2. After applying
content-based guided image filtering the noise is removed, as
it is evident in Fig. 4a. Disparity optimization further improves
the disparity results. This is clearly seen from the comparison
between Fig. 4a and Fig. 7a. Fig. 9b shows the disparity map
after performing outliers handling to the disparity map of Fig.
7a. The outlier regions (which are denoted with blue in the
outliers map of Fig. 8) of the disparity map in Fig. 7a have
been efficiently filled with reliable disparities in the disparity
map of Fig. 9b. Fig. 10b displays the disparity map after
performing disparity edges refinement to the disparity map
of Fig. 9b. The disparity edges of Fig. 9b (which are shown
with red in Fig. 10a) have been effectively refined in Fig.
10b. After applying median filtering to the disparity map of
Fig. 10b the disparity map of the upper-left image of Fig.
11 is generated. The slight improvement in the disparity map
quality, introduced by the median filtering, is subtly obvious at
locations where the disparity value changes. In the following,
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(a) (b) (c)
Fig. 13: Average percent of bad pixels after applying sequentially the proposed method phases for (a) non-occluded regions, (b) all regions
and (c) near depth discontinuities regions.

two modifications in the proposed workflow are also examined.

The red lines show how the average percent of bad pixels
in the disparity map decreases after applying each of the
above phases, except for “Phase C” which has been excluded
from the workflow. Thought, the percent of bad pixels has
been increased compared to the results of the blue lines, it
still remains in low levels, even without applying “Phase C”.
Indeed, the final disparity maps acquired for the “Tsukuba”,
“Venus”, “Teddy” and “Cones” image pairs, without applying
“Phase C”, rank 19th in the Middlebury online evaluation
benchmark. This rank proves that our algorithm is able to
keep high standards of disparity estimation accuracy (this is
mainly due to the outstanding performance of the proposed
content-based guided image filtering (Phase B)), even after
removing the disparity optimization step and thus reducing
the computational cost of our approach.

The yellow dashed lines show how the average percent of
bad pixels in the disparity map increases after applying each of
the above phases, with the difference that “Phase C” is applied
before “Phase B” (when referring to the yellow dashed line,
the letter “B” corresponds to “Phase C” and the letter “C”
corresponds to “Phase B” on the x-axis of Fig. 13 (a), (b) and
(c), respectively). Evidently, the results of the yellow dashed
lines after applying “Phase D”, “Phase E” and “Phase F” are
very close to the corresponding results of the red lines. For
example, after applying “Phase F” the bad pixels error for non-
occluded regions, all regions and near depth discontinuities
regions are 2.36%, 5.05% and 6.93%, respectively (due to
space reasons, numeric values have not been included for the
markers of the yellow lines). Therefore, it is proved that the
case of switching “Phase B” and “Phase C” in the workflow,
gives similar results with the case of excluding “Phase C” from
the workflow. Here, it has to be clarified that when applying
“Phase C” before “Phase B” the weights of the path costs in
the weighted semi-global optimization (Phase C) are equal to
1 (wlr(p) = wrl(p) = wud(p) = wdu(p) = 1), since it is not

feasible to rely on the noisy initial disparity map (see Fig.
2) to perform the methodology required for deciding on the
weights of the path costs, which is described in subsection
II-C2.

Concluding, the workflow proposed in this paper gives
better disparity estimation accuracy compared to the two
workflow modifications described before. However, it worths
noting that the removal of “Phase C” from the workflow leads
to the reduction of the computational cost, while keeping
the disparity estimation accuracy in high standards. On the
other hand, the case of switching “Phase B” and “Phase
C” in the workflow gives similar results with the case of
excluding “Phase C”. However, with increased computational
cost compared to the latter case.

4) Further testing: As mentioned in section III-A, the
column “Best” of Table II gives the numeric disparity estima-
tion results using the proposed methodology with the optimal
parameters. In the rest of the columns of Table II, we provide
experimental results after making some modifications to the
methodology.

More specifically, the corresponding comparative quan-
titative evaluation results, where the scheme of [25] (see
subsection II-B4) has been used instead of our scheme for
performing guided image filtering, are given in the column of
Table II entitled “Adapt. Windows as in [25]”. The comparison
between the columns “Best” and “Adapt. Windows as in
[25]” demonstrates that the proposed guided-image filtering
helps the overall methodology to achieve better accuracy than
when using the scheme of [25]. Additionally, our scheme has
lower computational cost than the one of [25], as it has been
explained in II-B4. Concluding, the proposed “Content-based
guided image filtering” scheme helps our algorithm to achieve
better accuracy at a lower computational cost, compared to the
filtering scheme of [25].

In order to evaluate how the proposed improvements with
respect to the semi-global optimization step (these improve-
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ments include the weighted average of path costs and an
adaptive threshold for identifying depth discontinuities ac-
cording to section II-C2) ameliorate the disparity results, we
have included numeric results for the cases where the semi-
global approaches of [13], [20] have been used, instead of
our weighed semi-global approach. The approaches in [13],
[20] use a simple average of path costs (i.e. the weights used
in Eq. (17) are wlr(p) = wrl(p) = wud(p) = wdu(p) = 1),
while their thresholds used for the identification of depth
discontinuities are constant. There are two differences between
[13], [20], regarding the semi-global optimization step: a) the
constant thresholds for identifying the depth discontinuities are
τ = 15/255 and τ = 10/255 in [13] and [20], respectively; b)
the difference between a pixel and its previous pixel, along a
path direction, is estimated using color and grayscale image in-
formation in [13] and [20], respectively. The numeric disparity
results, which haven been estimated using the approaches of
[13] and [20] for performing semi-global (S-G) optimization,
are given in the columns of Table II with the annotations
“S-G as in [13]” and “S-G as in [20]”, respectively. Except
for the semi-global optimization step the other steps of our
methodology are applied as they are. The differences between
the column “Best” and the columns “S-G as in [13]” and “S-G
as in [20]”, prove that without using the weighted semi-global
optimization the disparity estimation accuracy decreases. On
the other hand, the additional computational cost introduced
by the weighted semi-global optimization is small.

In order to assess how our contribution with respect to
the outliers handling step improves the disparity estimation
results, we have included numeric results for the case where
the scheme of [15] is used for the outliers handling, instead
of our scheme. In particular, the scheme in [15] comprises
the “Background outliers handling” (see subsection II-D1b)
and the “Bilateral smoothing of the handled outliers” (see
subsection II-D1e). The “Generic outliers handling” (see sub-
section II-D1c), which has been proposed in this work, is
not included in the outliers handling scheme of [15]. The
numeric disparity results, which have been estimated using
the scheme of [15] for performing outliers handling, are given
in the column of Table II with the annotation “Outliers handl.
as in [15]”. The differences between the columns “Best” and
“‘Outliers handl. as in [15]” prove that the integration of
“Generic outliers handling” in the outliers handling scheme
of [15] helps to improve the disparity estimation accuracy.
Moreover, the additional computational cost introduced by
“Generic outliers handling” is negligible.

The mean-shift segmentation map (subsection II-A) is ex-
ploited for selecting the appropriate support window size of
each pixel (see subsection II-B3). Therefore, it is important
to verify that small variations to the optimal parameters
(σs, σR) = (3, 3) that adjust the segmentation result do not
affect significantly the performance of this method. Table VI
shows the error results for different values of the spatial radius
and space feature radius. For the pairs of (σs, σR) = (2, 3),
(σs, σR) = (3, 4) and (σs, σR) = (4, 4) our approach remains
in the fifth position , while for the pair of (σs, σR) = (2, 2) the
method ranks seventh. Hence, it is deduced that even varying
the segmentation parameters the method remains in the top

(σs, σR) = (2, 2)(σs, σR) = (2, 3)(σs, σR) = (3, 4)(σs, σR) = (4, 4)
Avg. Rank 22.4 16.9 16.9 17.5

Nonocc (%) 2.03 1.94 1.91 1.90
All (%) 4.77 4.71 4.68 4.69

Disc (%) 6.45 6.31 6.27 6.26
APBP (%) 4.42 4.32 4.29 4.29

TABLE VI: Segmentation parameters testing.

Error % ∆d>1∆d>1∆d>2∆d>2
All Visible All Visible

Proposed 12.07 7.71 8.32 5.07
TSGO[45] 12.79 10.05 8.92 7.24
ADCensus[13] 14.89 10.98 9.41 6.42
Inf. Permeability[12] 14.15 7.98 10.34 6.46
Guided Filter[15] 15.06 8.40 11.82 6.80
Geodesic Support[27] 16.49 9.85 11.76 8.04
Var. Cross[21] 17.13 8.81 12.69 7.04
Adapt. sup.[18] 16.94 9.54 13.10 7.42

TABLE VII: The error results for the extended stereo datasets.

performers.

C. Extended Comparison

Evaluation on just the four stereo pairs from the Middlebury
online stereo database is not adequate to give a clear picture
of the overall performance of an algorithm, since the average
error rates of the best performing techniques are close to
each other. Hence, our approach has also been evaluated on
two additional Middlebury datasets in order to assess more
extensively the performance of the proposed methodology. The
2005 and 2006 datasets, presented in [52], include 27 stereo
pairs with their ground truth. The error percentage is measured
for both non-occluded and all regions.

Table VII gives for multiple methods the percentages of
erroneous pixels having 1 or 2 disparity level difference
with respect to the ground truth. The tested methods include
TSGO[45] and ADCensus[13] approaches, which are among
the top performing methods in Table V. The results regarding
TSGO[45] have been estimated using the source code provided
by the authors, while the results regarding ADCensus[13]
have been estimated based on our implementation of this
approach. The results regarding the rest of methods in Table
VII have been copied from the very recent work of [12].
The proposed work gives better results for the case of “All”
and “Visible” regions than the rest of the methods. More
specifically, for the case of “All” regions and ∆d > 1, ∆d > 2
the disparity errors of our approach are 0.72% and 0.6% less
than the second best TSGO[45] method, respectively. While,
for the case of “Visible” regions and ∆d > 1, ∆d > 2 the
disparity errors of our approach are 0.27% and 1.35% less
than the second best Inf. Permeability[12] and ADCensus[13]
approaches, respectively.

The disparity maps for the 27 stereo pairs, with their
respective disparity error maps for ∆d > 1, can be found
in the supplementary material that accompanies this paper.

IV. CONCLUSION

In this paper an approach that gives accurate disparity results
for stereo image pairs was presented. The approach uses an
efficient cost term, composed of three individual pixel-based
cost terms, in order to estimate the initial cost volume. The
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filtered cost volume is acquired after applying image guided
filtering to the initial cost volume, using rectangular support
regions of two sizes. The optimization of the filtered cost vol-
ume is performed using weighted semi-global matching, where
an adaptive threshold to identify depth discontinuities is used.
Outliers handling is improved by introducing a straightfor-
ward scheme. The high performance of the proposed method
is verified experimentally using the Middlebury evaluation
benchmark and an extended stereo dataset.
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