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In this paper, a novel method for personalized item recommendation based on social tagging is presented.
The proposed approach comprises a content-based tag propagation method, to address the sparsity and
“cold start” problems, which often occur in social tagging systems and decrease the quality of recommen-

dations. The proposed method exploits (a) the content of items and (b) users’ tag assignments through a
relevance feedback mechanism, in order to automatically identify the optimal number of content-based and
conceptually similar items. The relevance degrees between users, tags, and conceptually similar items are

calculated, in order to ensure accurate tag propagation and consequently to address the issue of “learning
tag relevance”. Moreover, the ternary relation among users, tags and items is preserved by performing tag
propagation in the form of triplets based on users’ personal preferences and “cold start” degree. The latent
associations among users, tags and items are revealed based on a tensor factorization model, in order to

build personalized item recommendations. In our experiments with real world social data, we show the supe-
riority of the proposed approach over other state-of-the-art methods, since several problems in social tagging
systems are successfully tackled. Finally, we present the recommendation methodology in the multimodal
engine of I-SEARCH, where user’s interaction capabilities are demonstrated.
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Fig. 1. Example of an item-based tag cloud in Flickr.

1. INTRODUCTION

Social Tagging Systems (STS) have attracted a lot of research attention recently due to
their potential to improve search and personal organization of items. Users are able to
annotate sets of items like photos (Flickr1), songs (Last.fm2) or web sites (del.icio.us3), in
the form of free keywords, also known as social tags. Through social tags users can express
their personal opinion to describe items. Therefore, users are able to browse and explore
new interesting items, through item or user-based tag clouds. For example, an item-based
tag cloud in Flickr (Figure 1) describes a certain image, where by clicking on a particular
tag, all images that have been frequently annotated with that tag are displayed. Instead, a
user-based tag cloud consists of the most frequent tags, which are applied by a certain user
to annotate items.
Consequently, the complex multifaced information of items can be exploited and thus, STS

are able to generate personalized recommendations, allowing users to pose tags as queries.
STS recommenders consider the following collaborative-based strategy: users having the
same tagging behavior tend to get similar recommendations. Therefore, such recommender
systems are often characterized as item “Collaborative Filtering” (CF) recommenders in
STS. An example of the CF paradigm in STS is depicted in Figure 2. The tagging process
creates triplets in the form user-tag-item (U, T, I), where user U1 has annotated item I1 with
tag T1 “fish”, and item I2 with tag T2 “car”, denoted by triplets (U1, T1, I1) and (U1, T2, I2)
in Table I, respectively. User U2 has also annotated item I2 with tag T2 “car”, corresponding
to triplet (U2, T2, I2). Since U1 and U2 have shown similar behavior, by assigning the same
tag to the same item, the CF mechanism associates user U2 with tag T1 and item I1,
denoted by the sixth latent relation in Figure 2 and the respective triplet (U2, T1, I1) in
Table I. Note that each triplet (U, T, I) is associated with a weight w, corresponding to
the likelihood that user U will annotate item I with tag T . These triplets constitute the
underlying structure of STS and are also known as folksonomies. According to Marinho et al.
[2011], a folksonomy is defined as a relational structure F := (U,T, I,Y) in which U, T and
I are disjoint non-empty finite sets, whose elements are users, tags and items, respectively,
and Y is the set of observed ternary relations between them, i. e., Y ⊆ U×T×I, where for
each triplet holds (U, T, I) ∈ Y, with U ∈ U, T ∈ T and I ∈ I. Therefore, tags introduction

1http://www.flickr.com/
2http://www.lastfm.com/
3http://www.delicious.com/
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Fig. 2. Example of Collaborative Filtering mechanism in STS.

Table I. Generated triplets derived from the STS
in Figure 2.

ID User Tag Item Weight(w)

1 U1 T1 I1 w(U1, T1, I1)
2 U1 T2 I2 w(U1, T2, I2)
3 U2 T2 I2 w(U2, T2, I2)
4 U2 T3 I3 w(U2, T3, I3)
5 U3 T4 I4 w(U3, T4, I4)
6 U2 T1 I1 w(U2, T1, I1)

in recommender systems has turned the usual binary relation between users and items into
a ternary relation Y between users, items and tags. This ternary relation is mapped to a
tripartite network [Halpin et al. 2007; Lambiotte and Ausloos 2005; Cattuto et al. 2007;
Wu et al. 2006], which should be considered by STS recommenders, in order to capture the
latent associations among users, tags and items.
Nevertheless, several important problems affect the accuracy of STS recommenders [Tang

et al. 2009]. For example, polysemy and synonymity (also known as the “vocabulary prob-
lem”) [Furnas et al. 1987; Golder and Huberman 2005] are very common problems in STS
recommenders, since tags are characterized by their free nature and thus, they are subjected
to multiple interpretations. Therefore, in order to handle the aforementioned problems and
to capture the ternary relation in folksonomies, works of Xu et al. [2006], Rendle et al. [2009]
and Symeonidis et al. [2010], follow tensor factorization techniques. Such methods are called
tensor factorization models [Marinho et al. 2011], consisting of two basic steps. Firstly, the
ternary relation Y in folksonomies is modeled into a third-order tensor A, where a tensor is
a multi-dimensional matrix, corresponding to the three dimensions of users, tags and items.
The stored values within tensor A are the weights w, shown in Table I. Before applying
tensor factorization techniques, all weights are set initially either to 0 or to 1, so as to denote
the absence or existence of a triplet-association, respectively. Next, in order to exploit the
underlying latent semantic structure in A and to generate personalized recommendations,
tensor factorization models compute the low rank tensor approximations [Lathauwer et al.
2000] of tensor A and transform the recommendation problem into a third-order tensor
completion problem, where the non-observed entries in A have to be completed.
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Therefore, tensor factorization models are able to (a) solve problems like polysemy and
synonymity, (b) preserve the ternary relation, (c) reveal the latent associations among users,
tags and items, (d) reduce the noise in STS, and (e) provide more accurate recommendation
compared to methods that suppress the 3-way relationship to 2-way like the one presented
by Tso-Sutter et al. [2008], where the personalized opinion of users is omitted.

1.1. Cold Start, Sparsity and Learning Tag Relevance: Three Major Factors Affecting the
Quality of Personalized Recommendation based on Social Tagging

Despite the fact that tensor factorization models seem to be suitable for the case of STS rec-
ommenders, they do not handle the real world problems of (a) “cold start”, (b) sparsity and
(c) “learning tag relevance”. In particular, a very common problem in STS recommenders
is the “cold start” problem, which according to Herlocker et al. [2004] refers to the fact
that users participate rarely in the tagging process and therefore, there are only few tags
on which to base the recommendation. The “cold start” problem is presented in Figure 2,
where U3 has only annotated item I4 with tag T4, denoted by the triplet (U3, T4, I4). Con-
sequently, an STS recommender will fail to provide recommendations for user U3, since the
CF mechanism will not be able to identify similar tagging behavior of user U3 with the rest
of users (U1 and U2).
Additionally, a very challenging task for recommenders is to handle the sparsity that

occurs in STS, which further affects recommenders’ accuracy. More specifically, since item
recommendation in social tagging is based on the CF mechanism, high accuracy is achieved
only if users annotate the same items with similar tags, corresponding to users with the same
tagging behavior. However, this is extremely difficult for the case of real world applications,
since the number of online users, content and tags are grown exponentially. Consequently,
the “cold start” and sparsity problems in tensor factorization models, affect the quality of
item recommendation in STS.
In order to tackle both problems, several works in the literature apply tag propagation

methods, where tags are assigned to items which have not yet been annotated. For example,
the works of Papadopoulos et al. [2010] and Sevil et al. [2010] apply clustering methods to
achieve tag propagation. Other approaches exploit the content of items (e.g. content of
images, songs etc.), in order to perform tag propagation between content-similar items.
Such an approach of content-based tag propagation is followed by Li et al. [2008], where a
neighbor-voting algorithm is proposed. In particular, common tags are propagated between
items, according to their content-based similarity. Each tag accumulates its relevance credit
by receiving neighbors’ votes and thus, the tag is propagated to the proper item, according
to the computed relevance credit. Moreover, a very important challenge for content-based
tag propagation is handled, called “learning tag relevance” [Smeulders et al. 2000], based
on which the semantic connections between the assigned tag and the content it represents
must be revealed, so as to perform accurate tag propagation. However, the aforementioned
tag propagation algorithms discard user’s information and thus, they are not suitable for
the case of STS recommenders, where the ternary relation of users, tags and items should
be preserved.
A very interesting study on the combination of content-based and tag information is the

work of Qi et al. [2012], which handles the sparsity problem. The algorithm builds a latent
semantic space, where each item is mapped into a latent feature vector, by encoding the
content-based and tag information. Then, the latent feature vectors describing the items
can be indexed, classified and retrieved with vector-based methods. However, in this work
the user dimension is omitted and therefore personalization is not achieved. Tang et al.
[2012] introduced a cross-space affinity (similarity) learning algorithm over the heteroge-
neous feature spaces of users and items, in order to achieve high recommendation accuracy.
A Cross-Space Tensor (CST) model was constructed to learn the affinity measures across
the heterogeneous spaces and to capture the correlations between users and items, by ex-
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Fig. 3. In Google Image Search, the “Similar” item button is attached to each image-result.

ploiting a set of order constraints on the affinity from a training pool. Authors further
enhanced their model with a factorization form which reduces the number of parameters
of a model with a controlled complexity. However, in this work the “cold start” problem is
not handled.
A first attempt to solve the “cold start” and sparsity problems, by exploiting the content

information in tensor factorization models, is the MusicBox (MB) method presented in
[Nanopoulos et al. 2010]. However, the main disadvantage of the MB method is that the
proposed content-based tag propagation cannot be uncontrolled. More precisely, by allowing
extensive tag propagation, the noise that incurs may affect the quality of recommendations,
due to the irrelevant tag assignments to items. Thus, in order to constraint the amount
of propagated tags, authors control a threshold parameter based on the items similarity.
However, the fundamental problem in this approach is strongly correlated to “learning tag
relevance”, since tag propagation between content-based similar items should be performed
only if they are also conceptually similar.
Meanwhile, a plethora of research works has been proposed concerning relevance feedback

methods [Hoi et al. 2006; Jing et al. 2001; Liu and Chen 2005], which aim at retrieving
the optimal number of conceptually similar items, by refining the results of content-based
retrieval methods. An example of a relevance feedback procedure can be found in Google
Image Search, which supports content-based retrieval, where by clicking on the “Similar”
item button (Figure 3), the relevance feedback mechanism is activated. By clicking on
this button, results-filtering is enabled and the images which are visually similar to the
chosen one are retrieved. Since the quality of content-based retrieval of multimedia search
engines is increased by identifying visually and conceptually similar results, the lack of
relevance feedback methods in STS is of great importance. However, two factors should be
clearly mentioned: (a) relevance feedback methods are not able to capture the person-to-
person correlation, as the CF methods do [Scafer et al. 2007]; and (b) in relevance feedback
methods, users’ input is required, in order to identify the conceptually similar results and
to activate the mechanism of results-filtering. Thus, conceptually similar results cannot
be identified automatically by the relevance feedback methods. This happens because in
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Fig. 4. A Multimedia Document (MMD) example in I-SEARCH, containing four modalities: image, 3D,
audio and video.

contrast to STS, in the relevance feedback methods the tag information is ignored, able to
identify conceptually similar results.

1.2. The Multimodal Engine of I-SEARCH

In traditional multimedia search engines, users can either enter a keyword as query or a
media so as to perform either text-based or content-based retrieval. Recently, multimedia
search engines have evolved, allowing combinations of queries of different media types. For
example in Google Image Search, users search for images by combing a keyword with a
similar image. Multimodal search allows users to enter multiple query types and retrieve
multiple types of media simultaneously. This is a significant step towards content-based
multimedia retrieval, since users can search and retrieve media of any type using a single
unified retrieval framework and not a specialized system for each separate media type.
Moreover, through multimodal retrieval, users can enter multiple queries simultaneously
and thus, retrieve more relevant results. However, this is a highly complicated process, since
the successful modeling of the low-level feature associations among the different media types
is required.
An approach for multimodal search has been introduced by the EU-funded project I-

SEARCH, available at http://vcl.iti.gr/is/. The search engine of I-SEARCH enables re-
trieval of several types of media (3D objects, 2D images, sound, video and text) using as
query any of the above types or their combinations. In I-SEARCH, multiple media types,
which share the same semantics, are enclosed into a media container, which is called Mul-
timedia Document (MMD). The concept of MMD was introduced in [Yang et al. 2009],
where a method for connecting various semantically similar media of different types has
been proposed. An example of a MMD is presented in Figure 4, which describes a physical
entity of an “eagle” and consists of its 3D representation, real image, sound and video.
The creation of MMDs is not a trivial task, since it involves merging of different types of

media with the same semantics. In order to facilitate the creation of a multimodal dataset of
MMDs in I-SEARCH, the CoFetch tool 4 tool has been implemented. The CoFetch tool per-
forms search on public media sources and creates corresponding MMDs. More specifically,
users enter a keyword to the search interface and CoFetch performs multiple search tasks
simultaneously: search for text in Wikipedia, images in Flickr, audio files in freesound.org,
3D objects in Google 3D Warehouse and videos in youTube. Then, the tool returns multi-

4http://youtu.be/PwzhJ-3-zgY
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Fig. 5. The query compilation interface in I-SEARCH.

ple ranked lists of relevant results of different types of media. Then, users can combine the
retrieved media of different types so as to create MMDs.
Multimodal retrieval is based on identifying correlations among media of different types

and mapping their descriptor vectors on a common feature space. Manifold learning has
been extensively used for this purpose. A promising multimodal retrieval method has been
recently proposed in [Daras et al. 2012]. The method creates a low-dimensional feature
space, using the Manifold Learning method of Laplacian Eigenmaps [Belkin and Niyogi
2003], where all MMDs can be mapped irrespective of their constituting media types. In
order to preserve the local neighborhood of each media into the low-dimensional MMD
space, a multimodal adjacency matrix is constructed, where items that correspond to pairs
of neighboring MMDs are denoted by ones, whereas the remaining items are denoted by ze-
ros. Consequently, multimodal descriptor vectors are generated from the constructed MMD
space. Then, multimodal retrieval of MMDs is achieved by computing the pairwise dis-
tances among their low-dimensional multimodal descriptor vectors. In [Daras et al. 2012],
it is experimentally shown that search using multimodal queries achieves higher retrieval
accuracy than using monomodal queries. This method has been developed in the context
of I-SEARCH to address the problem of multimodal search and retrieval.
An example of the query compilation interface of I-SEARCH is presented in Figure 5,

where users are able to enter multiple types of queries simultaneously, such as text, images,
audio, sketch, 3D objects and location. By doing so, users can create MMDs on-the-fly and
pose them as queries, so as to exploit the full potential of the multimodal search engine and
thus to retrieve more accurate results. It should be clarified that the location is used as a
filtering step, i.e. after the ranked list is retrieved, the location filters out the MMDs that
are lying far from the predefined location. In Figure 6, the results interface is presented,
where the most relevant MMDs to the query (combination of 3D object, image and text) are
retrieved. By clicking on an MMD, a pop-up window appears, where users can visualize all
the constituting modalities. Although multimodal search can produce more accurate results
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Relevance FeedbackFind Similar

Fig. 6. In I-SEARCH the results are represented in the form of MMDs, by a representative screenshot.
Moreover, users can tag each result separately, by selecting the result and then assign a tag using the “add
a tag button”.

than monomodal search, in a real-life scenario building a multimodal query is not always
straightforward. This is due to the fact that users may not always have all media types
available to form a MMD query (e.g. most users rarely have 3D objects at their local disk).
Additionally, users can log into I-SEARCH, where the following personalized functionali-

ties are supported: (a) relevance feedback and (b) recommendation based on social tagging.
Through the personalized relevance feedback, the retrieval accuracy is improved, making
users an active part of the system. Two different relevance feedback functionalities are sup-
ported. In the first one, users select only one of the retrieved MMDs and start a new search
using the selected MMD as query. This is achieved by clicking on the “Find Similar” button
of the selected MMD, as presented in Figure 6. The second relevance feedback functionality
is a bit more complex, where users mark many MMDs as relevant by pressing the “star”
button on the bottom right corner of the results’ thumbnails and then press the “search”
button again. In this case, a Query Expansion strategy is performed where all relevant
MMDs are used as queries simultaneously. However, user’s input is required, in order to
activate both relevance feedback mechanisms and thus, the conceptually similar MMDs
cannot be identified automatically.
Following the STS paradigm, users can assign tags to each result-MMD separately, by

using the “Add/Edit tag” button, as presented in Figure 6. Moreover, each time users are
logged in I-SEARCH, their personal (user-based) tag cloud is displayed, as presented in
the bottom of Figure 7. Users can select a tag from their personal tag cloud, to generate
a list of recommended MMDs. By selecting one of the recommended MMDs, a multimodal
search is initiated using as query the selected MMD. In the example of Figure 7, user
“user@example.com” logs in to I-SEARCH and selects the tag “Clownfish” from his personal
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Fig. 7. In I-SEARCH, users can select a tag from their personal tag cloud, to generate a list of recommended
MMDs. Then one of the recommended MMDs can be selected and added to query compilation interface, in
order to start a multimodal search task.

tag cloud. Then, the recommended MMDs are presented in the pop-up window, where the
user can select one of them to generate a multimodal search task. The recommendation
functionality can assist users in the multimodal environment of I-SEARCH, since uploading
multiple media of different modalities to construct a MMD query is avoided and thus,
users’ interactions can be simplified with the system. However, since the personalized MMD
recommendation is based on social tagging, the STS’ inherited problems of “cold start”,
sparsity and “learning tag relevance” should be handled, in order to increase the quality of
recommendations.

1.3. Contribution and Layout

In the context of I-SEARCH, we propose a personalized item recommendation methodology
based on social tagging, which is of great importance for users in I-SEARCH, since users’
interaction is simplified by recommending items in the form of MMDs. Our contribution is
summarized as follows:

—Exploit users’ tag assignments through a relevance feedback mechanism to automatically
identify content-based and conceptually similar items.

—Handle the sparsity and “cold start” problems, by propagating tags between the identified
conceptually similar items, where (a) the issue of “learning tag relevance” is handled, by
calculating the relevance degrees between users, tags and items and (b) the ternary relation
among users, tags and items is preserved, by performing tag propagation in the form of
triplets based on users’ personalized preferences and “cold start” degree.

—Present the recommendation methodology in the multimodal engine of I-SEARCH at
http://vcl.iti.gr/is/, where the recommended items are unified sets of media of different
modalities in the form of MMDs.
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In our experiments with two real world social datasets, the first one crawled from FLICKR
and the second one created within I-SEARCH with the recommended items be images and
MMDs, respectively, we show the superiority of the proposed methodology over the methods
of Symeonidis et al. [2010], Nanopoulos et al. [2010] and an ad-hoc retrieval method of a
pseudo-relevance feedback scheme, by adequately handling the aforementioned problems in
STS while performing the same tensor factorization technique of HOSVD.
The remainder of this paper is organized as follows: after describing the proposed method

in Section 2, we present the experimental results on real-world social tagging data in Section
3 and the basic conclusions of our study are furnished in Section 4.

2. THE PROPOSED METHOD FOR PERSONALIZED ITEM RECOMMENDATION BASED
ON SOCIAL TAGGING

2.1. Method Overview

Following the case scenario of I-SEARCH, a recommended item I is in the form of a MMD
and the social tagging data are in the form of triplets (U, T, I), associated with a weight
w, corresponding to the likelihood that user U will annotate MMD I with tag T . For each
triplet holds: (U, T, I) ∈ Y, with U ∈ U, T ∈ T and I ∈ I, where U, T, I, Y are the sets of
users, tags, MMDs and triplets, respectively. The input of the proposed method are (a) the
set of triplets Y, with all weights w initially set to 1; (b) the set of multimodal descriptor

vectors, where from each MMD I ∈ I the multimodal descriptor
−−→
DVI is extracted according

to the extraction process of Daras et al. [2012]; and (c) the |RQ| 5 length of the results
list. The task of item recommendation is for each pair (U, T ) to compute the ranking of the
|I| MMDs, with the top-N ranked items be the N recommended MMDs. The personalized
item recommendation methodology consists of the following three steps:

—Firstly, ∀ triplet (U, T, I) ∈ Y, I is posed as query Q to generate the RQ result list
of MMDs, according to dis, i.e. the content-based distance of the multimodal descriptors−−−→
DVQ and

−−→
DVR, with R ∈ I and R ̸= Q. Then, based on the relevance feedback mechanism,

the I+Q list of conceptually similar MMDs (positives) is generated.

—Next, the tag propagation method is performed ∀ triplet (U, T, I) ∈ Y and the respective
I+Q list, where the relevance degrees between user U , tag T and MMD I are computed
and stored into the respective weight w. To preserve the ternary relation in Y, the tag
propagation method is performed in the form of triplets, associated with the computed
weight w, and thus, new propagating triplets are generated. Therefore, the outcome of
this step is a superset Y+, with Y ⊆ Y+.

— Finally, the generated data set Y+ is modeled into a tensor, and the tensor factorization
technique of HOSVD is followed, in order to reveal the latent associations among users,
tags and MMDs and to generate the final personalized recommendations.

An overview of the proposed method is presented in Figure 8, based on the STS example
of Figure 2, where the initial social tagging data Y is the set of triplets shown in Table I. For
presentation purposes, in this example only the image-modality is considered. As aforemen-
tioned, the “cold start” problem is faced for generating recommendations to user U3. Thus,
we consider the corresponding triplet (U3, T4, I4), based on which we initiate the procedure
of the proposed methodology, as depicted in Figure 8.
In the first step, I4 is posed as query Q to retrieve content-based similar results in RQ,

with length |RQ| = 5. Then, based on the relevance feedback mechanism, MMDs I5 and I3
are identified as positives and stored in the I+Q list. Additionally, I5 and I3 are denoted by

pos1 and pos2, respectively, based on their rank in I+Q.

5In this paper, lists are denoted by capital letters X and sets are denoted by capital bold letters X.
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Fig. 8. Overview of the proposed method for personalized item recommendation.

In the second step, tag propagation is performed, by considering: (a) the triplet
(U3, T4, I4), and (b) the I5=pos1 and I3=pos2 positives in the I+Q list. In particular, five
additional triplets are generated with IDs from 7 to 11, as shown in Table II. Consequently,
the propagated triplets are added to the initial data set Y, and thus the superset Y+ is
generated, with Y ⊆ Y+.
In the third step, the generated set of triplets Y+ is modeled into the tensor A. Next, in

order to reveal the latent associations among users, tags and MMDs, the low rank approxi-
mation Â of A is computed, based on the HOSVD tensor factorization technique. Therefore,
except for the previously revealed latent association 6 from Figure 2, the new latent asso-
ciations 12 and 13 are revealed. Consequently, the “cold start” problem is addressed, by
performing content-based tag propagation in the form of triplets. In the following Sections,
each step of the proposed methodology is described in further details.

2.2. The Relevance Feedback Mechanism

The first step of the proposed method is the relevance feedback mechanism to generate
for each triplet (U, T, I) the I+Q list of positives. The input of Algorithm 1 of the relevance

feedback mechanism is (a) the input triplet (Uin, Tin, Iin) ∈ Y; (b) the set of multimodal
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Table II. Propagated triplets derived from the second
step in Figure 8, based on triplet (U3, T4, I4). Weights
w are calculated according to Equations (5), (6), (7),
(8)

ID User Tag Item Weight(w)

7 U3 T4 I5 w(U3, T4, I5) = 0.2
8 U3 T5 I5 w(U3, T5, I5) = 0.2
9 U3 T6 I5 w(U3, T6, I5) = 0.4
10 U3 T3 I3 w(U3, T3, I3) = 0.1
11 U3 T6 I3 w(U3, T6, I3) = 0.1

descriptor vectors, where from each MMD I ∈ I the multimodal descriptor
−−→
DVI is extracted

according to the extraction process of Daras et al. [2012]; and (c) the |RQ| length of the
results list. The algorithm consists of (a) the initialization process and (b) the iterative
process of Query Expansion.

Initialization process
Given the input triplet (Uin, Tin, Iin), Iin is posed as query Q to generate the RQ ranking
list based on the distance dis, i.e. the L2 distance of the extracted multimodal descriptors−−−→
DVQ and

−−→
DVR, with R ∈ I and R ̸= Q. Then, the contextual information of users’ tag

assignments to MMDs is considered, in order to identify the positives and to generate the
I+Q list. More precisely, given tag Tin of user Uin, let TQ be the set of tags assigned to Q

by all users, and TRj
be the respective tag set of each result Rj ∈ RQ, with j = 1 . . . |RQ|.

The Sum Squared Error (SSE) is calculated between tag Tin and tag set TQ according to
the following equation:

SSE(Tin,TQ) =
1

|TQ|
·

∑
Tk∈TQ

TagDis(Tin, Tk)
2

(1)

where TagDis is the distance between tags T1 and T2 according to the Dice 6 similarity
measure:

TagDis(T1, T2) = 1− 2 · (IT1 ∩ IT2)

|IT1 |+ |IT2 |
(2)

where IT1 and IT2 are the sets of all MMDs that tags T1 and T2 have been assigned
to. The value of SSE(Tin,TQ) contains valuable information, since it can express the
association degree of tag Tin of user Uin with query Q, by considering all users’ tag
assignments to Q. In the initialization process, the SSEthres threshold is set equal to
SSE(Tin,TQ). Each result Rj , with j = 1 . . . |RQ|, is examined based on the condition
SSE(Tin,TRj

) ≤ SSEthres and in case that the condition is satisfied, then Rj is identified

as positive and is appended to the end of list I+Q. The main idea is that if the condition
is satisfied, it means that according to users’ tag assignments the association degree of
tag Tin with result Rj is equal or higher than the respective association degree of tag Tin

with query Q and thus, result Rj is considered as conceptually similar (positive) to Q. By
examining all results Rj in RQ and identifying the positive results, threshold SSEthres

is updated and calculated based on the minimum SSE(Tin,TRj
), with Rj ∈ I+Q, i.e. the

minimum SSE of the identified positive results of the I+Q list. Additionally, for the next

6In our method, we consider the Dice similarity measure for calculating the tags distances due to its low
complexity. However, there are different types of tag similarity measures, thoroughly examined by Markines
et al. [2009].
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ALGORITHM 1: The Relevance Feedback Mechanism

Input: Triplet (Uin, Tin, Iin), the set of multimodal descriptors
−−→
DVI , ∀I ∈ I and length |RQ|.

Output: List I+Q .

INITIALIZATION PROCESS
Set SSEthres = SSE(Tin,TQ), with TQ be the set of tags assigned to Q = Iin by all users in U
and Tin be the tag of user Uin;

Calculate RQ = {R1, R2, . . . , R|RQ|} according to dis(
−−−→
DVQ,

−−→
DVR), with R ∈ I and R ̸= Q;

for (j = 1 : |RQ|);
do

if (SSE(Tin,TRj) ≤ SSEthres);

then
Update I+Q ← {I

+
Q, Rj};

end
end
Update SSEthres = min∀Rj∈I+

Q
SSE(Tin,TRj);

Set I+prev ← I+Q;

ITERATIVE PROCESS OF QUERY EXPANSION
repeat

Calculate RQ according to disagg(
−−→
DVI ,

−−→
DVR), with R ∈ I and I ∈ I+prev;

for (j = 1 : |RQ|);
do

if (SSE(Tin,TRj) ≤ SSEthres) and (Rj /∈ I+Q);

then
Update I+Q ← {I

+
Q, Rj};

end
end
Update SSEthres = min∀Rj∈I+

Q
SSE(Tin,TRj);

Set I+prev ← I+Q;

until (|I+Q| = |I
+
prev| or |I+Q| = |RQ|);

return I+Q;

step we set I+prev equal to I+Q, in order to denote the list of the previously identified positives.

Iterative process of Query Expansion
Next, provided the updated SSEthres threshold and the previously identified positive results
in the I+prev list, the iterative process of the Query Expansion strategy starts, which relies
on the query expansion techniques presented by Chakrabarti et al. [2004], Porkaew et al.
[1999], Wu et al. [2000] and French and Jin [2004]. In the aforementioned techniques, the
previously identified positives in the I+prev list are considered as a queries’ set Q. Then,
the distance between the set Q and each R, with R ∈ I, is computed, using the aggregate
distance disagg:

disagg(
−−−→
DVQ,

−−→
DVR) =

∑
I∈Q

dis(
−−→
DVI ,

−−→
DVR), (3)

Thus, based on disagg a new RQ result list is generated. Next, similar to the initial-
ization process of the algorithm, each result Rj ∈ RQ is examined based on condition
SSE(Tin,TRj

) ≤ SSEthres, where SSEthres is the threshold derived by the previously
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identified positives in the I+prev list. If the condition is satisfied then Rj is identified as posi-

tive and is appended to the end of list I+Q. Then, after examining all results Rj ∈ RQ, a new

threshold SSEthres is calculated based on the minimum SSE(Tin,TRj
), with Rj ∈ I+Q, i.e.

the minimum SSE of the currently identified positive results in the I+Q list of the current
iteration. By doing so, threshold SSEthres is reduced and becomes stricter for the next
iteration. This is of great importance because the content-based (visually) similarity to the
initial query Q = Iin declines over the iterations and thus, a stricter threshold is required
when a new iteration starts. The iterative process terminates when the number of positive
results remains the same or when all results Rj ∈ RQ have been marked as positives.
The outcome of the relevance feedback step is for each input triplet (Uin, Tin, Iin) ∈ Y,

the I+Q list of positives. In order to denote the relevance degree of each R ∈ I+Q to query Q,

each R is associated with a posi variable, equal to the respective ranking of R in list I+Q. For

example, in Figure 8 the second positive ranked result in the I+Q list is I3, denoted as pos2.

2.3. The Content-based Tag Propagation Method

In the second step of the proposed approach, content-based tag propagation is performed for
each input triplet (Uin, Tin, Iin) ∈ Y based on (a) user’s Uin personal preferences for using
tag Tin and annotating MMD Iin (b) user’s Uin “cold start” degree and (c) the respective
I+Q list of positives, derived by Algorithm 1. Each positive posi ∈ I+Q contains a set of tags

Ti. In the example of Figure 8, it holds that |I+Q|=2 and sets T1 ≡{airplane,cloud,sky} and

T2 ≡{fighter,sky} are the tag sets of pos1=I5 and pos2=I3, respectively. In particular, the
content-based tag propagation for each input triplet (Uin, Tin, Iin) results in a set of triplets
Ypos as follows:

Ypos(Uin, Tin, Iin) ≡ {(Uin, Tp, posi)|Tp ∈ Ti, posi ∈ I+Q} (4)

For the example of Figure 8 the set of propagated triplets Ypos(U3, T4, I4) is presented in
Table II. However, in order to consider the personal preferences of user Uin and the issue of
“learning tag relevance”, the w weight of each propagated triplet (Uin, Tp, posi) is calculated
according to the following equation:

w(Uin, Tp, posi) = Score(Uin) · Score(Tp) · Score(posi) (5)

The three factors denote the relevance degrees of Uin, Tp and posi to the input triplet
(Uin, Tin, Iin). In particular, Score(Uin) captures user’s Uin personal preferences for using
tag Tin and annotating MMD Iin, by considering user’s Uin “cold start” degree:

Score(Uin) =
freq(Uin, Tin)

freq(Uin)
· freq(Uin, Iin)

freq(Uin)
(6)

where the first factor expresses user’s Uin personal preference for using tag Tin, as the
ratio of the freq(Uin, Tin) times that user Uin annotated an MMD with tag Tin over the
total freq(Uin) annotations of Uin in Y. The second factor expresses user’s Uin personal
preference for annotating MMD Iin, which is the ratio of the freq(Uin, Iin) times that user
Uin annotated MMD Iin over the total annotations of Uin in Y. In the dominator of each
fraction, user’s Uin “cold start” degree is also considered, denoted by freq(Uin). Therefore,
Score(Uin) expresses the importance of each input triplet (Uin, Tin, Iin) for user Uin based
on his personal preferences and “cold start” degree and thus, it respectively expresses the
importance of the propagated triplets (Uin, Tp, posi), derived by Algorithm 1 and Equa-
tion (4). By doing so, for a “cold start” user, with relative low freq(Uin) annotations,
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Score(Uin) becomes high, resulting in an analogous increase of weights w(Uin, Tp, posi) of
the propagated triplets. In the example of Figure 8, since user U3 has only one annotation,
denoted by triplet (U3, T4, I4), it holds freq(U3, T4) = freq(U3, I4) = freq(U3) = 1 and thus,
all propagated triplets in Table II are important for user U3, with respect to his personal
preferences and “cold start” degree. The relevance degree of tag Tp is calculated as follows:

Score(Tp) =
freq(Tp)∑

T∈Tpos

freq(T )
(7)

(Tpos, freq) is a multiset 7, derived by the aggregation of the Ti tag sets of the positives in
list I+Q, where Tpos is the underlying set of tags and ∀ tag Tp ∈ Tpos the function freq(Tp)

is the multiplicity (i.e. number of occurrences) of Tp in the Tpos multiset. For example, in
Figure 8, the multiset (Tpos, freq) is equal to:

{(airplane,cloud,sky,fighter)},{(airplane,1),(cloud,1),(sky,2), (fighter,1)}
Thus, according to Equation (7) the respective scores for user U3 and tags (airplane, cloud,
sky and fighter) are (1/5, 1/5, 2/5 and 1/5), respectively. In order to denote the relevance
degree of posi, Score(posi) is calculated based on the reciprocal rank of posi, which is equal
to the inverse of the rank of posi:

Score(posi) =
1

i
(8)

For example, in Figure 8, since pos1=I5 is more relevant than pos2=I3, the respective scores
for positives pos1 and pos2 are equal to 1/1 and 1/2, respectively. According to Equations
(5), (6), (7) and (8) weights w of the propagated triplets are presented in Table II. The
final outcome of the content-based tag propagation step is the final Y+ set of triplets,
with Y+ ≡ Y ∪ Ypos(Uin, Tin, Iin), ∀(Uin, Tin, Iin) ∈ Y, where weights w in Y equal 1
and weights w in Ypos(Uin, Tin, Iin) are calculated according to Equation (5). Moreover,
based on the Relevance Feedback mechanism of Algorithm 1 and the tag propagation of
Equation (4), there is the case of having a set of N different weights {w1, w2, . . . , wN} for the
same triplet (U, T, I) ∈ Y+. To handle this case, triplet (U, T, I) is associated with weight
w(U, T, I) = max{w1, w2, . . . , wN} and stored in Y+. By doing so, the weight w(U, T, I) = 1
of an initial triplet in Y is also preserved in Y+, since based on Equations (5),(6), (7) and
(8) the propagated triplets in Ypos(Uin, Tin, Iin) are associated with a weight w ≤ 1.

2.4. Personalized Item Recommendation based on High Order Singular Value Decomposition
(HOSVD)

In the third and final step of the proposed approach, the personalized recommendation
method comprises (a) modeling the set Y+ in tensor A and (b) applying the tensor fac-

torization method of HOSVD to produce the reconstructed tensor Â and to reveal the
latent associations among users, tags and MMDs. The final goal is to recommend MMDs
according to the detected latent associations in the reconstructed tensor Â. The procedure
of HOSVD is illustrated in Figure 9, where I1 = U, I2 = T, I3 = I are the user, tag and
MMD dimensions, respectively and S is the core tensor that captures the 3-way relations.
HOSVD can be decomposed in 6 parts presented as follows.

7Following the definition of set theory, a multiset is a generation of the notion of an ordinary set, where
multiple but finite occurrences of any element are allowed.
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Fig. 9. Visualization of the result of HOSVD.

Initial construction of tensor A: Based on the set Y+, with Y+ ≡ Y ∪ Ypos,
an initial 3-order tensor A ∈ RU×T×I is constructed. The initial values assigned to each
entry of A equals (a) to the pre-computed weights according to Equation (5) for the set
of propagated triplets in Ypos and (b) to weights equal to 1 for the initial set of triplets in Y.

Matrix unfolding of tensor A: Tensor A can be unfolded i.e., transformed to a
two dimensional matrix, by arranging the corresponding fibers of A as columns of An

(1 ≤ n ≤ 3) [Lathauwer et al. 2000]. In our approach, the initial tensor A is unfolded to
all its three modes-dimensions. Thus, after the unfolding of tensor A, we create three new
matrices A1, A2, A3, as follows:

A1 ∈ RU×TI , A2 ∈ RT×UI , A3 ∈ RUT×I

Application of SVD on each unfolded matrix: Next, SVD is applied on the
three matrix unfoldings An (1 ≤ n ≤ 3), resulting in the following decomposition:

An = U (n) · Σ(n) · (V (n))T , 1 ≤ n ≤ 3 (9)

To reveal latent associations and reduce noise, the dimensionality of each array containing
the left-singular vectors (i.e., matrices U (1), U (2), U (3)) has to be reduced. Therefore, we
maintain the dominant cn left singular vectors in each U (n), 1 ≤ n ≤ 3, matrix based on

the corresponding singular values in Σ(n). The resulting matrix is denoted as U
(n)
cn . The

values of cn parameters are usually chosen by preserving a percentage of information in Σ(n).

Construction of the core tensor S: The core tensor S governs the interactions
among the three examined modes. Its construction is implemented as:

S = A×1

(
U (1)
c1

)T

×2

(
U (2)
c2

)T

×3

(
U (3)
c3

)T

, (10)

where A is the initial tensor,
(
U

(n)
cn

)T

is the transpose of U
(n)
cn , ×n is the n-mode product

of a third order tensor [Lathauwer et al. 2000] and S is a c1 × c2 × c3 tensor.

The reconstructed tensor Â: Finally, the reconstructed tensor Â is computed
by:

Â = S ×1 U
(1)
c1 ×2 U

(2)
c2 ×3 U

(3)
c3 (11)

where Â is a tensor with the same size as A. Â is a good approximation of A (also known

as low rank approximation of A), in the sense that the Frobenius norm ||A − Â||2F is small
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(element-wise squared differences [Lathauwer et al. 2000]). Moreover, Â contains less noise
and additionally, latent associations are revealed by keeping only a subset of the dominant
left singular vectors.

The generation of personalized item recommendation: The elements of the
reconstructed tensor Â represent the final triplets (U, T, I) associated with the recalculated
weight w′, which corresponds to the likelihood that user U will annotate MMD I with
tag T . Therefore, the personalized recommendation process functions as follows: if user U
poses tag T , then the N MMDs are selected that have the highest weights w′ from triplets
that contain both U and T .

3. EXPERIMENTAL EVALUATION

3.1. Datasets

For evaluation purposes, we prepared two real datasets 8, denoted as I-SEARCH and
FLICKR datasets. The I-SEARCH dataset is created by researchers from 6 different Euro-
pean research institutes and universities within the multimodal engine of I-SEARCH, which
consists of 3,532 triplets in the form user-MMD-tag with 358 users, 734 MMDs and 1,336
tags. For each MMD in the I-SEARCH dataset the multimodal descriptor is extracted fol-
lowing the extraction strategy of [Daras et al. 2012]. The FLICKR dataset is created by
using Flickr’s web services, where random text queries were posed to crawl the data. The
FLICKR dataset consists of 63,172 triplets in the form user-image-tag with 8,262 users,
10,049 images and 21,866 tags. For each image in the FLICKR dataset the image descriptor
is extracted based on the SIFT variant described in [Uijlings et al. 2010]. In both datasets
tags are treated as regular text and thus, three preprocessing steps are followed: (a) tok-
enization based on a standard stop list (e.g. in, the, of, at, etc.); (b) tags are turned into
lower case; and (c) all non-letter or non-digit characters in the tags are removed (e.g. dots,
commas, question marks, etc.).

3.2. Evaluation Protocol

For the task of item recommendation, where in case of I-SEARCH and FLICKR the re-
spective recommended items are in the form of MMDs and images, the following evaluation
protocol was used: for each user, one of its triplets was randomly selected. The set of all
selected triplets formed the test data, whereas the remaining triplets formed the training
data. The task of recommendation is to predict the item in the hidden triplets. Following
the evaluation protocol of similar works [Tso-Sutter et al. 2008; Nanopoulos et al. 2010],
the quality of recommendations was measured in terms of recall. Thus, for a test user U
that receives a list of N recommended items (top-N list), by posing a tag query T , recall is
defined as the the ratio of the number of relevant items in top-N list over the total number
of relevant items (all items in the hidden triplets containing test user U and tag T ). Other
commonly used measures are precision and F1. However, according to Nanopoulos et al.
[2010], the following two factors should be clearly mentioned: (a) For each user/tag combi-
nation in the test data, a constant number of items has to be predicted (items annotated
with tag T by user U); and (b) only a pre-specified number N of recommendations is taken
into account. Therefore, for this kind of evaluation protocol, it is redundant to evaluate pre-
cision (thus F1 too) because it is just the same as recall up to multiplicative constants. In
all experiments, mean values are reported, where each experiment was repeated ten times.
In order to speed up the training process for the FLICKR dataset, we performed each ex-
amined methodology into batches equal to the number of text queries that were used to

8http://vcl.iti.gr/tiis/data.zip
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retrieve the images through Flickr’s web services and therefore, average recall is reported,
weighted according to the number of users per batch.

3.3. Experimental Organization

The tensor factorization technique of HOSVD was implemented in Matlab Tensor Toolbox
by Kolda and Sun [2008], where we had to conclude to the optimal percentage of the
retained singular vectors c1, c2, c3 of Equation (9), in order to reveal the latent associations
among users, tags and MMDs/images. A percentage of c1 = c2 = c3=40% suffices in terms
of recall, because we found that higher values increase the HOSVD’s computational time
[Lathauwer et al. 2000], without paying off in terms of the accuracy of prediction. The
proposed Tag Propagation by Learning tag relevance and Tensor Factorization method
(TPL-TF) is compared against Musicbox (MB) of Nanopoulos et al. [2010], an ad-hoc
retrieval method of a pseudo-relevance scheme (AD-HOC) and HOSVD in both datasets.
In the MB method, the propagation of tags is performed as follows. Given a pair (U, T ),

let I1 be the set of items (MMDs/images) that have been tagged by user U with tag T ,
and let I2 be the set of items that have not been tagged by user U with tag T . Then, for
each Ix ∈ I2, a weight w is measured according to w = max∀Iy∈I1Sim(Ix, Iy), where Sim
is the similarity (normalized to [0 1]) between MMD/image Ix and Iy, based on the L2
distance of the multimodal descriptors of MMDs and the SIFT descriptors of images for
the I-SEARCH and FLICKR datasets, respectively. Thus, given the threshold parameter
a, if it holds that w ≥ a, then in the MB method a new triplet is propagated in the form
(U, T, Ix) associated with the calculated weight w = Sim(Ix, Iy). Thus, MB(a) denotes the
MB method, where a is the parameter to control the amount of propagated triplets. Note
that the extreme case of MB(1) equals the HOSVD method.
In the AD-HOC method, a pseudo-relevance feedback scheme is used, where the top-k

content-based similar items (MMDs/images) are considered as positives, based on which the
tag propagation is performed. Given a pair (U, T ), let I1 be the set of items (MMDs/images)
that have been tagged by user U with tag T and for each Iy ∈ I1 let I2 be the set of the
top-k content-based similar items. Then, let TIx be the set of tags that have been assigned
to item Ix ∈ I2. For each Tx ∈ TIx , a new triplet is propagated in the form (U, Tx, Ix),
associated with a weight w = Sim(Ix, Iy) ∗ Sim(Tx, T ), where Sim(Ix, Iy) is the similarity
between MMD/image Ix and Iy, as in the case of the MB method and Sim(Tx, T ) is the
similarity between tags Tx and T according to Equation (2). In our experiments we set
k = |RQ|.
For both datasets, we conducted three set of experiments: (a) the impact of the |RQ|

length on the proposed TPL-TF method; (b) comparison of TPL-TF against HOSVD, AD-
HOC and MB for different number of recommended MMDs/images; and (c) performance
of TPL-TF on users’ cold start degree. All experiments were conducted on a desktop PC
with 4-core Intel i7-3770K CPU 3.4GHz and 16GB RAM, running Windows 7.

3.4. Impact of the |RQ| Length
In Figure 10, we present the experimental results for the proposed TPL-TF method by vary-
ing length |RQ| as a percentage of the total number of MMDs/images in the I-SEARCH
and FLICKR datasets, respectively. In the top panel, we present the average number of
identified positives based on the relevance feedback step of Section 2.2. As expected, by
increasing length |RQ|, more positives are identified. This happens because in the initial-
ization process of Algorithm 1 by increasing length |RQ| we maximize the probability of
retrieving a result R in RQ of equal or higher association degree of tag Tin with result R,
than the respective association degree of tag Tin with query Q, expressed by the condition
SSE(Tin,TR) ≤ SSE(Tin,TQ). By doing so, more positives are identified, along with the
increase of the |RQ| length.
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Fig. 10. Impact of the |RQ| on the proposed TPL-TF method. Top panel: Average number of identified
positives. Middle panel: Average number of propagated triplets. Bottom panel: Average recall.
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In the middle panel of Figure 10, we present the average number of propagated triplets for
the proposed TPL-TF method based on the tag propagation step of Section 2.3. The increase
of length |RQ| and thus the number of identified positives, results in an analogous increase
of the average number of propagated triplets based on Equation (4). Therefore, the average
numbers of propagated triplets for the FLICKR and I-SEARCH datasets are at different
scale, since the respective average numbers of identified positives are also at different scale.
Moreover, the average number of propagated triplets is presented for the AD-HOC method,
where the increase of |RQ| results in analogous increase of propagated triplets. However,
by considering the tag similarity Sim(Tx, T ) in the weights of the propagated triplets,
due to “cold start” and sparsity problems it often holds that Sim(Tx, T ) = 0 and thus
the respective weights are also equal to 0. By doing so, the propagated triplets of w = 0
are discarded. This explains the different number of propagated triplets of AD-HOC in the
evaluation datasets along with the increase of |RQ|, where in the case of FLICKR overcomes
the number of propagated triplets of TPL-TF, whereas in the case of I-SEARCH remains
lower than TPL-TF. Additionally, the average number of propagated triplets is presented
for the MB method by varying the a control parameter in the same way as presented
in [Nanopoulos et al. 2010], following conservative (low number of propagated triplets) or
aggressive (high number of propagated triplets) strategy, corresponding to high or low values
of the control parameter a, respectively.
In the bottom panel of Figure 10, we demonstrate the impact of length |RQ| on the pro-

posed TPL-TF method in terms of average recall for N = 5 recommended images/MMDs.
In this set of experiments, HOSVD and AD-HOC are considered as baseline methods.
For both datasets we can make the following observations. For all different values of length
|RQ|, the performance of TPL-TF is preserved higher than HOSVD, since the issues of “cold
start”, sparsity and “learning tag relevance” are handled though the relevance feedback and
tag propagation steps. Additionally, by increasing length |RQ|, the recall of TPL-TF is pre-
served. This happens because despite the fact that the average number of propagated triplets
is increased along with length |RQ|, the calculated weights w of the propagated triplets be-
come relative small according to Equations (5), (6), (7), (8) and thus, the performance of
the TPL-TF method in terms of recall is not affected significantly. On the contrary, the
AD-HOC method achieves different recommendation accuracy in the evaluation datasets.
In the FLICKR dataset, the recall of the AD-HOC method is reduced along with the in-
crease of length |RQ|. In the I-SEARCH dataset, AD-HOC’s recall is increased along with
the increase of length |RQ|, where after a certain point it remains the same (|RQ|=70%).
This happens because for large values of length |RQ| the content-based similarities become
relatively low. Thus, the combination of content-based and tag similarities results in the
propagated triplets’ low weights, having insignificant impact on the recommendation accu-
racy of AD-HOC. In contrast to TPL-TF, the AD-HOC method considers all results in RQ

as positives based on which the tag propagation is performed. In the AD-HOC method the
issue of “learning tag relevance” is considered through the combination of the content and
tag similarities, whereas in the TPL-TF method the issue of “learning tag relevance” is effi-
ciently handled (a) by identifying positives through the Relevance Feedback of Algorithm 1
and (b) by calculating the weights of propagated triplets based on Equation (5).
In Figure 11, we evaluate the impact of length |RQ| on TPL-TF, in terms of computational

time. 9 In order to evaluate the tag propagation step, the computational time of HOSVD
in TPL-TF is omitted, since it is similar to the HOSVD method. The increase of length
|RQ| in the TPL-TF method results in an analogous increase of the computation time,
where after a certain point (60% and 70% in FLICKR and I-SEARCH) starts to decrease.
This happens because for large values of length |RQ|, the Relevance Feedback method of
Algorithm 1 identifies more positives in the first iterations, and thus making the stopping

9In the FLICKR dataset, the computation times of all batches are aggregated.
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Fig. 11. Impact of the |RQ| on the proposed TPL-TF method, in terms of computational time (secs).

criterion of SSE(Tin,TR) ≤ SSE(Tin,TQ) more strict for the next iterations. By doing
so, the algorithm terminates in the first iterations, resulting in the decrease of TPL-TF’s
computational time. As we can observe the computation time of AD-HOC is lower than
the one of TPL-TF, since it does not include the Relevance Feedback step. Regarding the
MB method the computational times are 5.7 and 1.2 secs in the FLICKR and I-SEARCH
datasets, respectively, which are extreme low since in the MB method the calculation of tag
similarities of Equation (2) is omitted. Nevertheless, all tag propagation methods are of much
lower complexity than the cubic complexity of HOSVD [Kolda and Sun 2008]. For example,
the TPL-TF method for |RQ| = 10% requires a percentage of 20% and 25% of HOSVD’s
computational times in FLICKR and I-SEARCH, respectively. Therefore, based on the
experimental results of Figures 10 and 11, in order to consider the lowest computational
time for the TPL-TF method and the highest recommendation accuracy for the AD-HOC
method of low complexity, in the rest of experiments for TPL-TF we set |RQ| equal to 10%
in both datasets and for AD-HOC we set |RQ| equal to 10% and 70% in FLICKR and
I-SEARCH, respectively.
Next, in Figure 12 we evaluate the performance of the proposed TPL-TF method against

HOSVD, MB and AD-HOC methods, by varying the number (N) of recommended im-
ages/MMDs. The quality of recommendations of the MB method is lower than HOSVD
for all values of a, either following conservative (low number of propagated triplets) or ag-
gressive (high number of propagated triplets) strategy, corresponding to high or low values
of the control parameter a, respectively. Moreover, for the MB method, we also conducted
experiments for other values of the a parameter based on which we observed that even for
the extreme case of MB(0.9), where the content-based similarity is high and the numbers of
mean average propagated triplets are 187 and 1,966 for FLICKR and I-SEARCH, respec-
tively, the mean average recall of MB(0.9) is preserved close to HOSVD, by propagating
few noisy tags but not adequately handling the “cold start” and sparsity problems. For
example, in case of N=5 the mean average recall of MB(0.9) is equal to 0.23 and 0.25
in FLICKR and I-SEARCH, respectively. This happens because the issue of the “learning
tag relevance” is not handled in the MB method, and therefore for all values of parameter
a, noisy tags are propagated, which consequently decrease the recommendation accuracy
of HOSVD. The performance of AD-HOC is solely based on the linear combination of
tags and MMDs/images content-based similarities. However, AD-HOC does not necessary
handle the issue of “learning tag relevance” efficiently. By considering all top-k similar
MMDs/images as positives, tag propagation is performed between not necessary concep-
tually similar MMDs/images. Thus, the tag similarities capture the relevance degrees of
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Fig. 12. Comparison of the proposed TPL-TF method against the HOSVD, MB and AD-HOC methods in
terms of recall.

all top-k, not necessary conceptual similar, MMDs/images, which furthermore results in
adding noisy tags. In the case of FLICKR there are few conceptually similar MMDs/images
(positives) in the top-k = |RQ| content-based results (as they identified by the Relevance
Feedback mechanism of TPL-TF in the top-panel of Figure 10), whereas in I-SEARCH
there more conceptually similar MMDs/images in the top-k content-based results. This ex-
plains the different performance of the AD-HOC method in the evaluation datasets, where
in FLICKR recall of AD-HOC remains lower than HOSVD, whereas in I-SEARCH is in-
creased. On the contrary, the proposed TPL-TF method achieves higher recommendation
accuracy than HOSVD and AD-HOC for both datasets, by efficiently detecting conceptually
similar items based on the Relevance Feedback mechanism of Algorithm 1 and by capturing
users’ personal preferences bases on Equations (5) and (6). By doing so, TPL-TF handles
the issue of “learning tag relevance” in a personalized manner, while avoiding to propagate
noisy tags.

3.5. Performance Evaluation based on Users’ Cold Start Degree

In the experiments of Figure 13, the performance of the proposed method is evaluated on the
“cold start” problem, by controlling users’ cold start degree. As presented in the top panel
of Figure 13, the cold start degree is denoted by the number of users’ freq(U) appearances
(triplets) in the training sets. The respective propagated triplets by MB, AD-HOC and the
proposed TPL-TF method are illustrated in the middle panel of Figure 13, where for all
examined methods the average number of propagated triplets is increased according to users’
appearances in the training sets. Next, in the bottom panel of Figure 13, the proposed TPL-
TF method is compared against HOSVD, AD-HOC and MB in terms of recall. We can make
the following observations. Users’ cold start degree affects negatively the HOSVD method,
by decreasing the quality of recommendations, i.e. the recall of HOSVD is decreased along
with the decrease of users’ appearances in the training sets. The MB method reduces the
quality of recommendations in both datasets, by performing tag propagation and ignoring
the “learning tag relevance” issue. The AD-HOC method has similar performance on the
evaluation datasets to the experiments of Figure 12. By not detecting efficiently conceptually
similar results and thus, depending on the amount of the top-k results that are conceptually
similar, AD-HOC adds noisy tags, accordingly. However, for the FLICKR dataset there is
an exceptional case of cold start users (with 1-5 appearances), where the MB and AD-HOC
method achieve slightly higher recall than HOSVD, by partially handling the “cold start”
problem. This happens because for the FLICKR dataset in the case of cold start users,
MB and AD-HOC propagate a relative low number of triplets, as depicted in the middle
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Fig. 13. Top panel: Users’ cold start degree in the training sets. Middle panel: Average number of propa-
gated triplets with respect to users’ cold start degree. Bottom panel: Performance of the TPL-TF, HOSVD,
MB, AD-HOC methods with respect to users’ cold start degree.
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panel of Figure 13 and thus, propagate few noisy tags resulting in the slightly increase
of the recommendation accuracy. However for the rest cases of non-cold start users (i.e.
6-10 and > 10 appearances), the MB and AD-HOC methods highly reduce the quality
of recommendations. In the I-SEARCH dataset, AD-HOC increases the retrieval accuracy
of HOSVD. This happens because most of the top-k content-based similar results in the
I-SEARCH dataset are conceptually similar and thus, the final weights of the propagated
triplets, combined with the tag similarities, reflect on the tag relevance degrees. At this
point we must mention the consideration of the tag similarities in the weights’calculations
of the propagated triplets is the main difference between AD-HOC and the MB method,
where in the latter only the content-based similarities are considered. Therefore, in contrast
to MB, AD-HOC achieves to increase the recommendation accuracy in I-SEARCH. On
the contrary, the proposed TPL-TF method, achieves high recommendation accuracy in
both datasets especially for the case of cold start users, whereas for the non-cold users
achieves to preserve higher or similar recommendation accuracy to HOSVD, by performing
accurate tag propagation, handling the “learning tag relevance” issue and thus avoiding
to propagate noisy tags. We must highlight that TPL-TF outperforms AD-HOC in the
I-SEARCH dataset because (a) in contrast to AD-HOC, the TPL-TF method efficiently
detects conceptually similar results and thus avoids propagating noisy tags and (b) users’
personal preferences are considered according to Equations (5) and (6).

4. DISCUSSION AND CONCLUSION

The proposed TPL-TF methodology of content-based tag propagation and tensor factor-
ization for item recommendation based on social tagging can efficient handle several prob-
lems that exist in STS, which produce noise and decrease the quality of recommendations.
Through the first step, the content information is exploited to retrieve the content-based
similar results and then, a relevance feedback mechanism is activated so as to automatically
identify the optimal number of conceptually similar results (positives), based on users’ tag
assignments. Next, through the second step, tags are propagated between the identified
content-based and conceptually similar results, in order to handle the sparsity and “cold
start” problems, where the relevance degrees between users, tags and items are calculated,
in order to perform accurate tag propagation and consequently to address the issues of
“learning tag relevance”, sparsity and “cold start”. Moreover, the ternary relation among
users, tags and items is preserved by performing tag propagation in the form of triplets
based on users’ personal preferences and “cold start” degree. Finally, through the third
step, the problems of polysemy and synonymity are addressed and the latent associations
among users, tags and items are revealed. Thus, regarding the recommendations’ quality of
the proposed approach, we experimentally showed that it outperforms the related methods
of Symeonidis et al. [2010], Nanopoulos et al. [2010] and an ad-hoc retrieval method of a
pseudo-relevance feedback scheme, by performing the same tensor factorization technique
of HOSVD on two different evaluation datasets. Finally, we present the recommendation
methodology in the multimodal engine of I-SEARCH at http://vcl.iti.gr/is/, by simplify-
ing users’ interactions, where the recommended items are unified sets of media of different
modalities in the form of MMDs.
Nevertheless, the tensor factorization technique of HOSVD has three major drawbacks

(a) the cubic runtime to build the model; (b) the application of SVD on the three unfolded
matrices of the tensor results in “memory overflows” for large-scale datasets; and (c) the
tensor factorization technique is more biased to 0s than the 1s, since the tensor is extremely
sparse and consequently the element-wise squared differences between the initial tensor and
its approximation depend more on 0s than on 1s. These problems have already addressed
in several works like the methods described in [Kolda and Sun 2008]. Moreover, the tensor
factorization approaches like the one of [Symeonidis et al. 2010] or the one of [Rendle
et al. 2009] can only deal with prediction problems involving three categorical variables
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(i. e. user, tag and item). However, in STS, additional information can be used, e. g., the
words of a resource’s title, the age of a user, the time, etc. Factorization machines (FM)
[Rendle 2010] have been recently proposed as a generic model that allows to encode any
kind of additional data in tensor factorization techniques, in order to build Context-Aware
recommender systems [Adomavicius et al. 2005]. However, the “cold start” problem is not
addressed and therefore as a future work we plan to extend and evaluate the proposed
methodology in FM.
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