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ABSTRACT Continuous Sign Language Recognition (CSLR) refers to the challenging problem of recogniz-
ing sign language glosses and their temporal boundaries from weakly annotated video sequences. Previous
methods focusmostly on visual feature extraction neglecting text information and failing to effectivelymodel
the intra-gloss dependencies. In this work, a cross-modal learning approach that leverages text information
to improve vision-based CSLR is proposed. To this end, two powerful encoding networks are initially used
to produce video and text embeddings prior to their mapping and alignment into a joint latent representation.
The purpose of the proposed cross-modal alignment is the modelling of intra-gloss dependencies and
the creation of more descriptive video-based latent representations for CSLR. The proposed method is
trained jointly with video and text latent representations. Finally, the aligned video latent representations
are classified using a jointly trained decoder. Extensive experiments on three well-known sign language
recognition datasets and comparison with state-of-the-art approaches demonstrate the great potential of the
proposed approach.

INDEX TERMS Computer vision, continuous sign language recognition, cross-modal learning, deep-
learning, joint latent space.

I. INTRODUCTION
Sign language (SL) is the primary communication tool for
deaf-mute people, making use of gestures produced with
the body and perceived with the eyes. SLs have indepen-
dent vocabularies and grammatical structures just like spoken
ones [1]. Signs, which have an internal structure similar to
spoken words, are characterized by a combination of hand
shapes, positions and motion trajectories, orientations of
palm and fingers and facial expressions. The closest meaning
of a visual sign is a gloss, which is the fundamental building
block of SLs.

Sign Language Recognition (SLR) is the task of recog-
nizing glosses from video captures of sign language. SLR
is of great significance to the deaf community, as it enables
the communication of deaf people with the world, removing
accessibility barriers and improving their social inclusion.
The SLR tasks can be divided into two categories: isolated
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sign language recognition (ISLR) [2]–[5] and continuous sign
language recognition (CSLR) [6], [7]. In ISLR, the annotation
boundaries of the signs in videos are predefined in a similar
way to gesture and action classification. On the other hand,
CSLR is more challenging than ISLR since only the temporal
order of the gloss sequence is givenwithout any prior segmen-
tation information.

Early machine learning techniques were mainly focus-
ing on isolated gloss classification or gesture spotting.
Such techniques were often making use of handcrafted fea-
tures with temporal modelling methods, such as hidden
Markov models (HMM) [8], [9] and conditional random
fields [10]. Recently, deep learning methods have shown
their potential to outperform conventional machine learning
approaches in several computer vision tasks, such as gesture
recognition and human action recognition [11]–[13]. As a
result, current CSLR approaches take advantage of deep
learning concepts, such as convolutional neural networks
(CNNs) to capture powerful image and video representations
and recurrent neural networks (RNNs) to accurately model
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temporal dependencies, thus improving recognition accuracy
[14]–[17]. However, most CLSR methods either extract
frame-level representations that are inadequate for modelling
the temporal dynamics (present in a gloss) or they fail
to effectively model intra-gloss dependencies. Additionally,
there is limited research on ways to exploit the relationship
between visual content and text information for improving
recognition accuracy in CSLR.

To overcome the aforementioned shortcomings, in this
work, a novel unified deep learning framework for CSLR is
proposed. The proposed approach consists of two encoders
that learn the individual video and text embeddings, which
are then projected into a joint latent space through linear
transformations. A common loss function is used to align the
latent representations and minimize their distance, while the
final classification of the aligned video latent representations
is performed by a jointly trained decoder. During training,
both video and text information is employed, while during
inference, only video information is used as input.

More specifically, the main contributions of this work are
summarized as follows:

• A novel cross-modal learning approach for video-based
CSLR is introduced. The proposed method leverages
text information to model intra-gloss dependencies and
create more descriptive video-based latent representa-
tions that improve the recognition accuracy.

• A new approach for the alignment of video and text
embeddings using a joint loss function is proposed.
The joint loss function aims to minimize the distance
between the corresponding embeddings of the two
modalities enabling the creation of a common latent
representation. The inference of the aligned video latent
representations is finally performed by a jointly trained
decoder network.

• The proposed approach is evaluated on three challenging
sign language recognition datasets and compared with
several state-of-the-art CSLRmethods, showing promis-
ing results.

The remainder of this paper is organized as follows.
In Section II related work in SLR is described. The com-
ponents of the proposed CSLR method and the optimization
process are described in Section III and Section IV, respec-
tively. Finally, the implementation details and the experimen-
tal results are discussed in Section V, while conclusions are
drawn in Section VI.

II. RELATED WORK
Early SLR works were relying on handcrafted feature extrac-
tion such as hand shape, appearance and motion trajectories
[2], [18], while recent approaches are automatically extract-
ing features with the use of deep neural networks.Most CSLR
methods consist of a feature extractor followed by a sequence
modelling module. In [9], [19], the authors employed a CNN
feature extractor, whose output is fed into a HMM for tempo-
ral modelling. They used frame-state alignments generated

from the HMM to train the CNN. Later, they extended their
work by incorporating a long short-term memory (LSTM)
unit in top of a CNN [20]. In their most recent work [16],
the authors introduced two additional streams of cropped
hands andmouthmodalities. The full architecture was trained
iteratively by frame-state alignments provided by the HMM.
However, frame-state alignments can be noisy due to the lack
of frame-level ground truth annotations and such methods are
forced to make strong initial assumptions on gloss boundaries
in order to overcome HMM’s limited learning capacity [14].

Other methods make use of connectionist temporal classi-
fication (CTC) [21], which is designed for sequence labelling
problems, such as speech recognition and handwriting recog-
nition. CTC can effectively deal with weakly labelled data,
making it appropriate for continuous SLR. Camgoz et al. [22]
were among the first ones who proposed a shallow CNN-
LSTM architecture trained end-to-end with CTC. In [23],
the authors employed a 2D-CNN-LSTM architecture with
CTC loss in parallel with a gloss-detection network to refine
predictions. Later, they extended their work using temporal
convolutions and a new iterative training scheme, achiev-
ing superior performance in CSLR datasets [14]. However,
the major weakness of CTC is the conditional independence
assumption and therefore it fails to model intra-gloss depen-
dencies.

On the other hand, a crucial issue for SLR is video rep-
resentation, i.e., the extraction of video embeddings. 3D-
CNNs have strong video representation capabilities since
they extract motion features unlike 2D-CNNs and have also
been adopted in CSLR task. Huang et al. [24] proposed a
3D-CNN network along with a hierarchical attention network
for recognition. Yang et al. [25] proposed a shallow hybrid
CNN with 2D and 3D convolutions followed by two LSTM
networks for sequence modelling at gloss and sentence level
respectively, which can be trained end-to-end with CTC loss.
Pu et al. [26] adopted a 3D-ResNet to extract video repre-
sentations with stacked dilated temporal convolutions instead
of a LSTM to alleviate the problem of backpropagation
through a recurrent network. In [17], the authors proposed a
framework with a 3D-ResNet integrating an encoder-decoder
network with a CTC decoder, jointly trained and aligned
with soft-DTW (Dynamic TimeWarping) [27]. Pseudo-labels
were inferred from the decoders’ alignment to train the 3D-
CNN. In [28], the authors adopted the I3D architecture from
the action recognition field [12] with a gated recurrent unit
(GRU) for sequence modelling. The whole architecture was
trained iteratively with CTC and a new dynamic pseudo-
labelling method. However, training 3D architectures with
limited data in a weakly supervised setting is challenging.
In [29], the authors used deep temporal convolution layers
instead of RNN to model the short- and long-term depen-
dencies simultaneously. They utilized several classifiers in
each temporal convolution layer and fused the predictions in
a CTC decoder for increased performance. Guo et al. [30]
proposed a hierarchical adaptive recurrent network with tem-
poral pooling and attention-aware weighting mechanisms.
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FIGURE 1. Overview of the proposed method. The text embeddings ey are used only during training, while during inference only video information (red
arrows) is fed to the network for the estimation of output probability distribution gνjoint.

In [31], the authors fused 2D and 3D-CNN features to learn
short-term temporal dependencies and a new decoding algo-
rithm, which learns a temporal mapping among features, sign
labels and the generated gloss sequence.

Cross-modal methods have been successfully applied to
various fields, such as action recognition and video caption-
ing. In [32], the authors employed transfer learning from the
image domain to enhance video action recognition, while in
[33], the authors proposed a Generative Adversarial Network
that learns a common feature space of images and videos to
improve recognition accuracy. Finally, in [34], the authors
integrated images and videos into a common representation
using cross-modal similarity metrics to enhance the action
recognition accuracy. In this work, a cross-modal method for
CSLR is proposed, which takes advantage of the ability of
CTC to handle weakly labeled data, while simultaneously
leverages text information to model intra-gloss dependencies
through the cross-modal alignment of video and text embed-
dings.

III. PROPOSED METHOD
In this work, a video encoder is proposed that consists of
a CNN for spatial feature extraction, stacked 1D temporal
convolution layers (TCL) for short-term temporal modelling
and a bidirectional long short-term memory (BLSTM) units
for global context learning. Furthermore, a text encoder is
implemented using a unidirectional LSTM to model the
sequences of sign language glosses. The outputs of both
encoders are projected into a joint latent space through linear
transformations. In addition, alignment is achieved by using
a common loss function for minimizing the distance of video
and text embeddings. An overview of the proposed approach

is depicted in Figure 1. In the remainder of this section the
encoding of each modality is initially formulated and then the
joint latent space representation is described.

A. VIDEO ENCODER
The proposed video encoder adopts a 2D-CNN followed by
temporal convolution layers to extract spatiotemporal fea-
tures from the input video. The extracted features are then
processed through a BLSTM layer to learn long-term depen-
dencies over all timesteps.

1) FEATURE EXTRACTION
Let x = (x1, · · · , xT ) be the input frame sequence of length
T , where xτ is the τ th frame of the video sequence. The CNN
represented as function FCNN extracts a spatial representation
fτ = FCNN(xτ ) for each frame with fτ ∈ RDCNN , whereDCNN
is the feature dimension of the CNN. Therefore, all features
are represented as follows:

f = (f1, f2, · · · , fT ) = {FCNN(xτ )}Tτ=1 (1)

The feature sequence f ∈ RT×DCNN is processed by the
TCL module, represented by the function FTCL, modelling
the temporal dependencies between adjacent frames. The
TCLmodule consists of stacked 1D convolutions and pooling
layers that learn short-term temporal dependencies between
frames. The receptive field of the TCL module depends on
the layers’ filter size k , pooling size p, stride s and dilation
factor d . The TCL module extracts a spatiotemporal feature
sequence represented as:

r = (r1, r2, · · · , rT ′ ) = {FTCL(fτ )}Tτ=1, (2)
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where r ∈ RT ′×DTCL , DTCL is the feature dimension of the
TCL module and T ′ = T/σ is the length of the extracted
spatiotemporal sequence, with σ depending on the receptive
field of the TCL module.

2) SEQUENCE MODELLING
Recurrent neural networks have been successfully applied to
many sequence-to-sequence problems, such as speech recog-
nition and neural machine translation. LSTMs are able to
learn long-term temporal dependencies avoiding vanishing
gradients due to backpropagation through all timesteps in
contrast to traditional RNNs. However, LSTMs compute the
current output based only on previous timesteps. In CSLR,
the signed video is mapped to a sentence with grammatical
rules, meaning that each sign depends on the previous and
succeeding context. To this end, a BLSTM layer is chosen
instead of a unidirectional LSTM layer to learn the complete
sequential information over all timesteps. Using R to repre-
sent the BLSTM layer with H hidden units, the outputs are
computed as:

hν = (hν1, h
ν
2, · · · , h

ν
T ′ ) = {R(rt )}

T ′
t=1 (3)

where hν ∈ RT ′×H are the concatenated forward and back-
ward hidden state sequences. The concatenated hidden state
sequence is passed through a fully connected and a softmax
layer denoted as8 that produces the gloss label probabilities
from a given vocabulary of C classes.

gν = (gν1, g
ν
2, · · · , g

ν
T ′ ) = {8(h

ν
t )}

T ′
t=1 (4)

where gν ∈ [0, 1]T
′
×C is the output probability distribution

among C classes.

B. TEXT ENCODER
The proposed text encoder is a RNN Language Model
(RNNLM) [35], [36] that models the probability of a word
occurrence under the condition of its previous words in a
sentence, i.e., it aims to learn the structure and syntax of
sign language. The model maximizes the log-likelihood of
the target sentence given the hidden states and the previous
words. The text encoder employs a word embedding layer
and a LSTM layer with Htext hidden units. Each gloss yk of
the input sentence is passed through a word embedding layer,
which is a fully connected layer that learns a linear projection
from discrete gloss categories to a denser vector denoted as
wek . In other words, the gloss yk , which is represented by a
unique one-hot vector, is transformed into a continuous vector
with smaller dimension compared to the gloss vocabulary
size. The hidden state of the LSTM layer hyk encapsulates the
history of the sentence up to gloss yk , i.e., all previous words.
The hidden states are generated as follows,

hy = (hy1, h
y
2, · · · , h

y
K ) = {RLM(wek , h

y
k−1)}

K
k=1 (5)

where hy ∈ RK×Htext and K is the length of the sentence.
Then, the hidden states of the LSTM layer are passed through

a fully connected and a softmax layer, denoted as 8LM to
output the gloss label probabilities as:

gy = (gy1, g
y
2, · · · , g

y
K ) = {8LM(hyk )}

K
k=1 (6)

where gy ∈ [0, 1]K×C is the output probability distribution
among C classes.

C. JOINT LATENT SPACE
The hidden states hν = {hνt }

T ′
t=1 of the video encoder and the

hidden states hy = {hyk}
K
k=1 of the text encoder are mapped

into the joint latent space through two mapping networks,
V2E and T2E, respectively. Each mapping network consists
of a fully connected layer that computes the following latent
representations:

eν = {V2E(hνt )}
T ′
t=1 = {W

νhνt + b
ν
}
T ′
t=1 (7)

ey = {T2E(hyk )}
K
k=1 = {W

yhyk + b
y
}
K
k=1 (8)

where Z is the latent space dimension, eν ∈ RT ′×Z and ey ∈
RK×Z are the video and text representations in the joint latent
space, respectively.

The above latent representations are passed through a
joint decoder 8joint that consists of a fully-connected and a
softmax layer to obtain gloss probabilities. Both modalities
share the same joint decoder weights to enforce a common
representation between them.

gνjoint = {8joint(eνt )}
T ′
t=1 (9)

gyjoint = {8joint(e
y
k )}

K
k=1 (10)

where gνjoint ∈ [0, 1]T
′
×C and gyjoint ∈ [0, 1]K×C are the

output probability distributions computed from the video and
text latent representations, respectively.

IV. OPTIMIZATION
A. LEARNING EMBEDDINGS
The proposed framework employs a CTC loss function to
train the video encoder given the frame sequence and the joint
decoder given the video latent space representations, respec-
tively. The objective of using the CTC loss is to maximize
the sum of probabilities of all possible mappings between
input and target sequences. CTC extends the vocabulary C
with a blank label ‘‘− ", representing the silence or transition
between two consecutive labels. The extended vocabulary can
be defined as V = C ∪ {blank}. Given a frame sequence
x = {xτ }Tτ=1 of length T , the proposed framework outputs
two gloss probability distributions gν and gνjoint with length
T ′ to predict the corresponding sequence of target glosses
y = {yk}

K
k=1 of length K .

The emission probability p(j, t|x) of label j at time-step t
is denoted as gj,t and can be modelled either from the video
encoder or the joint decoder. An alignment path is defined as
π = {πt }

T ′
t=1, where label πt ∈ V . The posterior probability

of a CTC alignment path π is defined as:

p(π |x) =
T ′∏
t=1

gπt ,t (11)
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FIGURE 2. Alignment of video and text embeddings based on the loss function Lmap. The dominant alignment path is marked with blue
color, while softer and infeasible alignments are shown with cyan and white colors respectively.

The alignment path π is mapped to the target sequence
y with a many-to-one mapping operation B that removes
repeated labels and blanks from the given path. Subsequently,
an inverse operation B−1(y) = {π |B(π ) = y} is used that
represents all the possible alignments corresponding to target
labels y. The conditional probability of y is defined as the sum
of the probabilities of all corresponding paths π :

p(y|x) =
∑

π∈B−1(y)

p(π |x) (12)

Furthermore, to allow for blank labels in the computed
alignment paths, a modified label sequence y′ of length K ′ =
2K+1 is defined and used as target sequence in the proposed
method by adding blanks before and after each label in y.
Since single labelling can be derived from a huge amount
of paths, a method is required to efficiently calculate p(y|x).
CTC employs dynamic programming to compute the sum
over different paths for a single labelling iteratively, using for-

ward and backward variables α ∈ RT ′×K ′ and β ∈ RT ′×K ′ ,
respectively.

The total probability αt,s of y′1:s (i.e., the first s symbols
of modified label sequence y′) at time-step t is defined as:

αt,s =
∑

B(π1:t )=y′1:s

t∏
t ′=1

gt
′

πt′
(13)

and correspondingly the total probabilityβ t,s of y
′
s:K ′ at time-

step t is equal to:

β t,s =
∑

B(πt:T ′ )=y
′
s:K ′

T ′∏
t ′=t

gt
′

πt′
(14)

Therefore, p(y|x) for any t is calculated as follows:

p(y|x) =
K ′∑
s=1

αt,sβ t,s

gty′s
(15)
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The objective function LCTC that guides the training pro-
cess, is derived from the principle of maximum likelihood
[37] and is used to optimize the video encoder. The loss
function of the video encoder is formulated as:

LCTC = − log p(y|x) (16)

The text encoder is used as a languagemodel. The objective
is to maximize the probability of the current word given the
previous hidden states and it is trained using the cross-entropy
criterion denoted as LLM .

LLM = −
1
K

K∑
k=1

log p(yk |h
y
k−1) (17)

B. LATENT SPACE ALIGNMENT
The cross-modal alignment aims to jointly encode and project
video and text information into a common latent space by
minimizing the distance between video and text embeddings.
Due to the different length of video and text embedding
sequences, the alignment paths are calculated from the non-
blank probabilities α′ and β ′ ∈ RT ′×K of the CTC forward-
backward algorithm [38]. Non-blank probabilities α′ and β ′

are calculated from α and β, respectively, by removing the
probabilities that correspond to blank labels of the modified
label sequence y′ recursively as:

α′t,k = αt,2k+1 (18)

β ′t,k = β t,2k+1 (19)

Then, the soft alignments w ∈ RT ′×K are defined as:

wt,k =
β ′t,kα

′
t,k∑K

k=1 β
′
t,kα
′
t,k

(20)

Intuitively, wt,k is the probability of gloss k in target
sequence y occurring at time-step t and is used as a weighting
factor between the possible alignments. To minimize the dis-
tance of the video and text latent representations, a mapping
loss is defined as:

Lmap =
1

K · T ′

K∑
k=1

T ′∑
t=1

wt,kd(eνt , e
y
k ), (21)

with d(eνt , e
y
k ) = || e

ν
t − e

y
k ||

2 being the Euclidean distance
between two vectors. The Lmap function is illustrated in Fig-
ure 2. The purpose of the Lmap loss function is to drive the
video and text embeddings closer to one another using the
weighting factor w computed by the CTC alignment. The
factor wt,k is a probability in the range of [0, 1] that expresses
the degree the predicted gloss at time t matches the ground
truth gloss yk . When wt,k is high, the corresponding video
segment at time t matches the target gloss yk and Lmap is
significantly affected by the Euclidean distance between the
video and text embeddings in an attempt to bring them closer.
When wt,k is close to 0, the corresponding video segment at
time t is not matched with the target gloss yk and Lmap is only
slightly affected by the Euclidean distance between the video

and text embeddings. In this way, Lmap aligns the video and
text embeddings only when the alignment is meaningful (i.e.,
the predicted sequence is close to the ground truth and wt,k is
close to 1).

The joint decoder is trained using LCTC and LLM for the
video and text latent representations, respectively. The video
and text encoders, the latent space mapping networks and the
joint decoder are jointly trained with the following objective
function:

Ljoint = Lmap + aLCTC + bLLM (22)

where a, b are tunable hyperparameters to balance the effect
of each latent representation in the training procedure.

C. OPTIMIZATION STRATEGY
In this work, a two-stage optimization process is followed.
It has been shown that training the video encoder only with
LCTC end-to-end has limited contribution to the parameters
of CNN as the gradients are vanished after backpropaga-
tion through the BLSTM layer due to the chain rules of
backpropagation [17], [28]. At the first stage, the proposed
video encoder (i.e., 2D-CNN, TCL, BLSTM and Decoder-
Classifier modules) is optimized with LCTC . At the second
stage, the feature extractor (i.e., 2D-CNN and TCL modules)
of the video encoder is optimized using pseudo-labels gen-
erated from the soft alignments w with cross-entropy loss
as a stronger supervision. Then, the video encoder learns
a better video representation and generates more accurate
pseudo-labels. The two stages are performed iteratively until
no further improvement in recognition error is observed. Both
video and text encoders are trained until convergence. Then,
the latent space mapping modules are optimized with Lmap
to align and learn the embeddings. After removing the two
decoders-classifiers from the video and text encoders, the full
architecture (including the latent space and the joint decoder)
is trained with Ljoint loss to fine-tune the proposed CSLR
method.

V. EXPERIMENTS
In this section, the implementation details of the proposed
method are initially described. Then, experimental results on
three well-knownCSLR datasets are presented and discussed.

A. EVALUATION
The proposed method is evaluated on three publicly avail-
able datasets, RWTH-Phoenix-Weather-2014 [6], RWTH-
Phoenix-Weather-2014T [39] and CSL [24]. To evaluate per-
formance in CSLR datasets, the word error rate (WER)metric
has been adopted, whichmeasures the similarity between pre-
dicted and ground truth gloss sequences. WER calculates the
least number of operations needed to transform the aligned
predicted sequence to the ground truth and can be defined as:

WER =
S + D+ I

N
, (23)
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FIGURE 3. Soft alignments computed from w between video and text embeddings for two testing videos of the RWTH-Phoenix-2014 dataset.
The dominant alignment paths are highlighted in orange.

where S is the total number of substitutions, D is the total
number of deletions, I is the total number of insertions and N
is the total number of glosses in the ground truth.

B. IMPLEMENTATION DETAILS
For the proposed video encoder, a 2D-CNN (BN-Inception)
network [40] is used that is initialized with weights pretrained
on the ImageNet dataset. The kernel and stride sizes of the
TCL module are manually tuned to approximately cover the
average gloss duration. TCL has two 1D convolutional layers
with 1024 filters and two max-pooling layers. For the CSL
dataset, the convolutional layers have kernel sizes equal to 7,
while the pooling layers have kernel and stride sizes equal
to 3 and cover the average gloss duration of 58 frames. For
the RWTH-Phoenix-Weather-2014T and RWTH-Phoenix-
Weather-2014 datasets, the convolutional layers of the TCL
module have kernel sizes equal to 5, while the pooling layers
have kernel and stride size equal to 2 resulting in a receptive
field of 16 frames. The BLSTM layer consists of 2 LSTMs
with 512 hidden units each. The text encoder has 1 LSTM
layer with 512 hidden units. It should be noted that a BLSTM
layer can also be adopted for modelling the text information.
However, in the experimental results the performance was
similar and a LSTM was chosen due to its smaller compu-
tational complexity.

The following data processing techniques are used for all
datasets. Each frame is resized to 256× 256 and cropped at a
random position to a fixed size of 224×224. Random tempo-
ral frame sampling is used up to 80% of video length. Bright-

TABLE 1. The effect of different joint latent space sizes reported in WER.

ness, contrast, saturation and hue values of frames are ran-
domly jittered up to 10%. The full architecture is trained with
Adam optimizer with an initial learning rate λ0 = 5 ∗ 10−5

and a batch size of 1 because of the computational cost and the
fact that each video sequence consists of a different number of
frames. Long videos are downsampled to a maximum length
of 250 frames, if necessary. The learning rate is decreased
by a factor of 0.5 when validation loss starts to plateau. The
training process lasts 10 epochs for the CSL dataset and
20 epochs for the other two datasets. The proposed method is
implemented in PyTorch and the experiments are conducted
in a NVIDIA GeForce GTX-1080-Ti GPU.

C. RESULTS
To define the optimal hyperparameters of the network and
study the effectiveness of each module, extensive exper-
iments are conducted using the RWTH-Phoenix-Weather-
2014 dataset, which is the most popular CSLR dataset.

Initially, the relationship between performance and dimen-
sionality of the joint latent space is investigated. To this
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FIGURE 4. Recognition results with multiple model configurations. The proposed method with the cross-modal alignment and the joint
decoder gives the closest to ground truth CSLR results.

TABLE 2. Ablation study with different training stages and loss functions
measured in WER.

end, experimental results with different latent space sizes are
presented in Table 1, showing that by increasing the size of
the joint latent space, the WER is further reduced. In the
experiments, a latent space dimensionality of 1024, instead
of 2048, is chosen since further increase leads to a decrease in
WERs of only 0.2% and 0.1% on Dev set (i.e., validation set)
and Test set, respectively, but in the cost of a higher number of
parameters and slower training speed. Subsequently, to evalu-
ate the effectiveness of loss functions Lmap and Ljoint , a series
of experiments are conducted. At first, it is observed that
when Lmap is introduced in the early stages of training, per-
formance drops by 5% in WER. The main reason is that the
network produces unstable probability distributions. To this
end, Lmap is introduced at a later training stage when CTC has
already converged. As shown in Table 2, the overall CSLR
performance is improved by 1.5% when Lmap is introduced
at a later training stage. This means that by bringing closer
video and text embeddings using Lmap, the intra-gloss depen-
dencies are effectively modelled decreasing the WER of the
network, despite any additional errors that the text encoder
may introduce.

After learning the joint latent space, the joint decoder is
trained with Ljoint using video and text latent representations.
Finally, the outputs of the joint decoder when it is fed with the

video latent representations are used for CSLR. In order to set
optimal hyperparameters a and b, experimental results using
different values for the two hyperparameters are conducted.
Note that when a = 0 or b = 0 the joint decoder is trained
only using the text or video embeddings, respectively. In the
case of training the joint decoder using only text embeddings
(a = 0, b = 1), the CSLR performance was not satisfactory
with WER of only 87.0% on Dev set and 88.1% on Test set,
respectively. However, training the joint decoder using only
video embeddings (a = 1, b = 0), a CLSR performance
with WER of 24.5% on Dev set and 24.4% on Test set,
respectively is reached. After varying the hyperparameters
a, b in the range [0, 1], the optimal values are set to 0.9 and
0.1, respectively, with WER of 23.9% on Dev set and 24.0%
on Test set. Further increase in the contribution of the LLM
loss function (e.g., b = 0.2) was found to decrease the
performance of the proposed method (with WER 24.9% and
24.8% on Test set for a = 0.9 and 0.8, respectively).

1) EVALUATION ON THE
RWTH-PHOENIX-WEATHER-2014 DATASET
In this section, the proposed method is evaluated on
the RWTH-Phoenix-Weather-2014 dataset, which contains
recordings of weather forecasts. Videos are recorded with
9 different signers at a frame rate of 25 frames per second.
The vocabulary size is 1295 and the dataset contains 5672,
540 and 629 videos for training, validation and testing respec-
tively. In Table 3, the proposed approach is compared to
several state-of-the-art approaches. It can be observed that the
proposed method outperforms all state-of-the-art approaches,
achieving a WER of 24.0% on the Test set. This indicates
the advantage of exploring the correlation between sentence
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TABLE 3. Comparison of CSLR approaches on the
RWTH-Phoenix-Weather-2014 dataset measured in WER.

semantics and video. More specifically, the proposed method
reduces WER by 0.4% with respect to CNN-TEMP-RNN
[14], which justifies the importance of modelling intra-gloss
dependencies. Furthermore, the proposed method reduces
WER by 2% and 2.8%with respect to Re-Sign [20] and CNN-
LSTM-HMM [16] methods, respectively, that use HMM
frame-state alignments for network training. An example of
alignment paths between video and text embeddings is shown
in Figure 3. Each video embedding is aligned to its corre-
sponding text embedding. The proposed method minimizes
the distance of video and text embeddings using the alignment
path. Qualitative recognition results with different model set-
tings are shown in Figure 4. It can be observed that the video
encoder without the latent space alignment is more prone
to recognition errors. However, when introducing the joint
latent space to combine and align video and text embeddings,
the network yields better recognition results, while the use of
the joint decoder leads to an even better performance.

2) EVALUATION ON THE RWTH-PHOENIX-WEATHER-2014T
DATASET
RWTH-Phoenix-Weather-2014T [39] is an extended database
of RWTH-Phoenix-Weather-2014, providing spoken lan-
guage translations and gloss level annotations for German
sign language videos of weather broadcasts. It contains
8257 videos from 9 different signers performing 1088 unique
signs. The spoken language translations consist of 2887 dif-
ferent words. All videos are recorded with 25 frames per sec-
ond and resolution of 210 × 260. The dataset is divided into
three splits for training, validation and testing and there is
no overlap with the previous version of the dataset in any
split. As shown in Table 4, the proposed method achieves
a WER of 24.1% on Dev set and 24.3% WER on Test set.
The proposed method achieves a relative reduction in WER
by 9.0% on the Test set compared to the CNN-LSTM-HMM
method [16] that adopts HMM for temporal modelling and
uses frame-level alignments.

3) EVALUATION ON THE CSL DATASET
The Chinese Sign Language (CSL) dataset [24] is a popular
SLR dataset with a smaller vocabulary compared to RWTH-
Phoenix-Weather-2014. Videos are recorded in a predefined

TABLE 4. Evaluation comparison on the RWTH-Phoenix-Weather-2014T
dataset measured in WER.

TABLE 5. Evaluation comparison on the CSL dataset measured in WER.

laboratory environment with Chinese words widely used in
daily conversations. It contains 100 sentences performed
5 times from 50 signers with 25000 videos in total. The signer
independent split of train and test set in [32] is adopted,
meaning that videos from 40 and 10 signers are used for
training and testing, respectively. The dataset also provides
an isolated version that contains 500 unique words. The
proposed method is pretrained on the isolated version of
the dataset achieving similar performance to other meth-
ods without time-consuming iterations. In Table 5, the pro-
posed method is compared against several state-of-the-art
approaches evaluated on the CSL dataset. The proposed
method shows again superior performance achieving 2.4%
WER, i.e., a 2.3% absolute reduction (95% relative) com-
pared to the DPD method [28] that uses a deep 3D-CNN
architecture.

VI. CONCLUSION
In this paper, a novel deep learning method for continuous
sign language recognition was introduced. In contrast to
previous state-of-the-art approaches, the proposed method
applies a cross-modal alignment between video and text
embeddings to better model the intra-gloss dependencies in
sign language recognition. Experimental results on the three
most widely used CSLR datasets demonstrate the ability
of the proposed method to provide highly accurate CSLR
results.

Concerning future work, integrating other modalities, such
as cropped hands, optical flow and skeletal keypoints can also
be explored. The incorporation of additional modalities in a
joint latent space could further enhance CSLR performance.
Finally, it would be interesting to extend the proposedmethod
for Sign Language Translation and exploit the relationship of
video, sign language and spoken language simultaneously.
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