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ABSTRACT  

Modern Deep Learning techniques have proven that they have the capacity to be successful in a wide 

area of domains and tasks, including applications related to 3D and 2D images. However, their quality is 

directly dependent on the quality and quantity of the data with which models are trained. This fact 

becomes increasingly relevant as the capacity of deep learning models increases, and data availability 

becomes the most significant obstacle with regard to their application. To counter this issue various 

techniques are utilized, including data augmentation. Data augmentation refers to the practice of 

expanding the original dataset with artificially created samples, in order to train a model with data 

interpretations that will hopefully equip it with better generalization properties. With regard to data 

augmentation, one approach that has been found to show great promise, are Generative Adversarial 

Networks (GANs). Unlike other methods that apply domain-agnostic transformations on the original data 

to produce new samples (e.g. noise, rotation, flip etc.), the GAN's objective is specifically to produce 

diverse samples that belong to a given data distribution. Taking advantage of this property, a multitude of 

GAN architectures has been leveraged for data augmentation applications. The subject of this paper is to 

review and organize implementations of this approach on 3D and 2D imagery, examine the methods that 

were used, and survey the areas in which they were applied. 

Keywords: Generative Adversarial Networks, GAN, Data Augmentation, Adversarial Learning, Domain 

Transfer GAN,  

INTRODUCTION  

The advances that have been made in the field of deep learning have provided us with ever more potent 

tools, which can be applied in an increasing number of tasks, computer vision being foremost among 

them. Concurrently, the potential value of data has become apparent, and so data gathering and mining 

are now employed in several domains in order to make it possible for deep learning techniques to be 

applied in those domains. Deep learning models require data for their training which constitute a 

representative sampling of a given task. When the available data only relate to a subset of cases, a model 

will only learn to address those cases only and fail in the task overall. For this reason, deep learning 



models generally require significant amounts of data for their training. Nonetheless, in many cases the 

available data is not sufficient for training models that generalise adequately. That may occur either 

because data gathering might be difficult in a given setting (due to scarcity of subject cases or due to 

difficulties in collecting them) or because the available data are not annotated. In all the above cases, 

other methods must be employed to make deep learning feasible. 

 

Several techniques have been developed in order to tackle the above-mentioned problems, particularly 

when dealing with 2D and 3D image data. One point of focus is to develop architectural modifications 

that make models generalize better in a given task, such as dropout and weight regularization (Sutskever, 

Hinton, Krizhevsky, & Salakhutdinov, 2014). Another approach suggests expanding the initial dataset by 

manipulating the existing data and creating new synthetic samples. This approach is usually refered to as 

data augmentation. The most frequent implementations of data augmentation are the addition of random 

noise to the data and the application of geometric and/or other transformations (Taylor & Nitschke, 2019). 

The latter is particularly effective in image data, whose features have spatial properties. Those data 

augmentation methods however, while suitable for image data, are domain-agnostic, since they apply 

transformations without taking into account the nature, characteristics and features of the original data, 

and produce synthetic samples that could deviate from the original distribution. 

 

In order to achieve these two objectives, that is to augment a dataset with meaningfully and significantly 

diverse samples, a method would be required that augments a dataset in ways specific to its properties, so 

that the generated samples would cover the largest area of the sample space possible, without deviating 

from it. GANs (Goodfellow et al., 2014), (Zoumpourlis, Doumanoglou, Vretos, & Daras, 2017), (Shijie, 

Ping, Peiyi, & Siping, 2017) as is demonstrated in (Shijie, Ping, Peiyi, & Siping, 2017), can be used to 

augment data in this exact way, and so they are an attractive alternative to the above domain agnostic 

methods. Ideally, GANs produce samples that belong to the original data distribution, while at the same 

time they differ from any given sample of that distribution. In this way they fulfill the essential objective 

of data augmentation, which is to provide to the model a diverse sample pool with which to train, which is 

representative of a given task. Additionally, the fundamental formulation of GANs has proven to be 

remarkably flexible, in that GANs can be modified to generate samples in many different ways, and can 

be combined with a variety of architectures to tackle different data augmentation tasks. However, GANs 

are also remarkably hard to train  (Goodfellow I. , 2016), and so have been the subject of intense study in 

an effort to develop mode efficient architectures (Arjovsky & Bottou, 2017), (Salimans et al., 2016). It is 

important to note at this point that unlike other GAN review papers, such as (Z. Wang, She, & Ward, 

2019) and (Pan et al., 2019), this work does not provide a broad review of GAN models. Rather, it limits 

its purview to cases where GANs have been used in the context of 2D and 3D image data augmentation 

for the purpose of improved performance in classification, segmentation, object detection/identification 

and motion tracking tasks. This work studies these cases with regard to the GAN architecture that was 

used, the domain in which it was used, and the specific way it was leveraged to augment the available 

data. 

 

Considering the volume of our findings and their diversity, the authors decided that the first step of our 

survey should be to provide the reader with a detailed description of the significant terms and symbols 

that will be used in this work (Section Background). Following that, the authors will outline the tasks for 

which GAN-based data augmentation was utilized, the types of GANs encountered, and the ways in 

which data augmentation could be done depending on the dataset and the problem in question (Section 

Tasks & Augmentation Techniques). Then, the studied specific GAN models are described with regard to 

their function and architecture (Section GAN models), Finally, the domains and applications in which 

GAN-based data augmentation was used are presented, organised according to their domain (Section 

Applications). Table 1 summarises our findings by providing an extensive listing of the works 

encountered, including their domain of application, the task in question, as well as the GAN and 

dataset(s) used. With regard to the distinction between 2D and 3D data, while applications that deal with 



3D data are noted as such, it must be stressed that, as will be made apparent in section GAN models and 

subsection 3D Generative Adversarial Network (3D-GAN) in particular, the transition from 2D to 3D data 

generation usually requires no significant architectural modifications and the working principles of each 

model are maintained. 

 

 

BACKGROUND 

Notation and Definitions 

Labeled sample 
In the context of this work, it is considered that a sample is labeled when it is paired with the information 

we are interested in and that we expect a trained model to be able to infer, depending on the task in 

question. That might be the sample's class(es), a segmentation mask, the location of objects etc. 

 

Conditioning input 
In the earliest GAN formulations, the input, based on which samples are generated, is a random vector. 

However, later models introduced conditionality. In those models, the input includes user defined 

information which aims to restrict generated samples to specific subspaces. This is referred to as 

conditioning input. For example, if a sample is generated with conditioning information that corresponds 

to a specific class c, we expect that sample to belong to that class. The term conditioning input will then 

refer to use-defined information fed to a GAN, which restricts a synthetic sample to a specific subset of 

the datasets’ broader distribution. 

 

True (real) & fake (synthetic) samples 
True (or real) samples are those that belong to the original dataset in each given task. Fake (or synthetic) 

samples are those that were generated by a GAN or other augmentation approach. 

 

Noise vector z 
Most GAN variants make use of a noise vector z as a latent input variable from which to draw to generate 

diverse samples. This vector is frequently drawn from a uniform distribution N (0,1) and its length 

depends on the architecture in question. It is also referred to as noise prior, symbolised with p(z). 

 

Domain 
A domain can be thought of as a specific subset of existing data. Each domain's properties may be defined 

by annotations (e.g. classes) or other less discernible properties determined by the samples themselves. 

Broadly speaking, a domain is defined by the common attributes of the group of samples it consists of. 

This definition becomes particularly relevant in domain transfer applications (see section Domain 

Transfer (DT)), where models are used to transform samples from one domain to another, without user 

defined knowledge of the properties of each domain. 

 

Data augmentation 
Data augmentation been established as an effective method to improve a model's performance in various 

tasks with regard to generalization. The term data augmentation relates to a number of techniques used to 

expand a dataset with artificially created samples, so that a model trained with that dataset will generalize 

better. Data augmentation has been found to be particularly effective in image-related tasks, where label-

preserving transformations such as rotation, flipping, noise, cropping etc. have been studied and applied 

to great success (Simard, Steinkraus, & Platt, 2003). These methods are used to artificially expand 

datasets to assist the model in learning more robust interpretations of the available data. Building on these 

augmentation approaches, more complex techniques have been proposed over time, such as Colour 



Jittering, Edge Enhancement and Fancy PCA (Taylor & Nitschke, 2019), which, except for the latter, are 

again mostly applicable to image-related tasks. Finally, there are also algorithms such as SMOTE 

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002) and its variants (Bunkhumpornpat, Sinapiromsaran, & 

Lursinsap, 2012), which artificially expand a dataset by synthesizing new samples based on the original 

dataset's feature space. This technique has the advantage of being domain-agnostic, in that it can be used 

on non-image datasets. Finally, generative models such as GANs and Variational Autoencoders (VAEs) 

(Kingma & Welling, 2013) can also be used to create synthetic samples for data augmentation purposes. 

It is important to note that the above approaches are not necessarily mutually exclusive, and can be used 

in various combinations at a given task. 

 

Generative Adversarial Networks 

Generative Adversarial Networks (GANs) were first proposed in 2014  by (Goodfellow et al., 2014). 

They are a class of generative networks whose fundamental operating principle is that of a competition 

between two distinct models, the generator and the discriminator, that are trained jointly. The original 

GAN's architecture is demonstrated in Figure 1, and their training process is as follows. In each iteration, 

the generator produces a batch of synthetic (fake) samples. The discriminator is then fed these samples, 

along with true samples from the original dataset. The objective of the discriminator is to accurately 

distinguish true from fake samples, while the generator's objective is to generate fake samples that fool 

the discriminator. That is, samples that the discriminator falsely assigns True labels to. This function, 

which amounts to a minimax game between the two components, ideally results in a discriminator having 

learned to perfectly discern true from fake samples, and a generator that still manages to fool it, which 

would mean that it has learned to create perfectly realistic samples. At this point we consider the GAN to 

have converged. This process is illustrated in Algorithm 1 below. It should be noted that the above 

description corresponds to the GAN as described in (Goodfellow et al., 2014). Subsequent works have 

modified this approach is significant ways, however the principle of the adversarial game between the 

generator and the discriminator remains the central idea in which all GAN variants are rooted. 

 

 

 
Figure 1 GAN Architecture: The discriminator receives true samples X and fake samples X', which, through its training, it learns 

to distinguish and assign appropriate True and Fake labels to. The generator is provided with a noise vector z, and is trained to 

generate sample X', such that the discriminator would label as True. Through their iterative training, as described in Algorithm 

1, the generator learns to create samples X' that are realistic enough to be indistinguishable from true samples X by the 

discriminator. 

Algorithm 1 
Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to 

apply to the discriminator, k, is a hyperparameter whose value is set to k=1 based on experimentation. 
for number of training iterations do 

for k steps do 

• Sample minibatch of m noise samples {z(1),…, z(m)} from noise prior pg(z).  



• Sample minibatch of m examples {x(1),…, x(m)} from data generating distribution 

pdata(x). 

• Update the discriminator by ascending its stochastic gradient: 
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This algorithm amounts to a minimax game of: 
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GANs present a simple yet powerful concept which, particularly after it was expanded on in ways that are 

examined in section GAN models, can be leveraged to create high quality, realistic and diverse data. 

Specifically from a data augmentation perspective, GANs can be used to generate synthetic samples that 

share the specific properties of the original dataset, while at the same time being more diverse. Also, 

while GANs have been used to generate various types of data, including text and sound, most GAN 

models focus on image data generation, which means that there is a wide array of approaches that can be 

used for augmenting 2D and 3D image data. Those that we found to have been utilized in this context are 

presented in section GAN models. It should also be noted that GANs do not prohibit the use of other 

augmentation methods (see subsection Data Augmentation) and can be employed in conjunction with 

them. GANs, however, also have significant drawbacks that have been the focus of extensive study, in an 

effort to identify and mitigate them. The most significant of those drawbacks are presented below. 

 

Mode collapse 
A frequent problem in GAN training, mode collapse refers to the cases where the generator only produces 

a very small number of distinct samples. Those samples might fulfill the objectives defined by the GANs 

architecture, that is to be realistic enough to fool the discriminator, which means that the GAN shows 

signs of convergence. However, the fact that the synthetic samples are not diverse means that the model 

overall has failed. Mode collapse is then an issue that relates with the quantity of diverse samples that the 

GAN synthesizes. 

 

Overfitting  

Overfitting occurs when the discriminator learns to only assign true labels to samples that are almost 

identical to those in the original dataset. This, in turn, forces the generator to produce samples that are, in 

fact, near exact copies of the original dataset. Although overfitting is a problem that seems similar to 

mode collapse, it is not, in fact these drawbacks are mutually exclusive. Their difference is that given N 

real samples, in the case of mode collapse the GAN produces M<<N distinct samples, each of which may 

or may not be identical to some sample in N. When a GAN overfits, it produces as many as M  N distinct 

samples, where for each synthetic sample mM, there exists an almost identical sample nN. In that 

sense, overfitting relates to the diversity of synthetic samples compared to the original dataset. 

 

Non-convergence 



The adversarial nature of a GAN's training process means that both the generator and discriminator have 

no fixed objective. Rather, they receive feedback from each other. It is then possible they reach a point 

where neither provides the other with useful information and both diverge from the point of convergence. 

This development is referred to as non-convergence, a point at which both discriminator and generator no 

longer provide each other with beneficial feedback and the synthetic samples deteriorate. It is common for 

GANs to deteriorate in this way if they keep being trained after having converged. 

 

Diminished & exploding gradients 

The nature of GANs means that the generator and discriminator depend on each other for guidance. 

However, it is possible possible for either one to significantly outpace the other (Arjovsky & Bottou, 

2017). In this case, the component that has fallen behind may not be able to perceive a viable path 

through which to progress. A generator might produce samples more realistic than the discriminator can 

identify, which usually leads to its gradients increasing rapidly and it being unable to make meaningful 

updates. Conversely, the discriminator might discern true from synthetic samples so well that the 

generator is unable to identify ways to fool it, which leads to its gradients converging to zero and it not 

being trained at all. In both cases, training fails. 

 

Sensitivity to hyper-parameters & computational load 

In addition to the above issues, GANs are particularly difficult to be designed with regard to their 

hyperparameters. Due to their unsupervised training, significant experimentation is required to identify 

the optimal design for a given task. Also, given the minimax nature of GANs' function, even when a 

successful tuning has been identified, a small change in hyperparameters might disturb the balance at 

some stage of the training process, and lead to any of the problems outlined above. This is an ongoing 

challenge, though significant progress is being made, such as in the case of (Gong, Chang, Jiang, & 

Wang, 2019), which applied Neural Architecture Search (NAS) (Elsken, Metzen, & Hutter, 2019) in the 

context of GANs. 

 

Lack of evaluation metrics 

Evaluating the output of a GAN is a major problem in evaluating their quality. The discriminator only 

provides a relative evaluation of how realistic a sample is. It is then a statement related to the state of the 

generator at each time, rather than relevant to the actual quality of the synthetic samples. The diversity of 

synthetic samples is also hard to bequantified. Considerable work has been done in this area (Lucic, 

Kurach, Michalski, Gelly, & Bousquet, 2017), (Shmelkov, Schmid, & Alahari, 2018) and several metrics 

have been proposed, most prominently the Inception Score (IS) (Heusel, Ramsauer, Unterthiner, Nessler, 

& Hochreiter, 2017), the Frechet Inception Distance (FID) (Salimans et al., 2016) and the Classification 

Accuracy Score (CAS) (Ravuri & Vinyals, 2019). Regardless, evaluating GANs remains a significant 

open problem. In the specific context of data augmentation however, the criterion that is used is simply 

how much the performance is improved in a given task when a given data augmentation method is 

applied, compared with using only the original data or other augmentation techniques. 

 

 

Various proposals have been made proposed to address the above-mentioned issues and some of them are 

presented on Section GAN models, along with the respective models. It should be noted that, while some 

approaches have been proven to be more effective than others, there has yet to emerge a clear consensus 

regarding optimal GAN training parameters, and finding such a consensus remains the subject of a 

number of works (Arjovsky & Bottou, 2017), (Lucic et al., 2017), (Salimans et al., 2016), (Kurach, Lucic, 

Zhai, Michalski, & Gelly, 2018), (Odena et al., 2018). 

 

TASKS & AUGMENTATION TECHNIQUES 



In this section definitions will be provided with regard to the tasks in which data augmentation was found 

to have been applied and the approaches that were used. Given the quantity and diversity of the works 

examined in this survey, this section is important in understanding GAN models, as well as Table 1, where 

these works are enumerated for the reader to examine collectively. 

Tasks 

Classification (CL) 
The model is trained to assign the correct class label(s) to the samples it examines. While there are many 

ways to augment a dataset in the context of a classification task (see Samples Generation Method 

subsection), the most frequent way is to use GANs that generate labeled synthetic samples through some 

conditional input. 

 

Object Detection (OD)  
The model is expected to locate user-specified objects in an image. To do this, the model is most often 

expected to define a space with a bounding box, in which space the object has been found to exist. This 

task may or may not include an object recognition aspect, wherein objects are not only located, but also 

classified. 

 

Segmentation (SG) 
The model is expected to detect the exact shape of an object in a given image. This can be seen as an 

expansion of object detection, where not only the position but also the shape of an object are requested. In 

most cases, this amounts to creating a segmentation mask, by assigning a label to each pixel in an image, 

where pixels that belong to the same object have the same label. Data augmentation in this case is done by 

generating samples paired with their corresponding desired segmentation masks. 

 

Object Tracking (OT) 
An extension of object detection, the task of object tracking requires for the model in question to not only 

be able to locate an object in a given image, but also to track that object's movements in the various 

frames that make up a video sequence (Doumanoglou, Vretos, & Daras, 2019). 

 

Person Re-Identification (PID) 
Given an image of a specific person and a set of other images, the model is expected to identify that 

person in those images (if indeed they appear in them). It differs from classification in that models that do 

classification learn to assign a finite number of identities to the samples they examine. Rather than assign 

identities, PID models learn to use people's images to detect if those people appear in other samples. 

 

Samples Generation Method 

A significant distinguishing factor among GAN variants relates to their inputs and, more specifically, if 

and how those inputs apply restrictions to the generated samples. Three broad categories are presented: a) 

GANs generating samples unconditionally, b) GANs generating samples conditionally via some 

conditioning input and c) and Domain Transfer GANs, which do not generate entirely new synthetic 

samples, but rather a transition of an input sample to another domain. Finally, considering the increasing 

importance of 3D applications, as well as the fact that the handling of 3D imagery differs in some cases to 

that of 2D, cases where 3D imaging is either the input or output of the examined GAN will be noted with 

(3D). 

 

Unconditional Samples Generation (USG) 
Unconditional Samples Generation refers to the approach by which samples are generated independent to 

any label or other condition, only under the constraint that they belong to the sample space which is 



defined by the dataset used to train the GAN. GANs adhering to this approach generally use a noise 

vector as input. It should be noted that "Unconditional" does not require synthetic samples to be 

unlabeled. It only means that the user cannot influence the kind of sample (e.g. with regard to its class) 

the GAN will generate. While this approach seems impractical in the context of data augmentation, 

several methods were found to have been used to apply it. 1) A separate unconditional model is trained to 

generate samples for each label (USGa). While this approach could be effective in producing labeled 

samples, it becomes computationally impractical as the number of distinct labels increase. 2) Samples are 

generated unconditionally, drawing from the entire dataset in question, and are labeled by a model trained 

on that original dataset. The model is then re-trained or fine-tuned with some combination of original and 

synthetic data (USGb). 3) The labels are themselves included in the samples (USGc). This method is, for 

example, applicable when each sample is an N dimensional vector, in which case m class labels can be 

included via concatenation. It can also be applied in segmentation tasks, where the segmentation mask 

may be generated along with the original image via depth-wise concatenation. In adding the labels to the 

samples, the assumption can be made that a realistic synthetic sample is one whose content and label are 

a) realistic and b) match each other. 4) For a dataset with n classes, all generated samples are assigned 

class memberships of 1/n for each class and are then used along the original dataset (USGd). This 

methods is limited to classification tasks. 

 

Conditional Samples Generation (CSG) 
Per this approach, in order to produce synthetic samples the GAN receives (alongside other possible 

inputs, most often a noise vector) some conditioning input, which restricts the sample space to which the 

synthetic sample is expected to belong. Depending on the task in question, the conditioning input might 

be related to a particular class, the location and/or ID of an object, information regarding segmentation 

etc. This method is also the simplest one conceptually in the context of data augmentation, in that it 

produces labeled synthetic samples. It should be noted that, while the conditioning input is usually 

expressed as a vector, it can also be represented in other ways. An example is DAGAN, where the 

generator receives a sample image as input, and is expected to generate a sample of the same class as that 

image. In this case, we consider the conditioning input to be the image itself, as a representation of its 

class. 

 

Domain Transfer (DT) 
Also referred to as image translation when applied to images, this approach to generate samples is distinct 
in that the generator’s inputs include the same kind of data as those that it is expected to produce (e.g. 
Image → Image). Its function is to receive input sample X that belongs to a domain A, and generate 
sample Y that belongs to a different domain B. An example would be to have generic images of angry 
faces (domain A), and expect them to be changed to happy faces (domain B). Some GANs in this category 
also enforce that transferred samples Y differ from their origin samples X only in the properties required 
to make the transition A → B. In the prior example, that would mean that for each angry face, we expect 
its transition to happy face not to alter that face’s distinguishing features and for the person to remain 
identifiable. We will refer to this property as identity-preservation. Regarding cases where the GAN in 
question allows for Domain Transfer to any one of multiple domains, which are chosen in accordance 
with some conditioning input, we will refer to their function as Conditional Domain Transfer (DTc). 

A significant subcategory of domain transfer applications relates to transitioning visual data from 2D to 

3D or the inverse. These applications (Alexiadis et al., 2016) are rapidly becoming more relevant in 

terms of their academic and industrial impact, due to the increasing number of 3D applications being 

developed and deployed, which increases the availability of 3D datasets, as well as the requirement for 

additional annotated data. We will refer to this function as Domain Transfer 2D to 3D (DT2t3) when the 

GAN in question transitions samples from 2D to 3D, Domain Transfer 3D to 2D (DT3t2) when the 

transition is from 3D to 2D, and Domain Transfer 2D and 3D (DT2a3) when the transition can happen in 

either direction. 



Augmentation Approach 

A final distinction that should be made in this section relates to the specific ways in which a dataset may 

be augmented. Augmentation is not necessarily done in a uniform way. Depending on the dataset, a 

model may benefit from augmenting only specific sample subsets, or by augmenting various subsets to 

uneven degrees. As such, two distinct approaches can be discerned. 

Uniform Data Augmentation (UA) 
In this approach, samples are generated uniformly, without distinctions being made among existing 

subsets (i.e. labels). An open question within the context of this approach regards to the ratio of real to 

synthetic samples. A fixed figure does not exist and is determined in a case-to-case basis via 

experimentation, with values ranging from 0.2 to 10 synthetic samples for each real one. This is the most 

frequent approach and, as such, in Applications section it will be assumed to be the one implemented, 

unless stated otherwise. 

Dataset Balancing (DB) 
In cases where, in a dataset, some labels have considerably fewer samples than others, this imbalance 

may significantly degrade a model’s performance in a given task. In those cases, data augmentation can 

be used to generate samples that belong to those specific labels’ distributions, in order to mitigate this 

imbalance, a practice with is referred to as dataset balancing. GANs have been used in this way, and can 

perform this function via all three sample generation methods described later in Samples Generation 

Method subsection. In terms of the quantity of synthetic data, the most frequent approach is to generate 

enough so that the minority class(es) have approximately the same number of samples as the other(s). 

GAN MODELS 

In this section various GAN architectures are examined. Those architectures have been selected either 

because they have been applied in Data Augmentation tasks with 3D or 2D imagery, and so are of direct 

interest to this paper, or because their presentation is considered to be fundamental in understanding 

subsequent GAN models. It should be understood that each model will not be discussed in depth and 

small variations of each that might have been applied will be presented, but will not be separately 

analyzed. The objective of this section is to provide sufficient technical information for each GAN model 

for the reader to be able to understand their functions and how they were used in each application. 

Subsequently, not all GANs that are presented in this work will be analyzed in equal length. We will 

expand only on the models that we consider to be the most significant in terms of their impact on the 

field, their novelty, or the frequency with which they were found to have been used. Also, in order to 

maintain cohesion, GANs will be organised in accordance with the way they generate samples, a 

distinction made in Samples Generation Method subsection. While this distinction is not absolute and in 

the case of some GANs it is unclear whether their function is closer to CSG or DT (e.g. the TAGAN and 

GANs used for content infilling), we believe it is a strong taxonomy criterion for the purposes of this 

survey.  

Unconditional GANs 

For the original GAN, proposed in (Goodfellow et al., 2014), see Generative Adversarial Networks in the 

Background section. 

 

Deep Convolutional GAN (DCGAN) 
At the time they were first formulated, GANs had significant difficulties in incorporating deep 

convolutional architectures. This issue was tackled by the Deep Convolutional GAN (DCGAN), proposed 

in (Radford, Metz, & Chintala, 2015). The authors studied the use of CNNs in GANs, proposed 



guidelines for stable training, and suggested an architecture template. The DCGAN was notable for using 

no fully connected layers in its generator (seen in Figure 2), instead relying entirely on convolutions. The 

guidelines that were suggested in this work are as follows: 

• Rather than pooling layers, use strided convolutions in the discriminator and fractional-strided 

convolutions in the generator. 

• Use Batch Normalization in both the generator and the discriminator. 

• Use no fully connected hidden layers for deeper architectures. 

• Use ReLU activation in the generator for all layers except for the output, which uses Tanh. 

• Use LeakyReLU activation in the discriminator for all layers. 

 
Figure 2 DCGAN generator used for LSUN scene modeling. The discriminator's architecture follows the same architectural 

principles as a standard deep convolutional classifier, subject to the guidelines outlined for DCGANs 

 

3D Generative Adversarial Network (3D-GAN) 
Based on the DCGAN, (J. Wu, Zhang, Xue, Freeman, & Tenenbaum, 2016) proposed 3D-GAN, the first 

instance of a GAN being used to create synthetic 3D images. Its architecture is similar to the DCGAN, the 

most significant alteration being that 3D-GAN used volumetric convolutional layers to produce 3D 

samples (Figure 3). Its impact is significant in that it proved that GANs can also be applied in the field of 

3D imagery. A conditional variant called 3D-CGAN was later suggested by (Jin, Xu, Tang, Harrison, & 

Mollura, 2018), which, rather than creating samples by drawing from a random vector, uses as its input a 

distorted real sample. In the context of the original work, the 3D-CGAN is used for content infilling, 

where the distortion takes the form of cropping specific areas of the original samples. 

 

 
Figure 3 3D-GAN generator. The discriminator mostly mirrors that architecture 



 

Wasserstein GAN (WGAN) & WGAN-Gradient Penalty (WGAN-GP) 
In (Arjovsky, Chintala, & Bottou, 2017), the authors observed that, up until that point, the objective 

functions used by GANs were limited to variations of the Jensen Shannon and Kullback-Leibler 

divergences. However, the paper proves that the Earth Mover (EM) distance provides superior 

convergence properties, and is thus more sensible to use for GANs. To enforce the K-Lipschitz 

discriminator requirement of the EM distance, the paper proposes that 1-Lipschitz continuity be enforced 

via weight clipping. Thus, the paper concludes to a novel GAN formulation, the Wasserstein-GAN 

(WGAN), which is trained per Algorithm 2, and displayed far superior results with regard to its stability 

and the quality and diversity of its generated samples compared to other contemporary models. 

 

 

Algorithm 2  

WGAN algorithm. Suggested default values by (Arjovsky & Bottou, 2017) are α = 0.00005, c = 0.01, m 

= 64, ncritic = 5 

 

Require: α, the learning rate. c, the clipping parameter. m, the batch size. ncritic, the number of iterations 

of the critic per generator iteration. w0, initial critic parameters. θ0, initial generator’s parameters. 

while θ has not converged do  

for t = 0,...,ncritic do 

• Sample {x(1),...,x(m)} ∼ Pr, a batch from the real data.  

• Sample {z(1),...,z(m)} ∼ p(z), a batch of prior samples. 
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• Sample {z(1),...,z(m)} ∼ p(z), a batch of prior samples. 
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end while 

 

 

 

Algorithm 3 

WGAN with gradient penalty (WGAN-GP). Suggested default values by (Gulrajani, Ahmed, Arjovsky, 

Dumoulin, & Courville, 2017) are λ = 10, α = 0.0001, β1 = 0, β2 = 0.9, ncritic = 5 

 

Require: The gradient penalty coefficient λ. The number of critic iterations per generator iteration 

ncritic. The batch size m. Adam hyperparameters α, β1, β2.α. Initial critic parameters w0. Initial 

generator’s parameters θ0. 

while θ has not converged do  



for t = 1,...,ncritic do  

for i = 1,...,m do 

• Sample real data 
rx : P , latent variable z ∼ p(z), a random number   ε~U[0,1] 
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• Sample a batch of latent variables {z(1),...,z(m)} ∼ p(z). 
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end while 

 

 

 

The weight clipping approach is problematic in the blunt way in which it manipulates the model's 

weights, which (Arjovsky & Bottou, 2017) acknowledges. (Gulrajani et al., 2017) sought to solve this 

issue and proposed a modification of the WGAN which used Gradient Penalty (WGAN-GP). In their 

work, they proposed imposing the Lipschitz constraint through an additional objective in the GAN's 

discriminator loss function, as can be seen in the WGAN-GP's training Algorithm 3 above. This 

modification was proven to fulfil the Lipschitz constraint requirement, as well as to provide significantly 

improved performance compared to the original WGAN. 

 

It should be noted that the WGAN and WGAN-GP essentially propose methodologies that enforce 

constraints which improve GAN training, more so than they constitute distinct GAN models in 

themselves. As such, these approaches can be combined with other conditional and unconditional GAN 

architectures, which will in fact be the case for many of the applications that will be examined in Section 

Applications. Until spectral normalization was proposed by (Miyato, Kataoka, Koyama, & Yoshida, 

2018), the WGAN-GP's formulation served as the basis for most subsequent GAN variants. 

 

Other Unconditional GANs 
 

Laplacian GAN (LAPGAN). As mentioned earlier, training GANs with deep CNNs was particularly 

difficult before the DCGAN proposed a concrete methodology for doing so. Prior to that, LAPGAN 

(Denton, Chintala, Szlam, & Fergus, 2015) proposed overcoming that difficulty by leveraging the 

methodology of the Laplacian Pyramid (Burt & Adelson, 1983) to combine multiple shallow, and thus 

easier to train, CNNs in a single GAN architecture. Per this approach, LAPGAN consists of a cascade of 

small GANs using CNNs. A smaller sized sample is generated by the first GAN and is progressively 

enlarged as it passes through the pyramid until it reaches the desired level. Each GAN contributes via the 

application of a mask to the sample, so that images of higher resolution and quality are produced 

progressively. 

 



Progressive Growing GGAN (PGGAN). The Progressively Growing GAN (Karras, Aila, Laine, & 

Lehtinen, 2017) expands on previous works that attempted to use GANs in a cascade structure. However, 

rather than training multiple GANs, PGGAN consists of a single generator-discriminator pair. Both 

models are initially shallow. As training progresses, however, more layers gradually are added to both, so 

that they are both mirror images of each other and grow in synchrony. This continues until the generated 

samples has the desirable properties in terms of dimensions, diversity and realism. A conditional variant 

of the PGGAN is proposed in (Han, Murao, et al., 2019). 

 

Consistency Term GAN (CT-GAN) Proposed in (Wei, Gong, Liu, Lu, & Wang, 2018), it builds on the 

WGAN-GP by modifying its loss function. Specifically, it introduces a component named consistency 

regularization which, introduced to the GP loss, is claimed by the authors to enforce Lipschitz continuity 

in a way that improves the model's performance, particularly with regard to avoiding overfitting. 

 

WaveGAN Introduced in (Donahue, McAuley, & Puckette, 2018), WaveGAN is the result of an effort to 

make advances with regard to using GANs for the generation of sound. The authors did so by building on 

DCGAN and WGAN-GP to propose an architecture more appropriate to this task, by modifying the 

components proposed by the DCGAN, using WGAN-GP's training objectives, and suggesting that the 

discriminator use the proposed Phase Shuffle method for evaluating samples. 

 

Conditional GANs 

 

Conditional GAN (cGAN) 
Following the publication of the first GAN, (Mirza & Osindero, 2014) proposed the Conditional GAN, 

which could produce samples dependent on user defined information, as seen in Figure 4. The cGAN 

approach modifies the original minimax game from equation 1 to: 

 

 minGmaxDV (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pdata(z)[log(1 − D((G(z|y)))] (2) 

 

Per the cGAN formulation, synthetic samples are not generated randomly, rather they are generated based 

on conditioning input vector y. Realistic samples are then required be the discriminator to be such that 

they belong to the specific distribution defined by the conditioning input y. 

 

 
Figure 4: cGAN Architecture: The generator is provided with a noise vector z, drawn from a uniform distribution, and a vector y, 

which includes the information to which samples must be conditioned, which it uses to generate sample x. x is then passed on to 

the discriminator, along with information y, which determines whether x is real or synthetic. 



 

 

Auxiliary Classifier GAN (AC-GAN) 
Seeking to improve on the cGAN in the task of generating synthetic samples using a conditional input, 

(Odena, Olah, & Shlens, 2016) introduced the Auxiliary Classifier GAN. Similar to the cGAN, this model 

suggests that the generator use a random noise vector z and a conditioning input vector y in order to 

produce synthetic samples Xfake=G(y,z). Where the AC-GAN deviates from the cGAN is that, given a 

sample X, the AC-GAN's discriminator produces both an assessment S={True,False} regarding how 

realistic X is, and an estimate C, representing the sample's class. The two outputs D(X) = P(S|X), P(C|X) 

of the discriminator are used to estimate the log-likelihood of the correct source LS and that of the correct 

class LC, as displayed below in the equations below: 

 

 LS = E[logP(S = real|Xreal] + E[logP(S = fake|Xfake] (3) 

 LC = E[logP(C = y|Xreal] + E[logP(C = y|Xfake] (4) 

 

Working with these equations, the discriminator D is trained to maximise LC+LS, and the generator G is 

trained to maximize LC-LS. In that way, the discriminator's objective is changed to assign a True or Fake 

label to each sample, but also to assign a correct class label. Concurrently, the generator's objective is 

now to not only produce realistic synthetic samples, but also to provide samples appropriate to its 

conditioning input y. This modification, combined with deeper convolutional architectures such as those 

suggested in (Radford et al., 2015), yielded significantly improved results compared to previous 

approaches. 

 

 

Conditional Variational Auto-encoder GAN (CVAE-GAN) 
CVAE-GAN (Bao, Chen, Wen, Li, & Hua, 2017) is an architecture that draws from both Conditional 

GANs and autoencoders. Specifically, it combines a GAN and a Variational Autoencoder (VAE) into a 

single architecture, as seen in Figure 5. The model consists of an encoder (E), a generator (G), a 

discriminator (D), and a classifier (C), which are trained jointly (contrary to most GAN architectures 

where the discriminator and generator are trained separately). Following the notation of Figure 5, the 

encoder is given data sample x and it's corresponding class c. It then maps x to an encoding z, through a 

learned distribution P(z|x,c), which is then used by G, along with c, to generate a synthetic sample x'. 

Subsequently, G and D functions as they would in a GAN. D learns to identify synthetic samples and G 

tries to create samples that can fool D. Finally, the Classifier C tries to accurately assess the class c that 

samples x and x' correspond to. 

 

Other than its architecture, the model is notable in that it is trained with a combination of six loss 

functions. They each apply to specific components of the model and combined aim to ensure that the 

model is stable in its training and produces diverse, realistic and class-appropriate samples. 

 



 
Figure 5: Overview of CVAE-GAN, including its losses. 

 

 

Data Augmentation GAN (DAGAN) 
Data Augmentation GAN (DAGAN) was proposed by (Antoniou, Storkey, & Edwards, 2017) as a GAN 

aimed specifically towards Data Augmentation, and was tested on Few-Shot and One-Shot Learning 

classification tasks. It's architecture and function can be seen in Figure 6. It is an example of a GAN 

where the generator's conditional input is not a vector, but rather a sample. DAGAN receives samples as 

inputs and generates synthetic samples that match each input sample's class, through the process 

described in Figure 6. The fact that the DAGAN uses a real sample as input to produce class preserving 

synthetic samples, means that it can also augment classes it has not been trained on, and thus can tackle 

one-shot learning problems as well. 

 

 
Figure 6: Overview of DAGAN. For each class c for which a synthetic sample is to be generated, a pair of random samples (xi,xj) 

∈ c are chosen. The generator then produces a synthetic sample xg = G(xi,z), where z is a random noise vector. The samples are 

evaluated as real or fake by the discriminator, which receives either Fake pair (xi,xg) or Real pair (xi,xj). In this way the 

DAGAN’s architecture promotes the generation of realistic, conditional samples that avoid mode collapse, all while using only 

the standard adversarial loss (the paper uses the WGAN-GP loss proposed by (Gulrajani et al., 2017) 

 

 



Other Conditional GANs 
Deep Adversarial Data Augmentation (DADA). Expanding approaches proposed in (Salimans et al., 

2016) and (Odena et al., 2016), (X. Zhang, Wang, Liu, & Ling, 2018) proposed a novel GAN based data 

augmentation framework. DADA recommends that the GAN’s discriminator not assign k + 1 

probabilities to each sample (where k probabilities correspond to each of k classes and the (k + 1)th 

probability corresponds to a True/Fake label). Rather, it was proposed that the model and its loss function 

be modified so that the discriminator would assign 2k probabilities, where to each class ck corresponds 2 

possible outcomes ckTrue and ckFake. 

 

Multiple Distribution GAN (MD-GAN). Proposed by (Yirui Wu, Yue, Tan, Wang, & Lu, 2018), the 

MD-GAN enforces conditionality by drawing its input from multiple distinct distributions per label via a 

Gaussian Mixture Model, rather than a noise vector z drawn drom a single distribution. This modification, 

the paper claims, also results to more diverse samples. 

 

3D Multi-Conditional GAN (3D MCGAN). The 3D MCGAN (Han, Kitamura, et al., 2019) is proposed 

for 3D conditional infilling. It's generator receives 3D images, areas of which are replaced with noise, and 

which are concatenated with conditioning information along the input samples' 4th dimension. The model 

is expected to fill the specified area with content that is realistic and appropriate to the conditioning input. 

It uses two discriminators, the first of which evaluates whether the sample as a whole is realistic, and the 

other determines whether the infilling matches the conditions provided. 

 

MetaGAN. In (R. Zhang, Che, Grahahramani, Bengio, & Song, 2018), MetaGAN is proposed, which 

leverages Meta-Learning approaches, such as MAML (Finn, Abbeel, & Levine, 2017) and RN (Sung et 

al., 2017), to tackle supervised and semi-supervised few-shot learning tasks, both in the sample level 

(when the dataset in question includes unlabeled samples) and in the task level (when the dataset includes 

multiple tasks, of which some are unlabeled). MetaGAN is also noteworthy in that it trains the classifier 

as part of the adversarial process, theorizing that even imperfect synthetic samples will provide beneficial 

information to the classifier. 

 

Balancing GAN (BAGAN). Proposed as a tool to balance datasets with minority classes by (Mariani, 

Scheidegger, Istrate, Bekas, & Malossi, 2018), the BAGAN utilizes the architectural similarities between 

autoencoders and GANs to leverage the advantages of both. Specifically, autoencoders are easier to train, 

but GANs produce more diverse samples. Per BAGAN’s proposed methodology, an autoencoder is 

trained first. Then, the weights are used to initialize a GAN, which is subsequently trained adversarially. 

Notably, for n classes the discriminator has n + 1 outputs, n of which correspond each of the classes, and 

the (n + 1)th indicates a fake sample. Additionally, the BAGAN uses the trained autoencoder’s encoder to 

develop a class-conditioned input vector generator, which provides the GAN with input samples drawn 

from class-dependent distributions. The resulting architecture can generate synthetic samples 

conditionally and, per the paper, is easy to train due to the strong initialization point provided by the 

autoencoder. 

 

Three-Player GAN. This model, suggested in (Vandenhende, De Brabandere, Neven, & Van Gool, 

2019), is used to augment data in the context of classification tasks. The three components of the model 

are a generator, a discriminator and a classifier which, unlike the AC-GAN, are distinct architectures. Per 

the proposed method, the generator and discriminator are pre-trained as a conditional GAN. After that, the 

classifier is included in the training. The classifier is trained with both original and synthetic samples, 

while the generator is concurrently trained to produce samples that are harder for the classifier to classify. 

It is important to note that in each step both models are trained. 

 

Conditional Infilling GAN (ciGAN). CiGAN (Yirui Wu et al., 2018) tackles the task of conditional 

image infilling. That is, to fill specific areas of a given image with content that is a) realistic and b) 



appropriate to conditions that ciGAN received as input. To achieve this, ciGAN's inputs consist of a 

sample from the original dataset, with the content of the area to be filled replaced by random noise, a 

class-related conditioning input, and a mask which identifies the area to be filled. This input information 

is fed to various stages of the generator as the sample is gradually upscaled to match the desired 

dimensions. CiGAN also uses a slightly modified loss function compared to regular GANs, more suitable 

to the task in question. 

 

Adversarial in-painting based framework (AIPBF). This model, suggested in (Jie Yang et al., 2018), 

was unnamed by the writers of the paper. Used for conditional infilling of 3D images, it's inputs are a 

class label and a 3D image with a mask which determines the area to be filled. The model has two 

generators that function sequentially in a coarse-to-fine scheme and two discriminators that both promote 

realistic and class adhering sample generation, though one of the two enforces those qualities locally and 

the other globally. 

 

Domain Transfer GANs 

pix2pix 
The pix2pix architecture was first presented in (Isola, Zhu, Zhou, & Efros, 2017) and was one of the first 

GAN models to tackle the image-to-image translation task. Its objective is to establish a way for images 

to transition from one domain to another (e.g. grayscale to colored, Google Maps to aerial photo etc.). 

 

For the pix2pix framework to function, pairs of the same sample in both examined domains are needed. 

The generator G receives a sample x from source domain X and generates sample ŷ  = G(x), which we 

expect to be a realistic interpretation of x in target domain Y . The discriminator D then attempts to 

distinguish true pairs (x,y) from fake pairs (x, ŷ of samples using the loss function in equation 5 below. 

To improve the quality of generated images, another component is added to the model’s objective, which 

tasks the generator with producing samples ŷ  that not only succeed in fooling the discriminator, but that 

are close to the ground truth image y in terms of their L1 distance (equation 6). These two components 

combine to form the model’s final objective, as seen in equation 7, where in the paper λ = 100. It is also 

notable that pix2pix uses a Markovian discriminator (C. Li & Wand, 2016) and U-NET generator 

(Ronneberger, Fischer, & Brox, 2015). 
 

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x,y] + Ex∼pdata(x),z∼pz(z)[log(1 − D(x,G(x,z)))] (5) 

L1(G) = Ex,y∼pdata(x,y),z∼pz(z)[k y − G(x,z) k1] (6) 

G∗ = arg minG maxD LcGAN(G,D) + λLL1(G) (7) 

Cycle-GAN 
Pix2pix is limited by the fact that it requires pairs of the same content in both the source and target 

domains. Expanding on pix2pix, Cycle-GAN (J. Y. Zhu, Park, Isola, & Efros, 2017) suggested an 

approach that allows for domain transition without using paired samples. Furthermore, it allows for 

transition from each domain to the other, rather than from the source to the target domain only. 

 

Given two domains X and Y , with samples x and y respectively, the model consists of two mapping 

functions (generators) G : X → Y and F : Y → X, and their corresponding discriminators DY and DX, 

which encourage G and F to generate samples indistinguishable from those in domains Y and X 

respectively. Each pair (G,Dy) and (F,DX) have their own adversarial loss objective, per equation below.   
 

LGAN(G,DY ,X,Y ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1 − DY (G(x))] (8) 
 



The paper also introduces the Cycle Consistency Loss, an objective that tasks the generators with not 

only producing samples that belong in their respective target domain, but that also correspond to their 

input sample from the source domain. This is achieved by forcing them to satisfy backward cycle 

consistency: y → F(y) → G(F(y)) ≈ y and x → G(x) → F(G(x)) ≈ x. The loss function for this objective 

can be seen in equation 9. 

 Lcyc(G,F) = Ex∼pdata(x)[k F(G(x)) − x k1] + Ey∼pdata(y)[k G(F(y)) − y k1] (9) 

The above combine for the Cycle-GAN’s full objective function (in experiments λ = 10) and its 

corresponding minimax formulation in equations below. The model’s function can also be seen in Figure 

7 below. 

L(G,F,DX,DY ) = LGAN(G,DY ,X,Y ) + LGAN(F,DX,Y,X) + λLcyc(G,F) (10) 

G∗,F∗ = arg minG,F maxDX,DY L(G,F,DX,DY ) (11) 

 

 

 
Figure 7: The Cycle-GAN’s function. (a) An overview of the model with regard to its two mapping functions G : X → Y and F : Y 

→ X, and their corresponding discriminators DX and DY . (b) The forward cycle-consistency loss x → G(x) → F(G(x)) ≈ x. (c) 

The backward cycle-consistency loss y → F(y) → G(F(y)) ≈ y 

The Cycle-GAN served as the basis for a number of variants such as the covariance-preserving 

conditional cycle-GAN (cCov-GAN) (Gao, Shou, Zareian, Zhang, & Chang, 2018), which expanded on 

the Cycle-GAN's objective to allow for conditional domain transfer and preserving intra-class covariance 

information, as well as other variants that will be examined in the next subsection. 

 

Other Domain Transfer GANs 
 
StarGAN Proposed by (Choi et al., 2018), StarGAN expands on the Cycle-GAN. Each Cycle-GAN is 
limited to domain transfer between two specific domains X and Y . However, StarGAN allows for 
conditional transition to multiple domains. Trained with data from N domains, it can transfer any sample 
x from domain X ∈ N to any of domain Y ∈ N. To achieve that, during training it receives a sample as 
input, but it also receives a label indicative of the domain the sample is expected to transition to. A 
classification error is also incorporated in the training process to facilitate this function, that is to restrict 
each generated sample to a domain determined by a conditioning input. StarGANs allow for N to N 
domain transition with only one model, whereas the use of Cycle-GANs would have required the training 
of a distinct model for each domain pair. 

 

A StarGAN variant named CTGAN was also encountered in (Zhou, Ke, & Luo, 2019), where an ID 

consistent loss is added to the objective in the form of an L1 distance between the synthetic image and its 

original. 



 

DavinciGAN. In (K. Lee, Choi, & Jung, 2019) the DavinciGAN is proposed as an alternative to Cycle-

GAN for unpaired image-to-image translation. Its contribution lies in the use of loss functions that 

promote the generation of samples that are realistic with regard, belong to the desired domain, and whose 

background (i.e. the parts of the image that are irrelevant to the source and target domains) has not been 

altered. The later objective is achieved via a combination of unsupervised segmentation and attention. The 

DavinciGAN is then particularly suitable for applications which require that only very specific sections 

and/or objects of each image should be altered as the image transitions between domains, with the rest of 

it remaining relatively intact. 

 

Tonality-Alignment GAN (TAGAN). Proposed in (L. Chen et al., 2018), TAGAN is a domain transfer 

GAN designed to augment 2D and 3D hand gesture datasets for the purpose of hand pose estimation. It 

consists of a generator and discriminator. The generator receives as input the shape drawing of a palm in a 

given gesture and a color map, to generate a 2D or 3D rendering a realistic palm with the corresponding 

gesture and color properties. The TAGAN uses multiple objectives to encourage the generation of 

samples that are realistic and maintain the required shape and color consistency. It should be noted that, 

while we group TAGAN as a domain transfer GAN, in the sense that it transitions samples in the domain 

of shape drawings to that of images of hand gestures, it could also be thought of as a conditional GAN, 

generating samples based on the conditioning input of the shape drawing and the color map. 

 

AugGAN. AugGAN is a variant of the Cycle-GAN suggested in (S. W. Huang et al., 2018) meant for use 

in the context of object detection and segmentation tasks. In AugGAN's architecture, the generator 

produces a segmentation mask along with the synthetic image, which is guided by a loss function to 

correspond to a specific object. Via this modification, AugGAN learns to transition samples between 

domains without distorting the shape and placement of the object that is under examination. 

 
Differential GAN (D-GAN). Proposed in (Gu, Kim, Kim, Baddar, & Ro, 2017) and focused on facial 
expression alteration, D-GAN transfers an image x from domain X to image y at domain Y, as defined by 
a conditional input, using pairs of the same image in both domains as ground truth for training. The mask 
is created by projecting a class conditioning vector to the shape of the image in a learned way, so that it 
can be depth-wise concatenated with the image to be modified. The resulting tensor includes both the 
original image and the conditioning mask. It is then fed to the generator, with produces a synthetic image. 
The model then uses two discriminators, the standard one, tasked with determining how realistic the 
synthetic image is, and the differential one, which determines if the differential image x – y is acceptable. 
In that way, the generator is forced to create realistic synthetic samples that alter the original image only 
in areas and ways that are required by the domain transition task. 

Expression GAN (ExprGAN). Combining elements of autoencoders and conditional GANs, the 

ExprGAN proposed by (Ding, Sricharan, & Chellappa, 2017) performs identity preserving domain 

transfer. ExprGAN is novel in that its conditioning input relates to information not only about the 

synthetic sample’s the desired class, but its intensity as well. In the context it was used in the original 

paper, this formulation related to the intensity with which certain emotions were expected to appear in 

synthetic images of faces. Another notable element of the ExprGAN is that, due to the fact it uses 

multiple loss functions, each relating to specific components of its architecture, the authors suggest 

training those components independently in distinct stages. The ExprGAN was designed for the purposes 

of face expression alteration, but is not by design restricted to this application. 

 

Identity Preserved Conditional GAN (IPCGAN). (X. Tang, Wang, Luo, & Gao, 2018) is designed to 

perform conditional domain transfer in the context of age on images of faces. In addition to the 

discriminator, the model makes use of a classifier and a pre-trained AlexNet model. The classifier 

determines the age group a given image belongs to and is used to force the generator to produce synthetic 



samples that correspond to the age group determined by the conditioning input. The AlexNet is used to 

extract features of the original and the synthetic image, whose distance the generator is motivated to 

minimize, so that the identity of the subject is preserved. Those three components ensure that the 

synthetic images are realistic, belong to the expected age group, and are of the same person as that of their 

input. Similar to the ExprGAN, it is designed and tested in the context of a specific task, that of face 

aging, but is not restricted to it with regard to its applicability. 

 

Deep Attention GAN (DA-GAN). DA-GAN (Not to be confused with DAGAN (Antoniou et al., 2017)) 

was introduced by (Ma, Fu, Chen, & Mei, 2018). It uses a deep attention encoder to produce latent space 

representations based on the localized properties of each sample. The generator uses those representation 

to produce synthetic samples, which both locally and collectively have features that correspond to those 

of the target domain (as defined by samples of that domain). The paper proposes a combination of four 

loss function components to facilitate the use of DAEs and to enforce desirable properties on the model. 

Additionally, due to the fact that the synthetic samples are generated based on a localized interpretation of 

their properties projected to a latent space (which in the case of image-to-image translation is extracted 

via the DAE), DA-GAN is flexible regarding its applications which include, for instance, text-to-image 

generation. 

 

Pedestrian Synthesis GAN (PS-GAN). This model, proposed in (Ouyang, Cheng, Jiang, Li, & Zhou, 

2018), focuses on content infilling. Its input is two versions of the same image, the second of which has 

had a specific part of it corrupted by noise. The PS-GAN is expected to fill that area with realistic content. 

This application is used specifically in the context of a pedestrian detection task (though it can be used in 

other domains), wherein the PS-GAN is tasked with inserting pedestrians in sections of images defined by 

the corrupting noise. To achieve this, PS-GAN uses two discriminators rather than one. The first 

determines if the area in question is filled with realistic content in itself. The second discriminator 

determines if the synthetic image as a whole is realistic, when considered along with its noisy original. 

 

Stacked GAN (SGAN) The SGAN, proposed in (Y. Tang et al., 2018), uses two GANs, whose 

architectures draw heavily from the SRGAN (Ledig et al., 2016), to perform two consecutive domain 

transfers on their input images in order to achieve desirable properties in the end result. In the case of (Y. 

Tang et al., 2018), the SGAN is used to improve an image's quality and resolution, and the two functions 

of the SGAN are to first denoise, and then to increase the resolution of its input image samples. 

 

Domain Invariance & Feature Augmentation (DIFA) A framework designed for data augmentation for 

unsupervised domain adaptation tasks proposed in (Volpi, Morerio, Savarese, & Murino, 2018). It 

expands on the cGAN so that it performs data augmentation in the feature space, rather than by 

synthesizing new samples. The architecture is trained in 3 steps. Initially, a classifier is trained on the 

source domain. Then, the trained model is used as a feature extractor and a GAN is trained to produce 

realistic class-conditioned synthetic feature vectors. Finally, the encoder is trained again in the context of 

a GAN on both the source and target domains. Its objective is for the encoder to create common feature 

vector representations for samples in both domains. Ultimately, the framework results in an encoder 

trained for domain-invariant feature extraction, which can be used for augmentation, as well as for class 

inference in the cases of unlabeled datasets. 

 
3DMM Cycle-GAN. (Gecer, Bhattarai, Kittler, & Kim, 2018) propose an adversarial approach for 
generating 2D images conditioned by a 3D Morphable Model. Being a method with similar objectives to 
the Cycle-GAN, its objective is to transfer samples generated by a 3DMM to a photorealistic domain. To 
do that, the model requires unpaired samples of both domains, and a proportionally small number of 
paired samples. Similar to the Cycle-GAN, the model uses a pair of generators G : X → Y and F : Y → X 
and their respective generators, but on the other hand it uses a Classifier along with the discriminator, as 



well as different loss functions to guide its training, in order to enforce identity preservation and pair 
matching, with limited paired samples from each domain. 

Background Augmentation Generative Adversarial Network (BAGAN). BAGAN (M. Yan et al., 

2018) is designed to function as part of a framework that generates 2D samples by drawing from 

renderings of 3D models of objects and augmenting them with diverse synthetic backgrounds while 

maintaining the objects' identities. It should be noted that the full pipeline of the framework involves 

multiple techniques and components that inform and utilize the actual GAN component, but the 

framework's purpose overall is to generate diverse and realistic annotated 2D samples from a limited 3D 

dataset. The Background Augmentation Generative Adversarial Network is distinct from the Balancing 

GAN (Mariani et al., 2018), though their acronyms are identical. 

 

 

APPLICATIONS 

 

 

 
Table 1: Data augmentation with GANs - Applications. Datasets marked with * were gathered for the purposes of each work and 

have not necessarily been made public. 

Dataset GAN Model Reference Sample 

Gen. 
Domain: Medicine    

DDSM (Heath, Bowyer, Kopans, Moore, & 

Kegelmeyer, 2001) 

ciGAN (Yirui Wu et al., 2018) CSG 

CBIS-DDSM (R. S. Lee et al., 2017) DADA (X. Zhang et al., 2018) CSG 

LIDC (McNitt-Gray et al., 2008) 3D-CGAN (Jin et al., 2018) CSG(3D) 

LIDC 3D MCGAN (Han, Kitamura, et al., 2019) CSG(3D) 

LIDC AIPBF (Jie Yang et al., 2018) CSG(3D) 

Cardiac CT & MRI scans * 3D Cycle-GAN Var. (Z. Zhang, Yang, & Zheng, 

2018) 

DT(3D) 

Combination of fMRI datasets Cond. WGAN-GP (3D) 

Var. 

(Zhuang, Schwing, & Koyejo, 

2019) 

CSG 

Liver Lesions * DCGAN, AC-GAN (Frid-Adar et al., 2018) CSG, USGa 

Chest X-Rays dataset * DCGAN (Salehinejad, Valaee, Dowdell, 

Colak, & Barfett, 2017) 

USGa 

Chromosome Karyotyping Cell Dataset * MD-GAN (Yirui Wu et al., 2018) USGb 

Pulmonary nodule CT dataset * WGAN (Onishi et al., 2019) USGa 

Breast Cancer Wisc. (Diagnostic) Data Set 

(UCI, 2011) 

   

BRATS (Menze et al., 2015) PGGAN (Han, Murao, et al., 2019) USGa 

Surgery Images * DavinciGAN (K. Lee et al., 2019) DT 

BCDR (Guevara Lopez et al., 2012), INbreast 

(Moreira et al., 2011), CBIS-DDSM (R. S. Lee 

et al., 2017) 

Cycle-GAN (Jendele, Skopek, Becker, & 

Konukoglu, 2019) 

DT 

MITOS-ATYPIA-14 Challenge1 Cycle-GAN (R. S. Lee et al., 2017; Shaban, 

Baur, Navab, & Albarqouni, 

2018) 

DT 

TCGA (Kandoth et al., 2013), CINJ 

Histopathology Dataset * 

GAN var. (Ren, Hacihaliloglu, Singer, 

Foran, & Qi, 2018) 

DT 

MITOS-ATYPIA-14 Challenge, 

MICCAI’16(Sirinukunwattana et al., 2016), 

AC-GAN var. (Bentaieb & Hamarneh, 2017) DTc 

Ovarian Carcinoma whole slide images *    

 
1 https://mitos-atypia-14.grand-challenge.org 



Dataset GAN Model Reference Sample 

Gen. 
DeepLesion (K. Yan et al., 2018) SGAN (Y. Tang et al., 2018) DT 

Blood smears images * pix2pix (Bailo, Ham, & Shin, 2019) DT 

BRATS, ADNI2 pix2pix (Shin et al., 2018) DT(3D) 

CT & FLAIR datasets * PGGAN (Bowles, Gunn, Hammers, & 

Rueckert, 2018) 

USGc 

Brain MRI dataset * Cond. PGGAN (Han, Murao, et al., 2019) CSG 

Domain: People & Faces     

VGG Face (Parkhi, Vedaldi, & Zisserman, 

2015) 

DAGAN (Antoniou et al., 2017) CSG 

CASIAWebFace (D. Yi, Lei, Liao, & Li, 2014) CVAE-GAN (Bao et al., 2017) CSG 

VGG Face, LFW (G. B. Huang, Ramesh, Berg, 

& Learned-Miller, 2007), IJB-A (Klare et al., 

2015) 

3DMM Cycle-GAN (Gecer et al., 2018) DT3t2(3D) 

CASIA Palmprint Dataset 3 DCGAN (G. Wang, Kang, Wu, Wang, & 

Gao, 2019) 

USGa 

IIT Delhi Palmprint database4    

CACD (B.-C. Chen, Chen, & Hsu, 2014) IPCGAN (X. Tang et al., 2018) DTc 

Oulu-CASIA (Zhao, Huang, Taini, Li, & 

Pietikäinen, 2011) 

ExprGAN (Ding et al., 2017) DTc 

FER2013 (Dhall, Goecke, Lucey, & Gedeon, 

2011), SFEW (Goodfellow et al., 2015), JAFFE 

(Kamachi, Lyons, & Gyoba, 1997) 

 

Cycle-GAN (Y. Zhu, Aoun, Science, Krijn, 

& Vanschoren, 2018) 

DT 

MMI (Valstar & Pantic, 2010), LFW D-GAN (Gu et al., 2017) DT 

Tsinghua-Daimler Cyclist Benchmark (X. Li et 

al., 2016), 

PS-GAN (Ouyang et al., 2018) DT 

CASIA gait dataset (Shiqi Yu, Daoliang Tan, & 

Tieniu Tan, 2006), VOT2013, VOT2014, 

StarGAN (K. Chen, Zhou, Zhou, & Xu, 

2019) 

DTc 

VOT2015 (Kristan et al., 2015), OTB100 (Y 

Wu, Lim, & Yang, 2013) 

   

Market-1501 (L. Zheng et al., 2015), 

DukeMTMC-ReID (Ristani, Solera, Zou, 

Cucchiara, & Tomasi, 2016) 

CTGAN (Zhou et al., 2019) DTc 

Market-1501, DukeMTMC-ReID Cycle-GAN (Zhong, Zheng, Zheng, Li, & 

Yang, 2017) 

DT 

Market-1501, DukeMTMC-ReID, CUHK03 

(W. Li, Zhao, Xiao, & Wang, 2014) 

DCGAN (Z. Zheng, Zheng, & Yang, 

2017) 

USGd 

Domain: Other    

ImageNet cCov-GAN (Gao et al., 2018) DTc 

X-Rays of various items* DCGAN, CT-GAN, (J Yang, Zhao, Zhang, & Shi, 

2019) 

USGb 

ObjectNet3D (Xiang et al., 2016), ShapeNet  

(Chang et al., 2015)  

BAGAN (M. Yan et al., 2018) DT3t2(3D) 

Omniglot (M Lake, Salakhutdinov, & B 

Tenenbaum, 2015), EMNIST (Cohen, Afshar, 

Tapson, & van Schaik, 2017) 

DAGAN (Antoniou et al., 2017) CSG 

RHP (Zimmermann & Brox, 2017), STB (J. 

Zhang et al., 2016), CMU-PS (Simon, Joo, & 

Sheikh, 2017) 

TAGAN (L. Chen et al., 2018) DT, 

DT2t3(3D) 

HMDB51, UCF101 WGAN (Y. Zhang, Jia, Chen, Zhang, & 

Yong, 2019) 

USGa 

Omniglot, Mini-Imagenet (Vinyals, Blundell, 

Lillicrap, Kavukcuoglu, & Wierstra, 2016) 

MetaGAN (R. Zhang et al., 2018) CSG 

CURE-TSR (Temel, Kwon, Prabhushankar, & 

AlRegib, 2017) 

Three-Player GAN (Vandenhende et al., 2019) CSG 

 
2 http://adni.loni.usc.edu/  
3 CASIA Palmprint Database, http://biometrics.idealtest.org/ 
4 IIT Delhi Palmprint Image Database version 1.0, http://www4.comp.polyu.edu.hk/csajaykr/ITD/ 



Dataset GAN Model Reference Sample 

Gen. 
MNIST (Lecun, Bottou, Bengio, & Haffner, 

1998), CIFAR-10 (Krizhevsky, 2012), Flowers5 

BAGAN (Mariani et al., 2018) CSG 

CUB-200-2011 (Wah, Branson, Welinder, 

Perona, & Belongie, 2011) 

DA-GAN (Ma et al., 2018) DT 

MNIST, USPS (Denker et al., 1989), SVHN 

(Netzer et al., 2011), SYN DIGITS (Ganin & 

Lempitsky, 2015), 

DIFA (Volpi et al., 2018) DT 

NYUD (Silberman, Hoiem, Kohli, & Fergus, 

2012) 

   

SYNTHIA (Ros, Sellart, Materzynska, 

Vazquez, & Lopez, 2016), GTA (Richter, 

Vineet, Roth, & Koltun, 2016), KITTI (Geiger, 

Lenz, & Urtasun, 2012), ITRI*6 

AugGAN (S. W. Huang et al., 2018) DT 

Cityscapes (Cordts et al., 2016) PS-GAN (Ouyang et al., 2018) DT 

CVPPP 2017 LSC Plant Dataset (“Jonathan 

Bell and Hannah M Dee. Aberystwyth leaf 

evaluation dataset. 2016.,” n.d.) 

cGAN (J. Y. Zhu et al., 2017) CSG 

 

 

Having surmised in section GAN models the technical features of each GAN that will be mentioned, and 

having defined the tasks they were used for in section Tasks, this section presents the specific Data 

Augmentation applications that GANs were identified to have been used in by our research on the topic. 

We organize this section in three distinct groups based on the fields in which each application belongs to. 

The first groups relates to medicine, the second to people and faces, and the third includes all remaining 

applications that could not be grouped into a broader category. It is this section's objective to list the ways 

in which GANs have been used to augment datasets in each domain and application. We will refer to 

sample generation techniques using the notation described in subsection Samples Generation Method. 

The specific datasets used in each work described in this section is listed in Table 1. 

 

Medicine 

GAN-based data augmentation was found to have been used extensively in applications related to 

medicine, where scarcity of data and difficulty in annotating them coincides with enormous potential 

benefits if machine learning could be applied to facilitate various tasks, especially diagnostic ones. The 

motivating promise of significant returns for healthcare systems can explain the fact that most 

applications we found were related to this domain. 2D and 3D imagery analysis is particularly important 

in extracting information from CT, MRI and other diagnostic tools. 

 

In this fields, GAN-based data augmentation has been used most frequently in augmenting datasets 

consisting of MRIs, X-Rays and other medical images to improve on classification or segmentation 

related diagnostic tasks. With regard to classification, (Han, Rundo, et al., 2019) used USGa with the 

PGGAN on brain MRIs for cancer diagnoses, and subsequently (Han, Murao, et al., 2019) used a 

conditional PGGAN in a similar application with a tumor detection objective (OD). PGGAN was also 

used by (Bowles et al., 2018) in a transfer learning framework to augment brain CTs and MRIs for 

improved segmentation via USGc. Another application of USGa was found in (Frid-Adar et al., 2018) 

and (Salehinejad et al., 2017), where the DCGAN was used to augment datasets consisting of liver lesions 

CT scans and chest X-rays respectively. With regard to Conditional Samples Generation (CSG), (Frid-

Adar et al., 2018) also used the AC-GAN to generate samples conditionally to augment a dataset of CT 

scans. An interesting application of data augmentation via USGa is found in (Onishi et al., 2019), where a 

 
5 https:// www.kaggle.com/alxmamaev/flowers-recognition 
6 Dataset real driving images 



WGAN is used on a pulmonary CT dataset, but the classifier is trained only on synthetic samples, and 

then fine-tuned with the originals. (X. Zhang et al., 2018) used the DADA framework to augment a 

dataset of scanned film mammography studies after experimenting with CIFAR-10, while (E. Wu, Wu, 

Cox, & Lotter, 2018) used the ciGAN in a similar dataset, to augment mammograms via content infilling 

(filling specific sections of each sample conditionally to facilitate classification) for dataset balancing. 

Moving on to GANs performing domain transfer, (Bentaieb & Hamarneh, 2017) proposed a combination 

of an AC-GAN and an autoencoder in order to perform conditional domain transfer (DTc) on various 

histopathology image datasets, in order to solve the problem of stain color inconsistencies for both 

classification and segmentation purposes. On the same subject, (Shaban et al., 2018) used the Cycle-GAN 

on a histopathology dataset to improve on tumor classification, and (Ren et al., 2018) used an architecture 

combining a GAN with a Siamese network to augment two prostate histopathology image datasets in an 

unsupervised way, also to improve classification results. (Y. Tang et al., 2018) used the SGAN to 

augment CT images for lesion segmentation purposes and (Jendele et al., 2019) used the Cycle-GAN for 

breast cancer diagnosis (classification). Regarding 3D imagery, (Jin et al., 2018) used for content infilling 

to create synthetic lung nodules which are then used to fine tune a nodule segmentation model. Using the 

same dataset of lung nodules, (Han, Kitamura, et al., 2019) proposes the 3D MCGAN for 3D conditional 

infilling in the context of object detection, and (Jie Yang et al., 2018) proposed the AIPBF GAN based 

framework for augmented classification. (Shin et al., 2018) utilized the pix2pix methodology, adjusted for 

3D data, to augment brain MRIs and improve on a tumor segmentation task. (Z. Zhang et al., 2018) 

proposed a modification on the Cycle-GAN, such that allowed for domain transition between two 3D 

domains, which was utilized to improve segmentation performance using CT and MRI cardiac scans by 

transitioning samples to either domain. In (Zhuang et al., 2019), a conditional WGAN-GP variant was 

used to augment 3D fMRI datasets for a classification task. 

 

Diagnostics aside, GANs have also been used in other applications. (Yirui Wu et al., 2018) used MD-

GAN to improve on chromosome classification (Karyotyping). (Bailo et al., 2019) augmented a dataset of 

blood smear slides with pix2pix and improved on segmentation performance. In (K. Lee et al., 2019), the 

DavinciGAN is used to augment a dataset consisting of frames of surgeries which include the tools used 

be the surgeon, to improve on instrument classification. 

 

For a broader overview of GANs used in medical applications, we suggest reading (Kazeminia et al., 

2018) and (X. Yi, Walia, & Babyn, 2018). 

 

 

People & Faces 

This section lists works that tackled the datasets whose subjects were people, whether in terms of faces, 

body shapes or other characteristics. Regarding face data augmentation techniques more broadly, we also 

suggest (X. Wang, Wang, & Lian, 2019), which reviews approaches that are not limited to GANs. 

 

In this domain, the only cases were samples were generated unconditionally were (G. Wang et al., 2019) 

and (Z. Zheng et al., 2017), in both of which the DCGAN was used. The former applied USGa on a 

palmprint dataset, applying classification in terms of identifying the owner of each print. The later used 

USGd in a person identification (PID) task using datasets consisting of images of pedestrians captured by 

cameras. (Gecer et al., 2018) used the 3DMM Cycle-GAN to augment 2D face datasets with samples 

originating from using 3D models. (Antoniou et al., 2017) used the DAGAN in a CSG application to 

augment a dataset of faces to improve person classification, which was also done by (Bao et al., 2017) 

with the CVAE-GAN. The rest of the works in this domain used Domain Transfer. In the area of 

classification, (X. Tang et al., 2018) used the IPCGAN to augment dace datasets age-wise in an identity 

preserving way (DTc) and (Y. Zhu et al., 2018) used the Cycle-GAN to augment face datasets emotion-



wise, which was done both uniformly (UA) and for specific classes (DB) to improve on emotion 

classification. Finally, (Gu et al., 2017) used the ExprGAN for DTc and (Ding et al., 2017) used the D-

GAN both for UA and DB, to augment face datasets with regard to their expresions. It should be noted 

that works performing domain transfer on faces provide for identity-preservation, as defined in section 

Domain Transfer (DT). Regarding person identification (PID), (Zhou et al., 2019) uses the CTGAN on 

images of pedestrians and (Zhong et al., 2017) uses the Cycle-GAN to improve on a multi-camera person 

re-identification task. Finally, object detection (OD) is tackled in (Ouyang et al., 2018) on a dataset of 

cyclist images using the PS-GAN, and (K. Chen et al., 2019) does object tracking (OT) with the StarGAN 

on various videos of people. 

 

Other Data 

This subsection relates to works whose area of focus does not fall into a concrete application domain, and 

includes publications that tackled popular machine learning datasets, as well as data specific to particular 

applications. 

Regarding classification tasks, USGb was used in (J Yang et al., 2019), which compared the DCGAN, 

WGAN-GP and CT-GAN's performances in augmenting a dataset consisting of X-rays of various items 

which were to be classified. Conditional approaches included (Antoniou et al., 2017), which used the 

DAGAN on two datasets with written characters and (R. Zhang et al., 2018) which used the MetaGAN on 

datasets of characters and various images. CSG was also used in (Vandenhende et al., 2019), which used 

the Three-Player GAN to augment a dataset of traffic signs to improve classification accuracy. Finally, 

(Mariani et al., 2018) use the BAGAN on various machine learning datasets performing CSG and DB. 

Domain Transfer for classification purposes is used by (Ma et al., 2018) with the DA-GAN on a dataset of 

birds that are augmented pose-wise, by (Volpi et al., 2018), where DIFA is used to augment data using 

other similar datasets or domains, and by (Gao et al., 2018), where a variation of the Cycle-GAN, the 

cCov-GAN, was used to augment a downsampled ImageNet dataset in a low-shot learning classification 

task. Lastly, (J. Y. Zhu et al., 2017) utilized a cGAN conditioned on plant masks to conditionally generate 

diverse plant images to facilitate accurate leaf segmentation and counting, (S. W. Huang et al., 2018) used 

the AugGAN to perform day/night DT on various datasets of images of cars in streets in order to improve 

object detection efficiency, and (Ouyang et al., 2018) performed DT on a dataset of city street images 

with the PS-GAN, also to improve OD. Data augmentation in video was applied in (Y. Zhang et al., 

2019), where WGAN was used as part of a pipeline to augment video classification datasets. In the area 

of 3D to 2D transitions,  BAGAN (M. Yan et al., 2018) was used with the ObjectNet3D and ShapeNet 

databases to augment a 2D classification task with samples generated from 3D models, arguing that 3D 

models are easier to generate than it is to gather annotated 2D data, and so using them to synthesize 

diverse 2D samples is more efficient. TAGAN, which is proposed in (L. Chen et al., 2018) to augment 

datasets used for hand pose estimation is also used to generate both 2D and 3D samples. 

CONCLUSIONS 

In summarizing our findings, we first have to observe that the number and diversity of the GAN models 

that were found to have been used for Data Augmentation on 2D and 3D imagery, as well as the various 

techniques that were employed, make it difficult to suggest a strict methodology for choosing the optimal 

approach for any given problem. We would, however, make note of the following conclusions that can be 

drawn from the works that were studied. The first conclusion is that using Unconditional Samples 

Generation is rarely the best option for Data Augmentation. While there are ways that it might be applied, 

those approaches have significant drawbacks and were found to be largely outdated. Considering the need 

for annotated samples in the context of data augmentation, Conditional Samples Generation is the most 

straightforward tool, particularly when augmenting data for a classification problem. Among conditional 

GANs, the AC-GAN presents itself as a simple, efficient and versatile model. Finally, with regard to 

Domain Transfer, the Cycle-GAN proved to be a very potent and adaptive architecture, which can also be 



attested to by the number of variants it has inspired (e.g. the StarGAN and the cCov-GAN). The above are 

in no way guaranteed to augment all datasets in an satisfactory way. They constitute, however, potent and 

versatile architectures that can easily be modified to match the specific requirements of various problems, 

which was the case in most of the cases that were examined in this survey. 

 

It is also important to point out that many of the papers we studied used approaches that were largely 

outdated by the time those papers were written. Expanding on this observation, it must be made clear that 

this work does not include more recent and advanced GANs that have not, to the best of our knowledge, 

been used in the context of image data augmentation. For the study of state of the art models and the 

techniques they employ we recommend (H. Zhang, Goodfellow, Metaxas, & Odena, 2018), (Brock, 

Donahue, & Simonyan, 2018) and (Lucic et al., 2019) with regard to CSG and (Park, Liu, Wang, & Zhu, 

2019) with regard to Domain Transfer. We attribute the relative delay in applying state of the art GAN 

models to data augmentation tasks to the fact that GANs are considerably complex architectures, and their 

level of complexity increases steeply as more advanced models are examined. Consequently, it is not easy 

to adapt such models to new applications. It should also be pointed out that the increased capacity of state 

of the art GANs may not be required in cases where data are limited, as well as that more powerful GANs 

are more difficult to train successfully, particularly with limited data and computational resources. 

Consequently, GANs that perform better in large benchmark datasets are not necessarily appropriate for 

data augmentation purposes. 

 

Finally, it is important to examine the applications listed in this survey with regard to the 2D/3D 

distinction. 3D data augmentation applications were considerably more scarce than 2D. This mirrors the 

general trend in machine learning research overall, where 3D data and tasks have only recently attracted 

interest. This can be attributed to the fact that 3D applications are only now becoming prominent enough 

to motivate extensive study and the creation of annotated datasets. GAN-based data augmentation 

however is proven in the works we surveyed to be a potent tool in overcoming the relative scarcity of 

annotated 3D data. Most 2D architectures can easily be adapted to generate 3D data (e.g. the 3D-GAN in 

section 3D Generative Adversarial Network (3D-GAN)), while domain transfer GANs can be used to 

transfer images from 2D to 3D and the inverse. This is an interesting application related to the generation 

of diverse samples from 3D models, which can also serve as a source of annotated data. 

 

Overall, research in data augmentation can be shown by the surveyed works to be largely driven by real-

life data shortages in specific applications rather than academic interest. However, there is consensus in 

the works we surveyed that GANs can be an invaluable tool in overcoming data scarcity, which is itself a 

major impediment in the use of machine learning in many domains. It is then our expectation that, 

considering the potential for applying machine learning solutions in many of the subject areas we 

examined, considerable effort will be invested in the future toward making advanced GAN models more 

accessible and easier to use 

 

ACKNOWLEDGMENT 
This work was supported by the EU funded project NADINE H2020 under the grant agreement 822601 
 

REFERENCES 

Alexiadis, D. S., Chatzitofis, A., Zioulis, N., Zoidi, O., Louizis, G., Zarpalas, D., & Daras, P. (2016). An 

integrated platform for live 3D human reconstruction and motion capturing. IEEE Transactions on 

Circuits and Systems for Video Technology, 27(4), 798–813. 

Antoniou, A., Storkey, A., & Edwards, H. (2017). Data Augmentation Generative Adversarial Networks. 

Retrieved from http://arxiv.org/abs/1711.04340 

Arjovsky, M., & Bottou, L. (2017). Towards Principled Methods for Training Generative Adversarial 



Networks. Retrieved from http://arxiv.org/abs/1701.04862 

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. Retrieved from 

http://arxiv.org/abs/1701.07875 

Bailo, O., Ham, D., & Shin, Y. M. (2019). Red blood cell image generation for data augmentation using 

Conditional Generative Adversarial Networks. Retrieved from http://arxiv.org/abs/1901.06219 

Bao, J., Chen, D., Wen, F., Li, H., & Hua, G. (2017). CVAE-GAN: Fine-Grained Image Generation 

through Asymmetric Training. Retrieved from http://arxiv.org/abs/1703.10155 

Bentaieb, A., & Hamarneh, G. (2017). Adversarial Stain Transfer for Histopathology Image Analysis. 

IEEE Transactions on Medical Imaging, PP, 1. https://doi.org/10.1109/TMI.2017.2781228 

Bowles, C., Gunn, R., Hammers, A., & Rueckert, D. (2018). GANsfer Learning: Combining labelled and 

unlabelled data for GAN based data augmentation, 1–10. Retrieved from 

http://arxiv.org/abs/1811.10669 

Brock, A., Donahue, J., & Simonyan, K. (2018). Large Scale GAN Training for High Fidelity Natural 

Image Synthesis, 1–35. Retrieved from http://arxiv.org/abs/1809.11096 

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE: Density-based synthetic 

minority over-sampling technique. Applied Intelligence, 36(3), 664–684. 

https://doi.org/10.1007/s10489-011-0287-y 

Burt, P. J., & Adelson, E. H. (1983). The Laplacian Pyramid as a Compact Image Code. IEEE 

Transactions on Communications. https://doi.org/10.1109/TCOM.1983.1095851 

Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P., Huang, Q.-X., Li, Z., … Yu, F. (2015). 

ShapeNet: An Information-Rich 3D Model Repository. CoRR, abs/1512.03012. Retrieved from 

http://arxiv.org/abs/1512.03012 

Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority 

over-sampling technique. Journal of Artificial Intelligence Research. 

Chen, B.-C., Chen, C.-S., & Hsu, W. H. (2014). Cross-Age Reference Coding for Age-Invariant Face 

Recognition and Retrieval. In Proceedings of the European Conference on Computer Vision 

({ECCV}). 

Chen, K., Zhou, X., Zhou, Q., & Xu, H. (2019). Adversarial Learning-based Data Augmentation for 

Rotation-robust Human Tracking. In ICASSP 2019 - 2019 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP) (pp. 1942–1946). IEEE. 

https://doi.org/10.1109/icassp.2019.8683451 

Chen, L., Lin, S.-Y., Xie, Y., Tang, H., Xue, Y., Xie, X., … Fan, W. (2018). Generating Realistic 

Training Images Based on Tonality-Alignment Generative Adversarial Networks for Hand Pose 

Estimation. CoRR, abs/1811.09916. Retrieved from http://arxiv.org/abs/1811.09916 

Choi, Y., Choi, M., Kim, M., Ha, J. W., Kim, S., & Choo, J. (2018). StarGAN: Unified Generative 

Adversarial Networks for Multi-domain Image-to-Image Translation. Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, 8789–8797. 

https://doi.org/10.1109/CVPR.2018.00916 

Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). {EMNIST:} an extension of {MNIST} to 

handwritten letters. CoRR, abs/1702.05373. Retrieved from http://arxiv.org/abs/1702.05373 

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., … Schiele, B. (2016). The 

Cityscapes Dataset for Semantic Urban Scene Understanding. Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 3213–3223. 

https://doi.org/10.1109/CVPR.2016.350 

Denker, J. S., Gardner, W. R., Graf, H. P., Henderson, D., Howard, R. E., Hubbard, W., … Guyon, I. 

(1989). Neural Network Recognizer for Hand-Written Zip Code Digits. In D. S. Touretzky (Ed.), 

Advances in Neural Information Processing Systems 1 (pp. 323–331). Morgan-Kaufmann. Retrieved 

from http://papers.nips.cc/paper/107-neural-network-recognizer-for-hand-written-zip-code-

digits.pdf 

Denton, E., Chintala, S., Szlam, A., & Fergus, R. (2015). Deep Generative Image Models using a 

Laplacian Pyramid of Adversarial Networks. Retrieved from http://arxiv.org/abs/1506.05751 



Dhall, A., Goecke, R., Lucey, S., & Gedeon, T. (2011). Static facial expression analysis in tough 

conditions: Data, evaluation protocol and benchmark. In 2011 IEEE International Conference on 

Computer Vision Workshops (ICCV Workshops) (pp. 2106–2112). 

https://doi.org/10.1109/ICCVW.2011.6130508 

Ding, H., Sricharan, K., & Chellappa, R. (2017). ExprGAN: Facial Expression Editing with Controllable 

Expression Intensity. Retrieved from https://arxiv.org/abs/1709.03842 

Donahue, C., McAuley, J., & Puckette, M. (2018). Adversarial audio synthesis. ArXiv Preprint 

ArXiv:1802.04208. 

Doumanoglou, A., Vretos, N., & Daras, P. (2019). Frequency--based slow feature analysis. 

Neurocomputing, 368, 34–50. 

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural Architecture Search: A Survey. Journal of Machine 

Learning Research, 20(55), 1–21. Retrieved from http://jmlr.org/papers/v20/18-598.html 

Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep 

Networks. CoRR, abs/1703.03400. Retrieved from http://arxiv.org/abs/1703.03400 

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based 

synthetic medical image augmentation for increased CNN performance in liver lesion classification. 

Neurocomputing, 321, 321–331. https://doi.org/10.1016/j.neucom.2018.09.013 

Ganin, Y., & Lempitsky, V. (2015). Unsupervised Domain Adaptation by Backpropagation. In 

Proceedings of the 32Nd International Conference on International Conference on Machine 

Learning - Volume 37 (pp. 1180–1189). JMLR.org. Retrieved from 

http://dl.acm.org/citation.cfm?id=3045118.3045244 

Gao, H., Shou, Z., Zareian, A., Zhang, H., & Chang, S.-F. (2018). Low-shot Learning via Covariance-

Preserving Adversarial Augmentation Networks, (NeurIPS), 1–13. Retrieved from 

http://arxiv.org/abs/1810.11730 

Gecer, B., Bhattarai, B., Kittler, J., & Kim, T.-K. (2018). Semi-supervised Adversarial Learning to 

Generate Photorealistic Face Images of New Identities from 3D Morphable Model. 

https://doi.org/10.1007/978-3-030-01252-6_14 

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision 

benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 

3354–3361). https://doi.org/10.1109/CVPR.2012.6248074 

Gong, X., Chang, S., Jiang, Y., & Wang, Z. (2019). AutoGAN: Neural Architecture Search for 

Generative Adversarial Networks. Retrieved from https://arxiv.org/abs/1908.03835 

Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner, B., … Bengio, Y. (2015). 

Challenges in representation learning: A report on three machine learning contests. Neural 

Networks, 64, 59–63. https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.005 

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. 

(2014). Generative Adversarial Networks. Retrieved from http://arxiv.org/abs/1406.2661 

Gu, G., Kim, S. T., Kim, K., Baddar, W. J., & Ro, Y. M. (2017). Differential Generative Adversarial 

Networks: Synthesizing Non-linear Facial Variations with Limited Number of Training Data. 

Retrieved from http://arxiv.org/abs/1711.10267 

Guevara Lopez, M. A., González Posada, N., Moura, D., Pollán, R., Franco-Valiente, J., Ortega, C., … 

Ferreira M Araújo, B. (2012). BCDR: A BREAST CANCER DIGITAL REPOSITORY (pp. 1065–

1066). 

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved Training of 

Wasserstein GANs. Retrieved from http://arxiv.org/abs/1704.00028 

Han, C., Kitamura, Y., Kudo, A., Ichinose, A., Rundo, L., Furukawa, Y., … Li, Y. (2019). Synthesizing 

Diverse Lung Nodules Wherever Massively: 3D Multi-Conditional GAN-based {CT} Image 

Augmentation for Object Detection. CoRR, abs/1906.04962. Retrieved from 

http://arxiv.org/abs/1906.04962 

Han, C., Murao, K., Noguchi, T., Kawata, Y., Uchiyama, F., Rundo, L., … Satoh, S. (2019). Learning 

More with Less: Conditional PGGAN-based Data Augmentation for Brain Metastases Detection 



Using Highly-Rough Annotation on MR Images. Retrieved from http://arxiv.org/abs/1902.09856 

Han, C., Rundo, L., Araki, R., Furukawa, Y., Mauri, G., Nakayama, H., & Hayashi, H. (2019). Infinite 

Brain MR Images: PGGAN-based Data Augmentation for Tumor Detection. Retrieved from 

http://arxiv.org/abs/1903.12564 

Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, P. (2001). The digital database for 

screening mammography. Proceedings of the Fifth International Workshop on Digital 

Mammography. https://doi.org/10.1007/978-94-011-5318-8_75 

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). GANs Trained by a Two 

Time-Scale Update Rule Converge to a Local Nash Equilibrium. Retrieved from 

https://arxiv.org/abs/1706.08500 

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled Faces in the Wild: A 

Database for Studying Face Recognition in Unconstrained Environments. 

Huang, S. W., Lin, C. T., Chen, S. P., Wu, Y. Y., Hsu, P. H., & Lai, S. H. (2018). AugGAN: Cross 

domain adaptation with GAN-based data augmentation. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

11213 LNCS, 731–744. https://doi.org/10.1007/978-3-030-01240-3_44 

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional 

adversarial networks. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern 

Recognition, CVPR 2017 (Vol. 2017-Janua, pp. 5967–5976). Institute of Electrical and Electronics 

Engineers Inc. https://doi.org/10.1109/CVPR.2017.632 

Jendele, L., Skopek, O., Becker, A. S., & Konukoglu, E. (2019). Adversarial Augmentation for 

Enhancing Classification of Mammography Images. Retrieved from http://arxiv.org/abs/1902.07762 

Jin, D., Xu, Z., Tang, Y., Harrison, A. P., & Mollura, D. J. (2018). CT-Realistic Lung Nodule Simulation 

from 3D Conditional Generative Adversarial Networks for Robust Lung Segmentation. CoRR, 

abs/1806.04051. Retrieved from http://arxiv.org/abs/1806.04051 

Jonathan Bell and Hannah M Dee. Aberystwyth leaf evaluation dataset. 2016. (n.d.). 

Kamachi, M., Lyons, M., & Gyoba, J. (1997). The japanese female facial expression (jaffe) database. 

Availble: Http://Www. Kasrl. Org/Jaffe. Html. 

Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., … Ding, L. (2013). Mutational 

landscape and significance across 12 major cancer types. Nature. 

https://doi.org/10.1038/nature12634 

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive Growing of GANs for Improved 

Quality, Stability, and Variation, 1–26. Retrieved from http://arxiv.org/abs/1710.10196 

Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S., & Mukhopadhyay, A. 

(2018). GANs for Medical Image Analysis. Retrieved from http://arxiv.org/abs/1809.06222 

Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. Retrieved from 

https://arxiv.org/abs/1312.6114 

Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., … Jain, A. K. (2015). Pushing 

the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. In 2015 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1931–1939). 

https://doi.org/10.1109/CVPR.2015.7298803 

Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G., … Solis Montero, A. 

(2015). The Visual Object Tracking VOT2015 Challenge Results. In 2015 IEEE International 

Conference on Computer Vision Workshop (ICCVW) (pp. 564–586). 

https://doi.org/10.1109/ICCVW.2015.79 

Krizhevsky, A. (2012). Learning Multiple Layers of Features from Tiny Images. University of Toronto. 

Kurach, K., Lucic, M., Zhai, X., Michalski, M., & Gelly, S. (2018). A Large-Scale Study on 

Regularization and Normalization in GANs. Retrieved from https://arxiv.org/abs/1807.04720 

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document 

recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 

Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P., Tejani, A., … Shi, W. (2016). Photo-



Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CoRR, 

abs/1609.04802. Retrieved from http://arxiv.org/abs/1609.04802 

Lee, K., Choi, M.-K., & Jung, H. (2019). DavinciGAN: Unpaired Surgical Instrument Translation for 

Data Augmentation. In M. J. Cardoso, A. Feragen, B. Glocker, E. Konukoglu, I. Oguz, G. Unal, & 

T. Vercauteren (Eds.), Proceedings of The 2nd International Conference on Medical Imaging with 

Deep Learning (Vol. 102, pp. 326–336). London, United Kingdom: PMLR. Retrieved from 

http://proceedings.mlr.press/v102/lee19a.html 

Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. (2017). Data Descriptor: 

A curated mammography data set for use in computer-aided detection and diagnosis research. 

Scientific Data. https://doi.org/10.1038/sdata.2017.177 

Li, C., & Wand, M. (2016). Precomputed Real-Time Texture Synthesis with Markovian Generative 

Adversarial Networks. Retrieved from https://arxiv.org/abs/1604.04382 

Li, W., Zhao, R., Xiao, T., & Wang, X. (2014). DeepReID: Deep Filter Pairing Neural Network for 

Person Re-identification. In 2014 IEEE Conference on Computer Vision and Pattern Recognition 

(pp. 152–159). https://doi.org/10.1109/CVPR.2014.27 

Li, X., Flohr, F., Yang, Y., Xiong, H., Braun, M., Pan, S., … M. Gavrila, D. (2016). A new benchmark 

for vision-based cyclist detection (pp. 1028–1033). https://doi.org/10.1109/IVS.2016.7535515 

Lucic, M., Kurach, K., Michalski, M., Gelly, S., & Bousquet, O. (2017). Are GANs Created Equal? A 

Large-Scale Study. Retrieved from http://arxiv.org/abs/1711.10337 

Lucic, M., Tschannen, M., Ritter, M., Zhai, X., Bachem, O., & Gelly, S. (2019). High-Fidelity Image 

Generation With Fewer Labels. Retrieved from http://arxiv.org/abs/1903.02271 

M Lake, B., Salakhutdinov, R., & B Tenenbaum, J. (2015). Human-level concept learning through 

probabilistic program induction. Science, 350, 1332–1338. https://doi.org/10.1126/science.aab3050 

Ma, S., Fu, J., Chen, C. W., & Mei, T. (2018). DA-GAN: Instance-Level Image Translation by Deep 

Attention Generative Adversarial Networks. In Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (pp. 5657–5666). 

https://doi.org/10.1109/CVPR.2018.00593 

Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., & Malossi, C. (2018). BAGAN: Data Augmentation 

with Balancing GAN. Retrieved from http://arxiv.org/abs/1803.09655 

McNitt-Gray, M., Armato III, S., Meyer, C., Reeves, A., Mclennan, G., Pais, R., … Clarke, L. (2008). 

The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and 

Annotation. Academic Radiology, 14, 1464–1474. https://doi.org/10.1016/j.acra.2007.07.021 

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., … Van Leemput, K. 

(2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE 

Transactions on Medical Imaging, 34(10), 1993–2024. https://doi.org/10.1109/TMI.2014.2377694 

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. CoRR, abs/1411.1784. 

Retrieved from http://arxiv.org/abs/1411.1784 

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral Normalization for Generative 

Adversarial Networks. Retrieved from http://arxiv.org/abs/1802.05957 

Moreira, I., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M., & Cardoso, J. (2011). INbreast: Toward 

a Full-field Digital Mammographic Database. Academic Radiology, 19, 236–248. 

https://doi.org/10.1016/j.acra.2011.09.014 

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading Digits in Natural 

Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and 

Unsupervised Feature Learning 2011. Retrieved from 

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf 

Odena, A., Buckman, J., Olsson, C., Brown, T. B., Olah, C., Raffel, C., & Goodfellow, I. (2018). Is 

Generator Conditioning Causally Related to GAN Performance? Retrieved from 

http://arxiv.org/abs/1802.08768 

Odena, A., Olah, C., & Shlens, J. (2016). Conditional Image Synthesis With Auxiliary Classifier GANs. 

Retrieved from http://arxiv.org/abs/1610.09585 



Onishi, Y., Teramoto, A., Tsujimoto, M., Tsukamoto, T., Saito, K., Toyama, H., … Fujita, H. (2019). 

Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep 

Convolutional Neural Network Trained by Generative Adversarial Networks. BioMed Research 

International, 2019, 1–9. https://doi.org/10.1155/2019/6051939 

Ouyang, X., Cheng, Y., Jiang, Y., Li, C.-L., & Zhou, P. (2018). Pedestrian-Synthesis-GAN: Generating 

Pedestrian Data in Real Scene and Beyond. Retrieved from http://arxiv.org/abs/1804.02047 

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent Progress on Generative 

Adversarial Networks (GANs): A Survey. IEEE Access, 7, 36322–36333. 

https://doi.org/10.1109/ACCESS.2019.2905015 

Park, T., Liu, M.-Y., Wang, T.-C., & Zhu, J.-Y. (2019). Semantic Image Synthesis with Spatially-

Adaptive Normalization. CoRR, abs/1903.07291. Retrieved from http://arxiv.org/abs/1903.07291 

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. In British Machine Vision 

Conference. 

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks. Retrieved from http://arxiv.org/abs/1511.06434 

Ravuri, S., & Vinyals, O. (2019). Classification Accuracy Score for Conditional Generative Models. 

Retrieved from http://arxiv.org/abs/1905.10887 

Ren, J., Hacihaliloglu, I., Singer, E. A., Foran, D. J., & Qi, X. (2018). Adversarial Domain Adaptation for 

Classification of Prostate Histopathology Whole-Slide Images. Retrieved from 

http://arxiv.org/abs/1806.01357 

Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for Data: Ground Truth from Computer 

Games. CoRR, abs/1608.02192. Retrieved from http://arxiv.org/abs/1608.02192 

Ristani, E., Solera, F., Zou, R. S., Cucchiara, R., & Tomasi, C. (2016). Performance Measures and a Data 

Set for Multi-Target, Multi-Camera Tracking. CoRR, abs/1609.01775. Retrieved from 

http://arxiv.org/abs/1609.01775 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image 

Segmentation. Retrieved from https://arxiv.org/abs/1505.04597 

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., & Lopez, A. M. (2016). The SYNTHIA Dataset: A 

Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. In 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3234–3243). 

https://doi.org/10.1109/CVPR.2016.352 

Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., & Barfett, J. (2017). Generalization of Deep Neural 

Networks for Chest Pathology Classification in X-Rays Using Generative Adversarial Networks. 

Retrieved from https://arxiv.org/abs/1712.01636 

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved 

Techniques for Training GANs. Retrieved from http://arxiv.org/abs/1606.03498 

Shaban, M. T., Baur, C., Navab, N., & Albarqouni, S. (2018). StainGAN: Stain Style Transfer for Digital 

Histological Images. Retrieved from http://arxiv.org/abs/1804.01601 

Shijie, J., Ping, W., Peiyi, J., & Siping, H. (2017). Research on data augmentation for image classification 

based on convolution neural networks. Proceedings - 2017 Chinese Automation Congress, CAC 

2017, 2017-Janua(201602118), 4165–4170. https://doi.org/10.1109/CAC.2017.8243510 

Shin, H. C., Tenenholtz, N. A., Rogers, J. K., Schwarz, C. G., Senjem, M. L., Gunter, J. L., … Michalski, 

M. (2018). Medical image synthesis for data augmentation and anonymization using generative 

adversarial networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), 11037 LNCS, 1–11. 

https://doi.org/10.1007/978-3-030-00536-8_1 

Shiqi Yu, Daoliang Tan, & Tieniu Tan. (2006). A Framework for Evaluating the Effect of View Angle, 

Clothing and Carrying Condition on Gait Recognition. In 18th International Conference on Pattern 

Recognition (ICPR’06) (Vol. 4, pp. 441–444). https://doi.org/10.1109/ICPR.2006.67 

Shmelkov, K., Schmid, C., & Alahari, K. (2018). How good is my GAN. In Proceedings of the European 

Conference on Computer Vision (ECCV 2018) (pp. 1–20). Retrieved from 



http://arxiv.org/abs/1807.09499 

Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor Segmentation and Support Inference 

from RGBD Images. In Proceedings of the 12th European Conference on Computer Vision - 

Volume Part V (pp. 746–760). Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-

642-33715-4_54 

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural networks 

applied to visual document analysis. In Proceedings of the International Conference on Document 

Analysis and Recognition, ICDAR (Vol. 2003-Janua, pp. 958–963). 

https://doi.org/10.1109/ICDAR.2003.1227801 

Simon, T., Joo, H., & Sheikh, Y. (2017). Hand Keypoint Detection in Single Images using Multiview 

Bootstrapping. CVPR. 

Sirinukunwattana, K., Pluim, J. P. W., Chen, H., Qi, X., Heng, P.-A., Guo, Y. B., … Rajpoot, N. M. 

(2016). Gland Segmentation in Colon Histology Images: The GlaS Challenge Contest. CoRR, 

abs/1603.00275. Retrieved from http://arxiv.org/abs/1603.00275 

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., & Hospedales, T. M. (2017). Learning to 

Compare: Relation Network for Few-Shot Learning. CoRR, abs/1711.06025. Retrieved from 

http://arxiv.org/abs/1711.06025 

Sutskever, I., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. R. (2014). Dropout : A Simple Way to 

Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 

Tang, X., Wang, Z., Luo, W., & Gao, S. (2018). Face Aging with Identity-Preserved Conditional 

Generative Adversarial Networks (pp. 7939–7947). https://doi.org/10.1109/CVPR.2018.00828 

Tang, Y., Cai, J., Lu, L., Harrison, A. P., Yan, K., Xiao, J., … Summers, R. M. (2018). CT Image 

Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion 

Segmentation Improvement. Retrieved from https://arxiv.org/abs/1807.07144 

Taylor, L., & Nitschke, G. (2019). Improving Deep Learning with Generic Data Augmentation. In 

Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 

1542–1547). https://doi.org/10.1109/SSCI.2018.8628742 

Temel, D., Kwon, G., Prabhushankar, M., & AlRegib, G. (2017). {CURE-TSR:} Challenging Unreal and 

Real Environments for Traffic Sign Recognition. CoRR, abs/1712.02463. Retrieved from 

http://arxiv.org/abs/1712.02463 

UCI. (2011). UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set. 

Http://Archive.Ics.Uci.Edu/Ml/Datasets/Breast+Cancer+Wisconsin+%2528Diagnostic%2529. 

Valstar, M., & Pantic, M. (2010). Induced disgust, happiness and surprise: An addition to the mmi facial 

expression database. Proc. Int’l Conf. Language Resources and Evaluation, Workshop EMOTION, 

65–70. 

Vandenhende, S., De Brabandere, B., Neven, D., & Van Gool, L. (2019). A Three-Player GAN: 

Generating Hard Samples To Improve Classification Networks. Retrieved from 

http://arxiv.org/abs/1903.03496 

Vinyals, O., Blundell, C., Lillicrap, T. P., Kavukcuoglu, K., & Wierstra, D. (2016). Matching Networks 

for One Shot Learning. CoRR, abs/1606.04080. Retrieved from http://arxiv.org/abs/1606.04080 

Volpi, R., Morerio, P., Savarese, S., & Murino, V. (2018). Adversarial Feature Augmentation for 

Unsupervised Domain Adaptation. Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 5495–5504. https://doi.org/10.1109/CVPR.2018.00576 

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD Birds-200-

2011 Dataset. 

Wang, G., Kang, W., Wu, Q., Wang, Z., & Gao, J. (2019). Generative Adversarial Network (GAN) Based 

Data Augmentation for Palmprint Recognition. 2018 International Conference on Digital Image 

Computing: Techniques and Applications, DICTA 2018, 1–7. 

https://doi.org/10.1109/DICTA.2018.8615782 

Wang, X., Wang, K., & Lian, S. (2019). A Survey on Face Data Augmentation. Retrieved from 

https://arxiv.org/abs/1904.11685 



Wang, Z., She, Q., & Ward, T. E. (2019). Generative Adversarial Networks: A Survey and Taxonomy. 

Retrieved from https://arxiv.org/abs/1906.01529 

Wei, X., Gong, B., Liu, Z., Lu, W., & Wang, L. (2018). Improving the Improved Training of Wasserstein 

GANs: A Consistency Term and Its Dual Effect. Retrieved from https://arxiv.org/abs/1803.01541 

Wu, E., Wu, K., Cox, D., & Lotter, W. (2018). Conditional infilling GANs for data augmentation in 

mammogram classification. In Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11040 LNCS, pp. 98–

106). Springer Verlag. https://doi.org/10.1007/978-3-030-00946-5_11 

Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a Probabilistic Latent 

Space of Object Shapes via 3D Generative-Adversarial Modeling. CoRR, abs/1610.07584. 

Retrieved from http://arxiv.org/abs/1610.07584 

Wu, Y, Lim, J., & Yang, M. (2013). Online Object Tracking: A Benchmark. In 2013 IEEE Conference on 

Computer Vision and Pattern Recognition (pp. 2411–2418). https://doi.org/10.1109/CVPR.2013.312 

Wu, Yirui, Yue, Y., Tan, X., Wang, W., & Lu, T. (2018). End-To-End Chromosome Karyotyping with 

Data Augmentation Using GAN. Proceedings - International Conference on Image Processing, 

ICIP, 2456–2460. https://doi.org/10.1109/ICIP.2018.8451041 

Xiang, Y., Kim, W., Chen, W., Ji, J., Choy, C., Su, H., … Savarese, S. (2016). ObjectNet3D: A Large 

Scale Database for 3D Object Recognition (Vol. 9912, pp. 160–176). https://doi.org/10.1007/978-3-

319-46484-8_10 

Yan, K., Wang, X., Lu, L., Zhang, L., Harrison, A. P., Bagheri, M., & Summers, R. M. (2018). Deep 

Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image 

Findings in a Diverse Large-Scale Lesion Database. In Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR.2018.00965 

Yan, M., Liu, K., Guan, Z., Xu, X., Qian, X., & Bao, H. (2018). Background Augmentation Generative 

Adversarial Networks (BAGANs): Effective Data Generation Based on GAN-Augmented 3D 

Synthesizing. Symmetry, 10, 734. https://doi.org/10.3390/sym10120734 

Yang, J, Zhao, Z., Zhang, H., & Shi, Y. (2019). Data Augmentation for X-Ray Prohibited Item Images 

Using Generative Adversarial Networks. IEEE Access, 7, 28894–28902. 

https://doi.org/10.1109/ACCESS.2019.2902121 

Yang, Jie, Liu, S., Grbic, S., Setio, A. A. A., Xu, Z., Gibson, E., … Comaniciu, D. (2018). Class-Aware 

Adversarial Lung Nodule Synthesis in {CT} Images. CoRR, abs/1812.11204. Retrieved from 

http://arxiv.org/abs/1812.11204 

Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning Face Representation from Scratch. CoRR, 

abs/1411.7923. Retrieved from http://arxiv.org/abs/1411.7923 

Yi, X., Walia, E., & Babyn, P. (2018). Generative Adversarial Network in Medical Imaging: A Review. 

Retrieved from http://arxiv.org/abs/1809.07294 

Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2018). Self-Attention Generative Adversarial 

Networks. Retrieved from http://arxiv.org/abs/1805.08318 

Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., & Yang, Q. (2016). 3D Hand Pose Tracking and Estimation 

Using Stereo Matching. CoRR, abs/1610.07214. Retrieved from http://arxiv.org/abs/1610.07214 

Zhang, R., Che, T., Grahahramani, Z., Bengio, Y., & Song, Y. (2018). MetaGAN: An Adversarial 

Approach to Few-Shot Learning. Advances in Neural Information Processing Systems 31. Retrieved 

from http://papers.nips.cc/paper/7504-metagan-an-adversarial-approach-to-few-shot-learning.pdf 

Zhang, X., Wang, Z., Liu, D., & Ling, Q. (2018). DADA: Deep Adversarial Data Augmentation for 

Extremely Low Data Regime Classification, 2807–2811. Retrieved from 

http://arxiv.org/abs/1809.00981 

Zhang, Y., Jia, G., Chen, L., Zhang, M., & Yong, J. (2019). Self-Paced Video Data Augmentation with 

Dynamic Images Generated by Generative Adversarial Networks. 

Zhang, Z., Yang, L., & Zheng, Y. (2018). Translating and Segmenting Multimodal Medical Volumes 

with Cycle- and Shape-Consistency Generative Adversarial Network. CoRR, abs/1802.09655. 



Retrieved from http://arxiv.org/abs/1802.09655 

Zhao, G., Huang, X., Taini, M., Li, S. Z., & Pietikäinen, M. (2011). Facial expression recognition from 

near-infrared videos. Image and Vision Computing, 29(9), 607–619. 

https://doi.org/https://doi.org/10.1016/j.imavis.2011.07.002 

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., & Tian, Q. (2015). Scalable Person Re-identification: 

A Benchmark. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 1116–

1124). https://doi.org/10.1109/ICCV.2015.133 

Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled Samples Generated by GAN Improve the Person Re-

identification Baseline in Vitro. Proceedings of the IEEE International Conference on Computer 

Vision, 2017-Octob, 3774–3782. https://doi.org/10.1109/ICCV.2017.405 

Zhong, Z., Zheng, L., Zheng, Z., Li, S., & Yang, Y. (2017). Camera Style Adaptation for Person Re-

identification. Retrieved from http://arxiv.org/abs/1711.10295 

Zhou, S., Ke, M., & Luo, P. (2019). Multi-camera transfer GAN for person re-identification. Journal of 

Visual Communication and Image Representation. https://doi.org/10.1016/j.jvcir.2019.01.029 

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle-

Consistent Adversarial Networks. Proceedings of the IEEE International Conference on Computer 

Vision, 2017-Octob, 2242–2251. https://doi.org/10.1109/ICCV.2017.244 

Zhu, Y., Aoun, M., Science, C., Krijn, M., & Vanschoren, J. (2018). Data Augmentation using 

Conditional Generative Adversarial Networks for Leaf Counting in Arabidopsis Plants. Computer 

Vision Problems in Plant Phenotyping (CVPPP2018), 1–11. Retrieved from 

https://www.semanticscholar.org/paper/Data-Augmentation-using-Conditional-Generative-for-Zhu-

Aoun/0636eb841bf3480309a346587010f43f2a87633e 

Zhuang, P., Schwing, A. G., & Koyejo, S. (2019). {FMRI} data augmentation via synthesis. CoRR, 

abs/1907.06134. Retrieved from http://arxiv.org/abs/1907.06134 

Zimmermann, C., & Brox, T. (2017). Learning to Estimate 3D Hand Pose from Single RGB Images. 

Retrieved from https://lmb.informatik.uni-freiburg.de/projects/hand3d/ 

Zoumpourlis, G., Doumanoglou, A., Vretos, N., & Daras, P. (2017). Non-linear convolution filters for 

cnn-based learning. In Proceedings of the IEEE International Conference on Computer Vision (pp. 

4761–4769). 

 


