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Abstract—The present work investigates the use of 3D flow
information for performing Deep Learning (DL)-based human
action recognition. Generally, 3D flow fields include rich and
fine-grained information, regarding the motion dynamics of the
observed human actions. However, despite the great potentials
present, 3D flow has not been widely used, mainly due to
challenges related to the efficient modeling of the flow information
and the addressing of the respective computational complexity
issues. In this paper, different techniques are investigated for
incorporating 3D flow information in DL action recognition
schemes. In particular, a novel sequence modeling approach is
introduced, which combines the advantageous characteristics for
spatial correlation estimation of Convolutional Neural Networks
(CNNs) with the increased temporal modeling capabilities of
Long Short Term Memory (LSTM) models. Additionally, an
extended CNN-based deep flow model is proposed that extracts
features from both the spatial and temporal domains, by applying
3D convolutions; hence, modeling the action dynamics within
consecutive frames. Moreover, for compact and efficient 3D
motion feature extraction, the combined use of CNNs with a
‘flow colorization’ approach is adopted. The proposed methods
significantly outperform similar DL and hand-crafted 3D flow
approaches, and compare favorably with most skeleton-based
techniques in the currently most challenging public dataset,
namely the NTU RGB-D.

Index Terms—Action recognition, 3D flow, Deep Learning

I. INTRODUCTION

Human action recognition has recently attracted a lot of
attention due to its very wide set of possible application
fields, ranging from surveillance and robotics to gaming and e-
learning. Several researchers have devoted increased resources
for accomplishing reliable solutions [1]. However, despite
the huge plethora of 2D approaches that have already been
proposed, 3D action recognition in the general case constitutes
an open research topic of wide interest in the field of computer
vision.

For reaching robust action recognition performance, several
challenges need to be addressed, including, among others,
the difference in the appearance of the individuals, difference
in the execution of the same action by different subjects,
different action execution speed, etc. [2]. Initially, research on
human action recognition focused on designing appearance-
based representations, based only on the processing of RGB
information, due to the availability of large RGB datasets for
training and evaluation purposes [3]. However, with the recent

introduction of corresponding large-scale 3D resources, such
as the NTU RGB-D dataset [4], significant boost has been
given in the field. The provided depth maps include a great
wealth of information and can significantly improve the RGB-
based performance; hence, shifting the analysis focus to the
3D space.

According to the type of input stream, RGB-D action
recognition methods are roughly divided into the following
main types: a) surface (depth), b) skeleton-tracking, and c)
flow ones. Surface methods make use of only the captured
depth maps (or the computed surface normal vectors) for
estimating a representation of the human subject pose and
subsequently modeling the action dynamics [5]–[7]. On the
other hand, skeleton-tracking methods make extensive use of
domain knowledge, regarding the appearance and the topo-
logical characteristics of the human body, relying on the
tracking of human body parts over time. This is the most
popular category of methods, where the aim is to produce
discriminative representations of the tracked human skele-
ton [8]–[11]. Moreover, flow-based methods have also been
explored, which combine depth with RGB information for
estimating more discriminative representations (namely 3D
flow fields) that enable the focus of the analysis procedure
on the areas where motion has been observed. Munaro et
al. [12] introduce a grid-based motion descriptor, by esti-
mating correspondences between point-clouds belonging to
consecutive frames. Histograms of local 3D motion are used
in [13], taking into account spatio-temporal interest points.
Furthermore, Fanello et al. [14] present an effective real-time
system for one-shot action modeling and recognition, using
histograms of 3D flow. In [15], Papadopoulos et al. introduce a
set of local/global-level 3D flow descriptors, which incorporate
spatial and surface information in the flow representation,
while efficiently encoding the global motion characteristics in
a compact way.

The recent trend in the computer vision field, the so-called
‘Deep Learning’ (DL) paradigm, relies on the use of data-
driven methods for automatically learning optimal features.
The latter has shown outstanding performance in multiple
image analysis tasks, including object detection [16], [17],
concept detection [18], [19] and image classification [20],
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a) b) c)
Fig. 1: Examined architectures for modeling visual feature correlations and learning sequential motion patterns: a) SFAM
scheme , b) proposed CNN-LSTM-based, and c) proposed C3D-based.

[21]. Until now, DL schemes for action recognition have in
principle focused on the use of skeleton-tracking data, i.e. they
make extensive use of domain knowledge (employed skeleton-
tracker), and relatively straight-forward implementations. In
[4], a Part-aware Long Short-Term Memory (P-LSTM) model
is proposed as an extension of the conventional LSTM,
targeting the learning of correlations among different body
parts. A tree structure spatio-temporal design of a LSTM is
proposed in [22], which models spatial dependencies among
joints and temporal correlations among frames at the same
time. Huang et al. [23] incorporate the Lie group structure
into a deep network architecture to learn more appropriate
Lie group features for 3D action recognition. Moreover, a new
class of LSTM network, termed as the Global Context-Aware
Attention LSTM (GCA-LSTM), for 3D action recognition is
introduced in [24], which is able to selectively focus on the
informative joints in the action sequence with the assistance
of global contextual information.

Not surprisingly, DL techniques have also been applied to
3D flow action-recognition problems. In [25], a representation
based on the processing of 3D flow fields is introduced, termed
Scene Flow Action Map (SFAM), which encodes the flow
sequence into a single action template. However, the latter has
been designed based solely on the use of 2D CNNs, aiming
at estimating complex patterns along the spatial dimensions.

In this context, the main research contribution of this work
comprises the design of several spatio-temporal architectures
for efficiently modeling detailed motion patterns encoded in
multiple adjacent frames, either by combining the increased
temporal modeling capabilities of LSTMs with the advan-
tageous characteristics for spatial correlation estimation of
CNNs or by applying 3D convolutions directly to spatio-
temporal data.

In this paper, the problem of 3D flow-based human action
recognition using DL techniques is investigated. The main
contributions of this work are summarized as follows:

• A novel sequence modeling approach for efficiently
modeling fine-grained, yet compact and discrimina-
tive, spatio-temporal features for robustly encoding 3D
human action dynamics, by combining the advantageous
characteristic for spatial correlation estimation of CNNs
with the increased temporal modeling capabilities of
LSTMs.

• An extended CNN-based deep flow model that extracts
features from the both spatial and temporal domains, by

applying 3D convolutions; hence, modeling the action
dynamics in multiple consecutive frames.

• A new processing and representation scheme of 3D
flow information that leverages the learning and discrim-
ination capabilities of CNNs for human action recogni-
tion, coupled with a ‘flow colorization’ approach.

The proposed approaches significantly outperform similar DL
and hand-crafted 3D flow methods, and compare favorably
with most skeleton-based techniques in the currently most
challenging public dataset, namely the NTU RGB-D [4].

The remainder of the paper is organized as follows: The
proposed 3D flow action recognition method is presented in
Section II. Experimental results are discussed in Section III
and conclusions are drawn in Section IV.

II. ACTION RECOGNITION REALIZATION

Human actions inherently include a temporal dimension
(the so called ‘action dynamics’), the capturing and encoding
of which is of paramount importance for achieving robust
recognition performance. Despite the fact that information
streams containing a great wealth of information are available
(e.g. 3D flow), they have not received particular attention so
far in the context of DL-based 3D action recognition methods.
In this respect, new methodologies for processing and repre-
senting flow information are described in this section. One of
the major challenges, regarding 3D flow estimation, concerns
the corresponding computational requirements, which have
hindered its widespread use so far. However, computationally
efficient 3D flow estimation algorithms have recently been
introduced with satisfactory flow computation accuracy. In this
work, the algorithm of [26] has been employed, which exhibits
a processing rate equal to 24 frames per second (fps).

The SFAM architecture, which is presented in Fig. 1a, is
currently the only approach that utilizes 3D flow estimations,
while exploiting the increased computational capabilities of
DL. The latter encodes a video sample into a single dynamic
image, by taking into account consecutive 3D flow fields. It
can be seen that the core part of the SFAM is based solely on
the use of 2D CNNs, focusing on the spatial domain analysis.
This raises the question whether such a template matching
approach is capable of modeling the complex spatio-temporal
structure of human actions. To this end, CNN-LSTM and 3D
CNNs architectures are considered in this work. The proposed
methods are depicted in Fig. 1b and Fig. 1c, respectively. The
CNN-LSTM architecture involves the use of Convolutional
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Fig. 2: Exemplary colorized frames of 3D flow for actions: a)
‘Throw’, b) ‘Jump up’ and c) ‘Pushing other person’.

Neural Network (CNN) layers for per frame feature extraction
and the use of Long Short Term Memory (LSTM) neural
architectures for temporal sequence modeling. The overall
architecture comprises two sub-networks, a CNN network
for feature extraction and a LSTM network for modeling
correlations across time steps. On the other hand, the 3D
convolution architecture is based on the C3D model [27],
which is able to learn directly from spatio-temporal data,
trained in an end-to-end manner; hence, modeling spatial and
temporal correlations at the same time.

A. 3D flow processing and representation

For computing a discriminant 3D flow representation for
each video frame, while taking advantage of the DL paradigm,
CNNs are employed, due to their increased ability in modeling
complex patterns at multiple scales along the spatial dimension
[28]. In order to fully leverage the learning and discrimination
capabilities of CNNs in typical visual analysis tasks, the
common practice of utilizing CNNs pre-trained using large-
scale datasets and fine-tuning them using the particular data
of the application at hand has also been followed in this work.
However, in order to enable the use of pre-trained CNNs (i.e.
models that receive as input RGB information) in the develop-
ment of the proposed 3D flow representation, an appropriate
transformation of 3D flow to RGB-like information is required.

For achieving this, a ‘flow colorization’ approach is fol-
lowed, similar to the one introduced by Eitel et al. in [29]. In
particular, at every pixel location and for each of the X , Y ,
Z axes, the absolute value of the corresponding flow vector
component is linearly normalized in the interval [0, 255],
taking into account the respective minimum and maximum
values that have been measured in the whole dataset and for
all pixel positions. In this way, a colorized 3-channel RGB
image is estimated for every frame 3D flow field, which can
in turn be provided as input to any conventional CNN that
has been trained using RGB data. In Fig. 2, examples of
colorized flow fields of consecutive frames for different types
of actions are given (green, red and blue colors are used for

X , Y , and Z axes respectively). For example, for the ‘Pushing
other person’ action the green color indicates that there is an
intense motion in both arms towards the X direction, which is
the case when someone pushes another person away. On the
other hand, the red color is predominant in the ‘Jump’ action,
where the person moves along the Y direction. Following
the proposed flow colorization approach, 3D flow patterns of
increased complexity are estimated along the layers of the
originally RGB trained CNN.

B. Sequence modeling approach (CNN-LSTM)

Regarding the CNN-LSTM architecture, the proposed flow
representation is eventually computed by considering the fea-
tures from the last CNN convolutional layer. In the current
implementation, the ‘ResNet-34’ [30] model is used and the
last convolutional layer is fed to the LSTM in order to perform
the classification. LSTM networks [31], a particular type of
RNNs, have been extensively used, among others, for human
action recognition, due to their efficiency in modeling time
evolving processes [32], [33]. The latter aims at modeling
the temporal succession of its internal states representation
for best explaining the input data; hence, encoding the action
dynamics. To this end, LSTMs have also been used in this
work for realizing human action recognition. For every action
instance, a constant number of T frames is uniformly sampled.
For each frame, flow features are extracted from the CNN
network as described in Section II-A, and features from the
last convolutional layer subsequently are provided as input
to the LSTM model. In the current work, the individual
NN architectures are selected to be independently trained for
simplicity purposes; thus, during training the CNN model
parameters are not updated, while the LSTM weights are
adapted following the back-propagation operation.

In order to examine the fundamental functionality of a
LSTM in depth, let X(t) be an input sequence and P(t) the
corresponding target output. A LSTM then maps X(t) to P(t)
through a series of intermediate representations [31]:

I(t) = σ[WxiX(t) +WhiH(t− 1) +Bi] (1)
F(t) = σ[WxfX(t) +WhfH(t− 1) +Bf ] (2)
O(t) = σ[WxoX(t) +WhoH(t− 1) +Bo] (3)

G(t) = tanh[WxcX(t) +WhcH(t− 1) +Bc] (4)
C(t) = F(t)C(t− 1) + I(t)G(t) (5)

H(t) = O(t) tanh[C(t)] (6)
P(t) = WhpH(t) +Bp (7)

σ(.) is a non-linear scaling factor. C(t) is the ‘internal
memory’ of the LSTM and the gates I(t), F(t) and O(t)
control the degree to which the memory accumulates new
input G(t), attenuates its memory and influences the hidden
layer output H(t), respectively. The LSTM is parametrized
by the learnable weight W and biases B matrices. These
weights are used to direct the operation of the gates and they
depend solely on the current and the previous time step. From
the above equations (1)-(4), it can be observed that a LSTM



unit encodes the temporal patterns between two consecutive
frames, namely between frames t and t− 1. Additionally, the
LSTM network has relative few parameters to update during
the learning phase, since the input Wx and the recurrent
Wh weight matrices are shared across time. Moreover, the
developed LSTM network is trained to predict the observed
action class at every video frame, while for estimating an
aggregated probability P(t) for each action for the entire video
sequence, simple averaging of all corresponding probability
values of all frames is performed. Multi-layer LSTMs are
used in this work for efficiently encoding more long-term
correlations in the input data.

C. Template matching approach (3D convolution)

Compared to 2D convolutions, 3D convolutions have the
ability to model temporal dependencies and correlations, due
to the employed 3D filters and pooling operators. As stated
in [27], 3D convolutions are applied to both the spatial and
temporal domain, while 2D convolutions operate only along
the spatial dimensions. It has been proven that 2D convolutions
do not fully exploit the temporal information of the input
signal. On the other hand, 3D convolutions are shown to
be advantageous in modeling also temporal, apart from only
spatial, characteristics [27], [34]. In addition, the 3D pooling
operation further reduces the size of the input data, while pre-
serving the encoded motion patterns and removing irrelevant
information. For the 3D convolution, both feature maps and
kernels have a temporal dimension, and the convolution also
needs to slide along that direction. The shape of the kernel is
d × h × w where d, represents the kernel temporal depth, h
and w are the height and width, respectively. Compared with
the LSTM described in the Section II-B, the receptive field of
a 3D convolution layer takes into account a variable number
of adjacent frames; thus, learning wider(i.e. across the whole
action) temporal patterns.

For modeling the correlations among the sequentially se-
lected 2D colorized motion frames (Section II-A), the 3D Con-
vNet (C3D) network [27] is employed to learn the chromatic
changes, edge orientations and, hence, the encoded motion
patterns. The C3D consists of 8 convolutional layers with
3 × 3 × 3 kernels that operate spatio-temporally on the RGB
sequence, interleaved by 5 max-pooling layers. At the top of
the model, two fully connected layers of 4096 neurons each
are followed by a softmax layer, the latter with neurons equal
to the number of the supported action classes.

III. EXPERIMENTAL RESULTS

In this section, experimental results, as well as comparative
evaluation, from the application of the proposed 3D action
recognition methods are presented. For the evaluation, the
‘NTU RGB+D’ [4] dataset was used, i.e. the currently broadest
and by far most challenging publicly available one (a set of 60
action types are supported). Taking into account the videos’
duration in the dataset, a set of 60 frames were uniformly
selected for feature extraction, which roughly corresponds to
one third of the average number of frames per action. Prior to

feature extraction, simple depth thresholding techniques based
on skeleton tracking information were used for maintaining
only the subjects’ silhouettes.

A. CNN-LSTM implementation details

Concerning the CNN-LSTM architecture, for motion fea-
ture extraction, the following procedure was applied at every
frame: a) 3D flow fields were extracted at the Kinects’s depth
resolution (512 × 424), b) a square (400 × 400) region posi-
tioned at the frame center was selected, c) the aforementioned
region was down-sampled to size 300 × 300 pixels, and d)
a (224x224) patch was randomly cropped; it needs to be
noted that the employed CNN input dimension was equal to
224× 224. Therefore the CNN-LSTM receives input clips of
size 3× 60× 224× 224.

Regarding implementation details, the proposed LSTM net-
work consisted of three layers with 2048 units, while the
‘Torch1’ scientific computing framework and a Nvidia Tesla
K40 GPU were used. Zero-mean Gaussian distribution with
standard deviation equal to 0.01 was used to initialize all NN
weight and bias matrices. All class predictions were passed
through a softmax operator (layer) to estimate a probability
distribution over the supported actions. Stochastic Gradient
Descent (SGD) was used during training, along with a multino-
mial logistic loss function. The batch size was set equal to 256,
while the momentum value was equal to 0.9. Weight decay
with value 0.0005 was used for regularization. For single-
modality analysis the training procedure lasted 80 epochs.
An adaptive learning rate approach [35] was followed during
training, which proved to speed up the learning process while
solving the problem of exploding gradients.

B. C3D implementation details

Unlike the previous spatio-temporal architecture, the 3D
ConvNet architecture required a different pre-processing ap-
proach, mainly due to the computational complexity of the
C3D model. Following the same procedure, the extracted
features were center-cropped (400 × 400), down-sampled
(300×300) and randomly cropped (224×224) to induce spatial
and temporal jittering. During training, clips were down-scaled
to 112×112 to match the C3D input requirements. Each video
sequence was split into 16-frame clips with 8 frames overlap,
resulting in a slightly higher performance and reducing the
computational burden. Therefore, the C3D receives input clips
of size 3× 16× 112× 112.

Regarding the C3D model, the ‘Keras2’ deep learning
framework with ‘Tensorflow3’ backend was used for ex-
perimentation on two Nvidia Tesla K40 GPUs. The model
was trained with SGD, using mini-batches of 60 clips with
lr = 3e−3. The lr was divided by 5 every 4 epochs and the
model required 30 epochs to converge.



Method
Accuracy

Cross-subject Cross-view

a)

1 Layer LSTM (256) 49.28% 50.15%

1 Layer LSTM (512) 51.23% 53.48%

1 Layer LSTM (1024) 53.49% 56.85%

1 Layer LSTM (2048) 56.54% 58.91%

2 Layer LSTM (2048) 58.62% 60.43%

3 Layer LSTM (2048) 59.85% 61.83%

b) Proposed Conv3D-Flow 73.27% 79.64%

c)

Local flow [15]* 34.33% 37.42%

Global flow [15]* 48.09% 52.44%

SFAM [25] 57.36% 59.14%

LieNet [23] 61.37% 66.95%

P-LSTM [4] 62.9% 70.3%

ST-LSTM [22] 69.2% 77.7%

GCA-LSTM [24] 74.4% 82.8%

TABLE I: Action recognition results: a) LSTM scheme pa-
rameterization, b) C3D-based approach and c) Comparative
evaluation. Methods with an asterisk ‘*’ follow the hand-
crafted approach, while underlined ones indicate skeleton-
based schemes.

C. Evaluation

In Table I, quantitative action recognition results are given
in the form of the overall classification accuracy, i.e. the
percentage of all action instances that were correctly classified.
Concerning the proposed two-step spatio-temporal scheme, a
set of variant NN architectures are evaluated (group ‘a’ of
experiments in Table I). It can be observed that the introduced
3-Layer CNN-LSTM approach exhibits the highest overall
performance. This is mainly due to the more complex feature
representations that the developed LSTM encodes in deeper
layers. Examining the behavior of the CNN-LSTM scheme in
more details, it is shown that the performance is maximized by
increasing the number of hidden units as well as the number of
stacked LSTM layers. Further analysis of the findings suggests
that the depth of the network, in terms of additional layers,
is more important than the number of memory cells in a
given layer to model an action. Although these approaches,
which combine the advantageous characteristics for spatial
correlation estimation of CNNS with the increased temporal
modeling capabilities of LSTMs, show promising performance
in the task of 3D human action recognition, they do not
employ an end-to-end model and require separate computation
of the 3D flow representation and the estimation of temporal
dependencies of adjacent frames. In addition, the LSTM
network may be often susceptible in the presence of noise
in the input signal, as it only models correlations between the
two consecutive frames t and t−1 (1)-(4). On the other hand,
the proposed C3D approach achieves remarkably improved
performance over the CNN-LSTM architectures (group ‘b’ of

1http://torch.ch/
2https://keras.io/
3https://www.tensorflow.org/

results in Table I), due to the increased receptive field and
the ‘shared’ spatio-temporal weight matrices (as reported in
Section II-C), highlighting the strength of template matching
approaches in modeling spatio-temporal patterns.

For providing a better insight, the action recognition con-
fusion matrix obtained from the proposed best performing
scheme (C3D-based) is given in Fig. 3. It can be observed
that the proposed network boosts the performance of actions
that contain whole-body motions, such as ‘standing up’, ‘sit-
ting down’, ‘throw’, ‘pickup’, ‘wear jacket’, ‘jump up’, etc.
Additionally, actions with similar poses or subtle motions are
shown to be hard to distinct. For example, the ‘writing’ action
is misclassified as ‘reading’ or ‘playing with phone/tablet’. It
needs also to be highlighted that the proposed action represen-
tation does not make use of domain specific knowledge (i.e.
the same flow analysis methodology can be applied with any
other type of objects being present in the examined scene, e.g.
chair). The latter demonstrates the increased discrimination
capabilities of the proposed flow representation scheme.

The proposed methods are comparatively evaluated with
a set of approaches that make use of 3D flow or skeleton
information. In particular, the performance of both hand-
crafted (local flow [15] and global flow [15]) and DL (SFAM
[25], LieNet [23], P-LSTM [4], ST-LSTM [22] and GCA-
LSTM [24]) methods is reported (group ‘c’ of experiments
in Table I). The recognition performance of literature ap-
proaches is indicated as reported in [15] and [24]. Only
the method of SFAM [25] was implemented by the authors
of this work. Overall, from the presented results (Table I),
it can be seen that the proposed method exhibits improved
performance, compared to the other 3D flow methods. In
particular, the introduced CNN-LSTM method surpasses the
SFAM approach (i.e. the best-performing literature work) by
at least 2.5%, while the C3D approach by at least 16% in
both the ‘CrossSubject’ and ‘CrossView’ setups. This justifies
the fundamental claim of the current work that for achiev-
ing robust action recognition results, design of truly spatio-
temporal schemes is required. Concerning the comparison with
the skeleton-based approaches, the proposed best performing
method (namely C3D) surpasses most well-known literature
methods, demonstrating the rich and discriminative properties
of the 3D flow modality. Only the method of GCA-LSTM [24]
exhibits increased performance; however, the latter technique
incorporates a recurrent attention mechanism for performance
improvement. On the contrary, the focus of this work was to
propose new means for exploiting the 3D flow information
more efficiently, while such attention mechanisms could also
be additionally incorporated for further performance improve-
ment. Moreover, it needs to be highlighted again that the
proposed flow representation exhibits a significant advanta-
geous characteristic, since it includes rich and fine-grained
information, regarding the motion dynamics of the observed
human actions, while however retaining generality, i.e. it can
support any type of object, does not incorporate domain
specific information (e.g. output of a skeleton-tracker) and it
is able to generalize across different evaluation scenarios.



Fig. 3: The confusion matrix obtained from the application of
the proposed C3D-based scheme.

IV. CONCLUSIONS

In this paper, the problem of 3D flow human action recog-
nition using DL techniques was investigated. In particular,
independent CNN and LSTM architectures (comprising the
proposed composite one) were selected for simplicity pur-
poses. Complementary, a template matching approach was
presented that learns spatio-temporal features from videos, by
applying 3D convolutions; thus, modeling the action dynamics
within consecutive frames. Moreover, a new processing and
representation scheme that utilizes 3D flow information was
introduced, while further exploits the learning and discrimi-
nation capabilities of DL for human action recognition. The
proposed methods were experimentally shown to outperform
similar DL and hand-crafted 3D flow approaches, and compare
favorably with most skeleton-based techniques in the currently
most challenging public dataset, without using domain-specific
information (Section III-C). Future work includes the inves-
tigation of including domain-specific knowledge in the intro-
duced flow representation and its more efficient combination
with skeleton-tracking data.

ACKNOWLEDGMENT

The work presented in this paper was supported by the
European Commission under contract H2020-700367 DANTE.

REFERENCES

[1] G. Cheng, Y. Wan, A. N. Saudagar, K. Namuduri, and B. P. Buck-
les, “Advances in human action recognition: A survey,” CoRR, vol.
abs/1501.05964, 2015.

[2] S. Herath, M. Tafazzoli Harandi, and F. Porikli, “Going deeper into
action recognition: A survey,” CoRR, vol. abs/1605.04988, 2016.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in NIPS. IEEE, 2014, p. 568576.

[4] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A large
scale dataset for 3d human activity analysis,” in CVPR, 2016.

[5] O. Oreifej and Z. Liu, “HON4D: Histogram of oriented 4D normals for
activity recognition from depth sequences,” in CVPR, 2013.

[6] X. Yang and Y. Tian, “Super normal vector for human activity
recognition with depth cameras,” IEEE TPAMI, vol. PP, no. 99, pp.
1–1, 2016.

[7] H. Rahmani, A. Mahmood, D. Q. Huynh, and A. S. Mian, “Histogram of
oriented principal components for cross-view action recognition,” IEEE
TPAMI, vol. 38, no. 12, pp. 2430–2443, 2016.

[8] M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban, “Human
action recognition using a temporal hierarchy of covariance descriptors
on 3D joint locations,” in IJCAI, 2013.

[9] Y. Wu, “Mining actionlet ensemble for action recognition with depth
cameras,” in CVPR, 2012.

[10] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant human action
recognition using histograms of 3D joints,” in CVPRW, 2012, pp. 20–27.

[11] M. Jiang, J. Kong, G. Bebis, and H. Huo, “Informative joints based
human action recognition using skeleton contexts,” Signal Processing:
Image Communication, vol. 33, pp. 29–40, 2015.

[12] S. Michieletto M. Munaro, G. Ballin and E. Menegatti, “3d flow
estimation for human action recognition from colored point clouds,”
BICA, 2013.

[13] M. B. Holte, B. Chakraborty, J. Gonzalez, and T. B. Moeslund, “A local
3-D motion descriptor for multi-view human action recognition from 4-
D spatio-temporal interest points,” J-STSP, vol. 6, no. 5, pp. 553–565,
Sept 2012.

[14] S. R. Fanello, I. Gori, G. Metta, and F. Odone, “Keep it simple and
sparse: real-time action recognition.,” JMLR, vol. 14, no. 1, pp. 2617–
2640, 2013.

[15] G. Papadopoulos and P. Daras, “Human action recognition using 3d
reconstruction data,” IEEE TCSVT, vol. PP, no. 99, pp. 1–1, 2017.

[16] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object
detection using deep neural networks,” in CVPR, 2014.

[17] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang,
Z. Wang, C.-C. Loy, et al., “Deepid-net: Deformable deep convolutional
neural networks for object detection,” in CVPR, 2015.

[18] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann,
“DevNet: A deep event network for multimedia event detection and
evidence recounting,” in CVPR, 2015.

[19] H. Fang, S. Gupta, F. N. Iandola, R. K. Srivastava, L. Deng, P. Dollár,
J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig,
“From captions to visual concepts and back,” CoRR, vol. abs/1411.4952,
2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE TPAMI, vol. 37,
no. 9, pp. 1904–1916, 2015.

[21] K. Simonya and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2015.

[22] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang, “Spatio-temporal
LSTM with trust gates for 3D human action recognition,” in ECCV.
Springer, 2016, pp. 816–833.

[23] Z. Huang, C. Wan, Probst T, and L. Van Gool, “Deep learning
on lie groups for skeleton-based action recognition,” CoRR, vol.
abs/1612.05877, 2016.

[24] J. Liu, G. Wang, P. Hu, L. Y. Duan, and A. C. Kot, “Global context-
aware attention lstm networks for 3d action recognition,” in CVPR, July
2017, pp. 3671–3680.

[25] P. Wang, W. Li, Z. Gao, Y. Zhang, C. Tang, and P. Ogunbona, “Scene
flow to action map: A new representation for rgb-d based action
recognition with convolutional neural networks,” CVPR, 2017.

[26] M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers, “A primal-
dual framework for real-time dense RGB-D scene flow,” in ICRA, 2015.

[27] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in ICCV, 2015,
pp. 4489–4497.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[29] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard,
“Multimodal deep learning for robust rgb-d object recognition,” in IROS,
2015.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[33] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-
Fei, “Every moment counts: Dense detailed labeling of actions in
complex videos,” IJCV, 2017.

[34] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE TPAMI, vol. 40, no. 6, pp. 1510–1517,
2018.

[35] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.


