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ABSTRACT

Convolutional Neural Networks (CNNs), which have nowa-
days dominated image analysis tasks, constitute feed-forward
methods that model increasingly complex data structures and
patterns along the subsequent hidden layers of the network.
However, the common practice of using the activation fea-
tures from the last network layer inevitably leads to a visual
recognition bottleneck. This is due to the fact that discrimi-
native features for different objects of varying complexity do
not need to be extracted from the same layer. To this end, a
novel frequency domain analysis of the feature maps of the
same as well as of different network layers is proposed. In
this way, the proposed method exploits more efficiently the
knowledge that is stored in the actual CNN and facilitates in
identifying the most discriminative features for every individ-
ual object type. Experimental results in a large-scale real-
world Closed-Circuit Television (CCTV) surveillance and the
PASCAL VOC 2012 datasets demonstrate the efficiency of
the proposed approach.

Index Terms— Visual recognition, deep learning, convo-
lutional neural networks, frequency domain analysis

1. INTRODUCTION

Recent advances in the GPU technology have given great
boost and increased the capabilities of machine learning
computational models and in particular Neural Networks
(NNs) [1], which have largely been ignored over the past
two decades. The so called ‘Deep Learning (DL)’ approach
targets the construction of end-to-end systems that automati-
cally learn the optimal features for the task at hand from the
raw data; hence, outperforming and replacing the respective
hand-crafted features.

For the case of image analysis, DL techniques have pri-
marily been based on the use of Convolutional Neural Net-
works (CNNs) [2], which are suitable for processing multi-
dimensional input arrays and detecting complex patterns at
multiple spatial and semantic scales. The fundamental goal of
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CNNs, which consist of applying subsequent layers of convo-
lutional, pooling and non-linearity operators, is to model and
encode structures of increasing semantic complexity (as pro-
gressing through the subsequent network layers). For exam-
ple, at the first layers simple low-level geometric features are
modeled (e.g. different edge types), while at the last network
layer complex objects/concepts are formed.

Among the image analysis tasks where CNNs have ex-
hibited increased applicability and achieved superior perfor-
mance are: i) image classification [3], ii) object detection [4],
and iii) image segmentation [5]. In [3], a large deep con-
volutional neural network is trained to classify the images
in the ImageNet LSVRC contest into the different supported
classes. Simonyan and Zisserman [6] investigate the effect of
the convolutional network depth on its accuracy in the large-
scale image recognition setting. Additionally, He et al. [7]
propose a ‘spatial pyramid pooling’ strategy for generating a
fixed-length representation regardless of the image size/scale.
In [8], a Region Proposal Network (RPN) is introduced that
shares full-image convolutional features with the object de-
tection network, thus enabling nearly cost-free region pro-
posals generation. Moreover, Long et al. [5] build ‘fully
convolutional’ networks that take input of arbitrary size and
produce correspondingly-sized output with efficient inference
and learning in the context of semantic image segmentation.
Furthermore, a CNN-based algorithm is outlined in [9] for de-
tecting all instances of a category in an image and, for each
instance, marking the pixels that belong to it.

CNNs, which have prevailed image analysis tasks (as de-
scribed above), constitute feed-forward methods that model
increasingly complex data structures and patterns along the
subsequent hidden layers of the network. The common prac-
tise, though, is to use the activation features from only the
last network layer during the classification step. However,
this choice inevitably leads to a visual recognition bottleneck,
since discriminative features for different objects of varying
complexity do not necessarily need to be extracted from the
same layer. For overcoming this limitation, a novel frequency
domain analysis is proposed in this paper for further improv-
ing the recognition capabilities of any CNN-based method. In
particular, the feature maps of the same as well as of different
network layers are simultaneously analyzed and a concrete
representation is produced. This facilitates in identifying the
most discriminative features at different semantic scales for



Fig. 1. Cross-layer activation feature extraction.

every individual object category, while also taking into ac-
count the correlations among the feature maps of the same
or different layers. In this way, the proposed cross-layer ac-
tivation features exploit more efficiently the knowledge that
is stored in the actual CNN. Experimental results in a large-
scale real-world Closed-Circuit Television (CCTV) surveil-
lance and the PASCAL VOC 2012 datasets demonstrate the
efficiency of the proposed approach.

The remainder of the paper is organized as follows: The
proposed cross-layer activation feature extraction procedure
is described in Section 2. Section 3 details the developed vi-
sual classifier. Experimental results are presented in Section
4 and conclusions are drawn in Section 5.

2. CROSS-LAYER ACTIVATION FEATURE
EXTRACTION

CNNs constitute feed-forward models that receive as in-
put raw data and their fundamental functionality consists of
the application of subsequent hidden layers that automatically
learn increasingly complex, in terms of visual appearance and
semantic granularity, patterns and structures. The convolu-
tional filters at the very first layers encode simple geometrical
properties of the objects or simple shape patterns, such as dif-
ferent types of edges. Following layers model more complex
mid-level representations (e.g. abstract representations of
object classes), different parts of objects or even object types
with relatively simple visual appearance. Eventually, at the
last layers, complex object types (e.g. car) are formulated, by
transforming and combining the patterns learned in previous
layers. It must be noted that typically the last network layers,
which are primarily responsible for generating the network’s
classification decision, are fully-connected and receive as
input the features of the last convolutional layer, although in
many CNN-based systems a different classifier (e.g. linear
SVM) is also used for this task.

Several research works have verified the above learning
behavior in CNNs for different image analysis tasks. Inter-
estingly, the work of [10] shows that the features of not the
last hidden layer, but the layer before, of the employed CNN
accomplish the highest recognition performance. Aiming to

shed light on the actual CNN behavior, Zeiler et al. [11]
present a way to map the layer activities back to the input im-
age pixel space, showing what input pattern originally caused
a given activation in the network feature maps, by introducing
a so-called ‘Deconvolutional Network’. In a more elaborate
work of the same authors [12], a visualization technique that
gives insight into the function of intermediate feature layers
and the operation of the classifier in a CNN is outlined.

In Fig. 1, a schematic representation of the conceptualiza-
tion described above is given. In particular, a CNN initially
receives as input a color image. Then, feature maps of varying
spatial resolution and number of features are estimated at ev-
ery subsequent layer; typically, along the subsequent network
layers the spatial dimensions of the respective feature maps
are reduced through the application of pooling operators for
invariance incorporation, while on the contrary the number
of feature maps increases for forming more abstract, complex
and detailed patterns. Indicative examples of the types of pat-
terns that are encoded at every layer are also provided, while a
more thorough analysis of how and what patterns are formed
at different network layers can be found in [12]. For simplic-
ity, a straight-forward architecture with a single information
stream is presented.

From the above analysis and schematic representation,
it can be seen that the typical CNN learning paradigm ex-
hibits the following main limitations: i) providing as input
to the classification step the features from the last convolu-
tional layer is not the best choice for all object types, which
inevitably belong to different levels of semantic granularity,
and ii) in the classification step (e.g. fully connected layers),
although different feature maps are combined, the possible
correlations among them are not taken into account.

For efficiently overcoming the above limitations, a fre-
quency domain analysis is proposed in this work for extract-
ing cross-layer activation features. In particular, the proposed
features exhibit the following advantageous characteristics:
i) information from multiple layers is directly incorporated;
hence, enabling the selection of the appropriate learned pat-
terns from different network layers with respect to every
individual object/concept type, and ii) the correlations among
the features of the same, as well as of different network layers,
are modeled. More specifically, let the feature map of the i-th



network layer be denoted Mi(xi, yi, fi), where xi ∈ [1, Xi],
yi ∈ [1, Yi] and fi ∈ [1, Fi]. Xi and Yi represent the feature
map’s horizontal and vertical spatial dimensions, respectively,
while Fi denotes the number of learned features at the i-th
layer. Since Mi(xi, yi, fi) from different layers generally
have different spatial resolution, the first step in the proposed
feature extraction procedure is to transform the feature maps
into arrays of the same spatial dimensions. This is performed
by means of simple linear interpolation in the XY space,
where all Mi(xi, yi, fi) target spatial dimensions are set equal
to X

′

i = mini(Xi)/2 and Y
′

i = mini(Yi)/2 in the current
implementation; the interpolated feature maps are denoted
M

′

i (x
′

i, y
′

i, fi). It must be noted that the number of features
Fi at every layer remains unchanged. Then, the interpolated
feature maps M

′

i (x
′

i, y
′

i, fi) of the last N network layers are
stacked, along the F dimension, in a single composite feature
map, as also shown in Fig. 1. This results in the formation of
a composite feature map CM(xc, yc, fc), where xc ∈ [1, X

′

i ],
yc ∈ [1, Y

′

i ], fc ∈ [1, Fc] and Fc =
∑N

i=1 Fi. Subsequently,
for every spatial location (xc, yc) an 1D vector is formed
by considering all elements of CM(xc, yc, fc) along the F
dimension (Fig. 1); this vector is denoted v̄xc,yc(fc). The
latter vector undergoes a frequency domain analysis for es-
timating and efficiently modeling the correlations among
its elements. For that purpose, the Discrete Cosine Trans-
form (DCT) is used, according to the following equation:
rxc,yc(β) =

∑Fc

fc=1 v̄xc,yc(fc) cos
π
Fc

[(fc − 1) + 1
2 (β − 1)],

where rxc,yc(β) are the estimated DCT coefficients and
β ∈ [1, Fc]. The reason for using the DCT transform is
twofold: i) its simple form requires relatively reduced cal-
culations, and ii) it is a frequency domain transform that
receives as input a real sequence and its output is also a real
set of values. Other common frequency analysis methods
(e.g. Fourier transform) were also evaluated; however, they
did not lead to increased performance compared with the
one received when using DCT. Eventually, concatenating
all rxc,yc(β) coefficients computed for all spatial locations
(xc, yc) results in the formation of vector G, which comprises
the proposed cross-layer activation features.

The following important observations need to be made re-
garding vector G: i) The proposed cross-layer activation fea-
tures encode the correlations between different features of the
same as well as different network layers; hence, leading to
the generation of a more comprehensive representation of the
information that is already present in a CNN, and ii) it must
be highlighted that the above feature extraction procedure is
generic, i.e. it can be applied to any CNN for any type of
analysis task.

3. VISUAL CLASSIFICATION

Although the proposed feature extraction step can be inte-
grated as an additional layer in any existing CNN, similarly
to the SPP-net [7], for simplicity purposes a separate CNN is

used for classification in this work. In particular, a CNN con-
sisting of three fully-connected layers is implemented for pre-
dicting the final classification decision (Fig. 1). Zero-mean
Gaussian distribution with standard deviation equal to 0.01
is used to initialize the neuron weights and biases. The first
two layers comprise 4096 neurons each, while the last layer
consists of a number of neurons equal to the number of sup-
ported classes for the problem at hand. The class predictions
are passed through a softmax operator (layer) to estimate a
probability distribution over classes. Stochastic gradient de-
scent is used during training, along with a multinomial logis-
tic loss function. The batch size is set equal to 256, while the
momentum value is equal to 0.9. Weight decay with value
0.0005 is used for regularization. The base learning rate is
initially set to 0.0001 and it is subsequently reduced by a fac-
tor of 10 every 10 epochs. Overall, the training procedure
lasts 30 epochs.

4. EXPERIMENTAL RESULTS

In this section, experimental results from the application of
the proposed cross-layer activation feature extraction ap-
proach in an object recognition task are presented. For the
evaluation a large-scale real-world Closed-Circuit Television
(CCTV) surveillance dataset is used. This dataset is directly
provided from the archives of the Metropolitan Police Ser-
vice (MET), officially known as ‘New Scotland Yard’ to the
general public, and consists of approximately 100, 000 hours
of real surveillance footage from the 2011 London riots. The
critical challenges about this content, apart from its large-
scale nature, are its low-quality and the presence of significant
amounts of noise/artifacts/corruptions in the video frames.
Some indicative frames are given in Fig. 3. Real-world
police investigation needs require the detection of the follow-
ing set of classes in the available content: E = {eg, g ∈
[1, G]} ≡ {face, body, vehicle, car, background}. For
each class, a set of 10, 000 instances was assembled and
used in the experiments reported below (approximately 40%
of the frames were used for training, 5% for validation and
55% for test). The formulated dataset cannot be made pub-
licly available, due to the presence of sensitive informa-
tion with respect to the corresponding MET investigations.
However, in order to evaluate the proposed features with
public datasets and to better demonstrate their efficiency,
the PASCAL VOC 2012 dataset was also used. For this
dataset, the following 20 object classes are supported: E ≡
{aeroplane, bike, bird, boat, bottle, bus, car, cat, chair,
cow, dining table, dog, horse, motorbike, person, potted
plant, sheep, sofa, train, tv/monitor}. The split in
training, validation and test sets is the same with the MET
dataset.

Regarding the implementation details, although the pro-
posed features can be extracted from any CNN, the VGG [6]
(which won the first and the second places in the localization



a)

b)

Fig. 2. Object recognition results for: a) VGG and b) AlexNet CNNs.

Fig. 3. Indicative frames from the MET dataset.

and classification tracks in the ImageNet Challenge 2014) and
the AlexNet [3] (which won the classification track in the Im-
ageNet Challenge 2012) networks were used in this work.
Additionally, the convolutional feature maps Mi(xi, yi, fi)
are considered for every layer i in the current implementa-
tion. Moreover, the ‘selective search’ [13] method is used for
localizing the objects in the frames of the MET dataset, while
for the VOC 2012 the available objects’ ground truth bound-
ing boxes were used.

In Fig. 2, quantitative evaluation results are presented
in the form of the calculated object recognition rates, while
the value of the overall classification accuracy is also given,
for both datasets. In particular, the following features are
evaluated (using the CNN-based classifier described in Sec-
tion 3): a) original feature maps Mi(xi, yi, fi) from the last
convolutional layer, b) proposed cross-layer activation fea-
tures rxc,yc(β), computed taking into account the last two
network convolutional layers, and c) variant of the proposed
features, where 3D Fast Fourier Transform (FFT) is applied
to the whole composite feature map CM(xc, yc, fc) and the
estimated coefficients are used for classification. It must be
noted that using all features from the last two network convo-
lutional layers as input to the implemented CNN-based classi-
fier (Section 3) led to training failures, due to the high dimen-
sionality of the resulting feature vector. From the presented
results, it can be seen that the proposed features outperform

the original convolutional ones by 0.79% (0.85%) in the MET
(VOC 2012) dataset for the case of the VGG network, in terms
of overall classification accuracy. The respective performance
improvement for the case of the AlexNet network is 0.61%
(0.53%) in the MET (VOC 2012) dataset. This fact demon-
strates the advantageous characteristics of the proposed fea-
tures that take into account the correlations among the convo-
lutional features of the same as well as of different network
layers; on the contrary, conventional feed-forward CNNs take
only implicitly into account the cross-layer correlations and
ignore the correlations among the features of the same layer.
Additionally, the proposed features are also significantly ad-
vantageous compared with the 3D FFT ones. This is due to
the FFT features also encoding the correlations along the spa-
tial dimensions (XY space), which forms a more detailed rep-
resentation of CM(xc, yc, fc) that inevitably leads to over-
fitting occurrences. It must be noted that the well-known SPP-
net [7], which introduces a ‘spatial pyramid pooling’ strategy
for improving any CNN-based image classification method
(i.e. a conceptualization similar to the proposed features), in-
troduces improvements of up to 0.7% in terms of mean av-
erage precision for object detection tasks in the Pascal VOC
2007 dataset (when an improvement in performance is ob-
served).

5. CONCLUSIONS

In this paper, a set of novel cross-layer activation features are
proposed, which encode the correlations among the convolu-
tional features of the same as well as of different network lay-
ers. The proposed approach is generic and can be applied to
improve the recognition performance of any CNN-based clas-
sification scheme. Future experiments include, among others,
experimentation with additional CNN networks and consider-
ation of more convolutional layers for feature extraction.
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