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Abstract: In this paper, a marker-based, single-person optical motion capture method (DeepMoCap)
is proposed using multiple spatio-temporally aligned infrared-depth sensors and retro-reflective
straps and patches (reflectors). DeepMoCap explores motion capture by automatically localizing and
labeling reflectors on depth images and, subsequently, on 3D space. Introducing a non-parametric
representation to encode the temporal correlation among pairs of colorized depthmaps and 3D optical
flow frames, a multi-stage Fully Convolutional Network (FCN) architecture is proposed to jointly
learn reflector locations and their temporal dependency among sequential frames. The extracted
reflector 2D locations are spatially mapped in 3D space, resulting in robust 3D optical data extraction.
The subject’s motion is efficiently captured by applying a template-based fitting technique on the
extracted optical data. Two datasets have been created and made publicly available for evaluation
purposes; one comprising multi-view depth and 3D optical flow annotated images (DMC2.5D),
and a second, consisting of spatio-temporally aligned multi-view depth images along with skeleton,
inertial and ground truth MoCap data (DMC3D). The FCN model outperforms its competitors on the
DMC2.5D dataset using 2D Percentage of Correct Keypoints (PCK) metric, while the motion capture
outcome is evaluated against RGB-D and inertial data fusion approaches on DMC3D, outperforming
the next best method by 4.5% in total 3D PCK accuracy.

Keywords: motion capture; deep learning; retro-reflectors; retro-reflective markers; multiple depth
sensors; low-cost; deep mocap; depth data; 3D data; 3D vision; optical mocap; marker-based mocap

1. Introduction

Human pose tracking, also known as motion capture (MoCap), has been studied for decades and
is still a very active and challenging research topic. MoCap is widely used in industries such as gaming,
virtual/augmented reality, film making and computer graphics animation, among others, as a means
to provide body (and/or facial) motion data for virtual character animation, humanoid robot motion
control, computer interaction, and more. To date, a specialized computer vision and marker-based
MoCap technique, called Optical Motion Capture [1], constitutes the gold-standard for accurate and
robust motion capture [2]. Optical MoCap solutions [3–5] employ multiple optical sensors and passive
or active markers (passive markers are coated with retro-reflective material to reflect light, while active
markers are powered to emit it; for passive marker-based MoCap systems, IR emitters are also used to
cast IR light on the markers) placed on the body of the subject to be captured. The 3D positions of the
markers are extracted by intersecting the projections of two or more spatio-temporally aligned optical
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sensors. These solutions precisely capture the body movements, i.e., the body joint 3D positions and
orientations per frame in high frequency (ranging from 100 to 480 Hz).

In the last decade, professional optical MoCap technologies have seen rapid development
due to the high demand of the industry and the strong presence of powerful game engines [6–8],
allowing for immediate and easy consumption of motion capture data. However, difficulties in using
traditional optical MoCap solutions still exist. Purchasing a professional optical MoCap system is
extremely expensive, while the equipment is cumbersome and sensitive. With respect to its setup,
several steps should be carefully followed, ideally by a technical expert, to appropriately setup the
required hardware/software and to rigidly install the optical MoCap cameras on walls or other static
objects [1,9]. In addition, time-expensive and non-trivial post-processing is required for optical data
cleaning and MoCap data production [10]. To this end, there still exists an imperative need for robust
MoCap methods that overcome the aforementioned barriers.

In this paper, a low-cost, fast motion capture method is proposed, namely DeepMoCap,
approaching marker-based optical MoCap by combining Infrared-Depth (IR-D) imaging,
retro-reflective materials (similarly to passive markers usage) and fully convolutional neural networks
(FCN). In particular, DeepMoCap deals with single-person, marker-based motion capture using a
set of retro-reflective straps and patches (reflector-set: a set of retro-reflective straps and patches,
called reflectors for the sake of simplicity) from off-the-shelf materials (retro-reflective tape) and
relying on the feed of multiple spatio-temporally aligned IR-D sensors. Placing reflectors on and
IR-D sensors around the subject, the body movements are fully captured, overcoming one-side view
limitations such as partial occlusions or corrupted image data. The rationale behind using reflectors is
the exploitation of the intense reflections they provoke to the IR streams of the IR-D sensors [11,12],
enabling their detection on the depth images. FCN [13], instead of using computationally expensive
fully connected layers, are applied on the multi-view IR-D captured data, resulting in reflector 2D
localization and labeling. Spatially mapping and aligning the detected 2D points to 3D Cartesian
coordinates with the use of depth data and intrinsic and extrinsic IR-D camera parameters, enables
frame-based 3D optical data extraction. Finally, the subject’s motion is captured by fitting an articulated
template model to the sequentially extracted 3D optical data.

The main contributions of the proposed method are summarized as follows:

• A low-cost, robust and fast optical motion capture framework is introduced, using multiple IR-D
sensors and retro-reflectors. Contrary to the gold-standard marker-based solutions, the proposed
setup is flexible and simple, the required equipment is low-cost, the 3D optical data are
automatically labeled and the motion capture is immediate, without the need for post-processing.

• To the best of our knowledge, DeepMoCap is the first approach that employs fully convolutional
neural networks for automatic 3D optical data localization and identification based on IR-D
imaging. This process, denoted as “2D reflector-set estimation”, replaces the manual marker
labeling and tracking tasks required in traditional optical MoCap.

• The convolutional pose machines (CPM) architecture proposed in [14] has been extended,
inserting the notion of time by adding a second 3D optical flow input stream and using 2D
Vector Fields [14] in a temporal manner.

• A pair of datasets consisting of (i) multi-view colorized depth and 3D optical flow annotated
images and (ii) spatio-temporally aligned multi-view depthmaps along with Kinect skeleton,
inertial and ground truth MoCap [5] data, have been created and made publicly available (https:
//vcl.iti.gr/deepmocap/dataset).

The remainder of this paper is organized as follows: Section 2 overviews related work; Section 3
explains in detail the proposed method for 2D reflector-set estimation and motion capture; Section 4
presents the published datasets; Section 5 gives and describes the experimental frameworks and results;
finally, Section 6 concludes the paper and discusses future work.

https://vcl.iti.gr/deepmocap/dataset
https://vcl.iti.gr/deepmocap/dataset
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2. Related Work

The motion capture research field consists of a large variety of research approaches.
These approaches are marker-based or marker-less, while the input they are applied on is acquired
using RGB or RGB-D IR/stereo cameras, optical motion capture or inertial among other sensors.
Moreover, they result in single- or multi-person 2D/3D motion data outcome, performing in real-time,
close to real-time or offline. The large variance of the MoCap methods resulting from the multiple
potential combinations of the above led us to classify and discuss them according to an “Input–Output”
perspective. At first, approaches that consume 2D data and yield 2D and 3D motion capture outcome
are presented. These methods are highly relevant to the present work since, in a similar fashion,
the proposed FCN approaches 2D reflector-set estimation by predicting heat maps for each reflector
location and optical flow. Subsequently, 3D motion capture methods that acquire and process 2.5D or
3D data from multiple RGB-D cameras similarly to the proposed setup are discussed. Finally, methods
that fuse RGB-D with inertial data for 3D motion capture are presented, including one of the methods
that are compared against DeepMoCap in the experimental evaluation.

2D Input–2D Output: Intense research effort has been devoted to the 2D pose recovery task
for MoCap, providing efficient methods being effective in challenging and “in-the-wild” datasets.
Pose machines architectures for efficient articulated pose estimation [15] were recently introduced,
employing implicit learning of long-range dependencies between image and multi-part cues. Later on,
multi-stage pose machines were extended to CPM [14,16,17] by combining pose machine rationale
and FCN, allowing for learning feature representations for both image and spatial context directly
from image data. At each stage, the input image feature maps and the outcome given by the previous
stage, i.e., confidence maps and 2D vector fields, are used as input refining the predictions over
successive stages with intermediate supervision. Beyond discrete 2D pose recovery, 2D pose tracking
approaches have been introduced imposing the sequential geometric consistency by capturing the
temporal correlation among frames and handling severe image quality degradation (e.g., motion blur
or occlusions). In [18], the authors extend CPM by incorporating a spatio-temporal relation model and
proposing a new deep structured architecture. Allowing for end-to-end training of body part regressors
and spatio-temporal relation models in a unified framework, this model improves generalization
capabilities by spatio-temporally regularizing the learning process. Moreover, the optical flow
computed for sequential frames is taken into account by introducing a flow warping layer that
temporally propagates joint prediction heat maps. Luo et al. [19] also extend CPM to capture the
spatio-temporal relation between sequential frames. The multi-stage FCN of CPM has been re-written
as a Recurrent Neural Network (RNN), also adopting Long Short-Term Memory (LSTM) units between
sequential frames, to effectively learn the temporal dependencies. This architecture, called LSTM Pose
Machines, captures the geometric relations of the joints in time, increasing motion capture stability.

2D Input–3D Output: During the last years, computer vision researchers approach 3D pose
recovery on single-view RGB data [20–23] for 3D MoCap. In [24], a MoCap framework is introduced,
realizing 3D pose recovery, that consists of a synthesis between discriminative image-based and 3D
pose reconstruction approaches. This framework combines image-based 2D part location estimates and
model-based 3D pose reconstruction, so that they can benefit from each other. Furthermore, to improve
the robustness of the approach against person detection errors, occlusions, and reconstruction
ambiguities, temporal filtering is imposed on the 3D MoCap task. Similarly to CPM, 2D keypoint
confidence maps representing the positional uncertainty are generated with a FCN. The generated maps
are combined with a sparse model of 3D human pose within an Expectation-Maximization framework
to recover the 3D motion data. In [25], a real-time method that estimates temporally consistent
global 3D pose for MoCap from one single-view RGB video is presented, extending top performing
single-view RGB convolutional neural network (CNN) methods for MoCap [20,23]. For best quality
at real-time frame rates, a shallower variant is extended to a novel fully convolutional formulation,
enabling higher accuracy in 2D and 3D pose regression. Moreover, CNN-based joint position regression
is combined with an efficient optimization step for 3D skeleton fitting in a temporally stable way,
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yielding MoCap data. In [26], an existing “in-the-wild” dataset of images with 2D pose annotations
is augmented by applying image-based synthesis and 3D MoCap data. To this end, a new synthetic
dataset with a large number of new “in-the-wild” images is created, providing the corresponding 3D
pose annotations. On top of that, the synthetic dataset is used to train an end-to-end CNN architecture
for motion capture. The proposed CNN clusters a 3D pose to K pose classes on per-frame basis, while a
K−way CNN classifier returns a distribution over probable pose classes.

2.5D / 3D Input–3D Output: With respect to 2.5D/3D data acquisition and 3D MoCap, particular
reference should be made to the Microsoft Kinect sensor [27], beyond its discontinuation, since it
was the first low-cost RGB-D sensor for depth estimation and 3D motion capture, leading to a
massive release of MoCap approaches that use the Kinect streams or are compared to Kinect motion
capture [28–31]. This sensor triggered the massive production of low-cost RGB-D cameras, allowing a
wide community of researchers to study on RGB-D imaging and, subsequently, resulting in a plethora
of efficient MoCap approaches applied on 2.5D/3D data [32–36]. In [37], a multi-view and real-time
method for multi-person motion capture is presented. Similarly to the proposed setup, multiple
spatially aligned RGB-D cameras are placed to the scene. Multi-person motion capture is achieved
by fusing single-view 2D pose estimates from CPM, as proposed in [14,16], extending them to 3D by
means of depth information. Shafaei et al. [38] use multiple externally calibrated RGB-D cameras
for 3D MoCap, splitting the multi-view pose estimation task into (i) dense classification, (ii) view
aggregation, and (iii) pose estimation steps. Applying recent image segmentation techniques to depth
data and using curriculum learning, a CNN is trained on purely synthetic data. The body parts
are accurately localized without requiring an explicit shape model or any other a priori knowledge.
The body joint locations are then recovered by combining evidence from multiple views in real-time,
treating the problem of pose estimation for MoCap as a linear regression. In [39], a template-based
fitting to point-cloud motion capture method is proposed using multiple depth cameras to capture
the full body motion data, overcoming self-occlusions. A skeleton model consisting of articulated
ellipsoids equipped with spherical harmonics encoded displacement and normal functions is used to
estimate the 3D pose of the subject.

Inertial (+2.5D) Input–3D Output: Inertial data [40–43], as well as their fusion with 2.5D data
from RGB-D cameras, are also used to capture the human motion. In [44], Kinect for Xbox One [27]
skeleton tracking is fused with inertial data for motion capture. In particular, inertial sensors are placed
on the limbs and the torso of the subject to provide body bone rotational information by applying
orientation filtering on inertial data. Initially, using Kinect, the lengths of the bones and the rotational
offset between the Kinect and inertial sensors coordinate systems are estimated. Then, the bones
hierarchically follow the inertial sensor rotational movements, while the Kinect camera provides
the root 3D position. In a similar vain, a light-weight, robust method [45] for real time motion and
performance capture is introduced using one single depth camera and inertial sensors. Considering
that body movements follow articulated structures, this approach captures the motion by constructing
an energy function to constrain the orientations of the bones using the orientation measurements of
their corresponding inertial sensors. In [46], inertial motion capture is achieved on the basis of a very
sparse inertial sensor setup, i.e., two units placed on the wrists and one on the lower trunk, and ground
contact information. Detecting and identifying ground contact from the lower trunk sensor signals and
combining this information with a fast database look-up enables data-driven motion reconstruction.

Despite the appearance of the aforementioned methods, traditional marker-based optical MoCap
still remains the top option for robust and efficient motion capture. That is due to the stability
of the marker-based optical data extraction and the deterministic way of motion tracking. To this
end, the proposed method approaches marker-based optical motion capture, however overcoming
restrictions of traditional marker-based optical MoCap solutions by:

• using off-the-shelf retro-reflective straps and patches to replace the spherical retro-reflective
markers, which are sensitive due to potential falling off;
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• automatically localizing and labeling the reflectors on a per-frame basis without the need for
manual marker labeling and tracking;

• extracting the 3D optical data by means of the IR-D sensor depth.

Taking the above into consideration, DeepMoCap constitutes an alternative, low-cost and
flexible marker-based optical motion capture method that results in high quality and robust motion
capture outcome.

3. Proposed Motion Capture Method

DeepMoCap constitutes an online, close to real-time marker-based approach that consumes
multi-view IR-D data and results in single-person 3D motion capture. The pipeline of the proposed
method, depicted in Figure 1, is summarized as follows:

Figure 1. DeepMoCap pipeline overview. After the placement of the reflectors on the subject’s body (1),
spatio-temporally aligned IR-D streams are acquired and processed (2) to feed the FCN with colorized
depth and 3D optical flow images (3). The FCN outcome, i.e., the multi-view 2D reflector-set estimates,
is fused to extract the 3D optical data (4) and, finally, yield the subject’s 3D pose for motion capture (5).

1. A set of retro-reflective straps and patches is placed on the subject’s body.
2. Placing multiple calibrated and synchronized IR-D sensors around the subject to fully capture the

body movements, IR-D raw data are acquired and processed, giving multi-view pairs of colorized
depth and 3D optical flow.

3. Each pair is fed to a FCN model, resulting in 2D reflector-set estimation per view.
4. The reflector-set estimates are spatially mapped in 3D space using the depth data and the intrinsic

and extrinsic calibration camera parameters. The resulting 3D point sets are fused, resulting in
3D optical data outcome.
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5. A template-based articulated structure is registered and fitted to the subject’s body. 3D motion
capture is achieved by applying forward kinematics to this structure based on the extracted 3D
optical data.

The pipeline steps are accordingly described in the following sections.

3.1. Reflector-Set Placement

The reflector-set placement has been designed to provide robust and highly informative motion
capture data, i.e., capturing large number of degrees of freedom (DoFs). The selected placement is
shown in Figure 2, consisting of a set of 26 reflectors Ri ∈ {R1, . . . , R26}, 16 patches and 10 straps,
enabling motion capture by fitting an articulated body structure of 40 DoFs. The use of both straps
and patches has been chosen due to the fact that the straps are 360°-visible on cylindrical body parts
(i.e., limbs), while patches have been used on the body parts where strap placement is not feasible,
i.e., torso, head and hands. Aiming to highlight the distinction between the front and the back side of
the body, the reflective patches are not symmetrically placed. On the front side, two reflector patches
are placed on the head, two on the chest and one on the spine middle, while on the back side, one is
placed on the head, one on the back and one on the spine middle. The retro-reflective material used
to create the reflector-set is the off-the-shelf 2-inch reflective tape used in protective clothing [47].
Following carefully the matching between the reflectors and the body-parts of the subject as depicted
in Figure 2, the reflector-set placement is a fast procedure (it lasts approximately 2 min), since the
sticky straps and patches are effortlessly placed, not requiring high placement precision (it is enough
to be approximately placed to the body part locations shown in Figure 2).

Figure 2. Proposed reflector-set placement. Reflective straps (orange) and patches (blue) placement on
the subject’s body.

3.2. Raw Data Acquisition and Processing

After the reflector-set placement, the subject is ready to be captured. Let us consider the use
of N IR-D devices, thus, N is also the number of views v ∈ {1, . . . , N}. Using the multi-Kinect for
Xbox One capturing setup proposed in [48], spatio-temporally aligned multi-view IR-D data are
acquired. All reflector regions have distinguishable pixel values on IR images Iv

IR (Figure 3a), thus,
applying binary hard-thresholding, the binary mask Iv

IRm
of the reflectors is extracted (Figure 3b).

The corresponding regions on the raw depth images Iv
D (Figure 3c) have zero values due to the

retro-reflections.
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(a) Raw infrared stream. (b) Binary infrared mask. (c) Raw depth stream.

Figure 3. Raw depth and infrared data.

The multi-view IR-D raw data are processed before feeding the FCN. On the one hand, the IR-D
frames are jointly processed in order to compute the 3D optical flow Iv

F of the body movements.
In the present work, the primal-dual algorithm proposed in [49] is considered due to its demonstrated
efficiency on relevant computer vision tasks, such as interaction-based RGB-D object recognition [50]
and 3D action recognition [51]. In particular, the 3D motion vectors between two pairs of IR-D images
and their magnitude are computed. The 3D flow and its magnitude are then colorized by normalizing
each axis values and transforming the 3D motion vectors into a three-channel image. On the other
hand, the depth images Iv

D are colorized applying JET color map conversion. Finally, the reflector
mask Iv

IRm
is subtracted from the colorized depth images, resulting in colorized depth with reflector

black regions, Iv
CD, facilitating the detection of the reflectors. The colorization step for both streams

is required in order to allow the usage of the proposed FCN, initialized by the first 10 layers of
VGG-19 [52]. An example of the processed multi-view outcome is shown in Figure 4.

(a) View 1 (b) View 2 (c) View 3

Figure 4. Multiview two-stream input. (Up) Colorized depth, mask subtracted. (Down) Colorized 3D
optical flow.

3.3. 2D Reflector-Set Estimation Using FCN

The major challenge of the proposed method is the efficient localization and identification task of
the reflectors placed on the subject’s body. Studying the recent literature in 2D localization on RGB
images, the efficiency of deep neural networks in complex tasks such as articulated 2D pose estimation
is remarkable and, therefore, considered appropriate for the present challenge. To this end, a deep
learning approach is introduced extending the multi-stage CPM architecture in order to localize and
identify the reflectors on the body. In particular, a multi-stage fully convolutional network is trained to
directly operate on intermediate confidence maps and optical flow 2D vector fields, instead of Part
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Affinity Fields (PAF) between 2D keypoints, implicitly learning image-dependent spatial models of
the reflectors locations among sequential frames.

Despite the similarities between 2D pose and reflector-set estimation, both being solvers of 2D
localization problems on color images, there exist noteworthy differences. Cao et al. [14] efficiently
address the problem of 2D pose estimation in large, “in-the-wild” RGB datasets [53], resulting in
accurate estimates in a variety of data showing multiple people in different environmental and
lightning conditions. In contrast, the reflector-set estimation is applied in more “controlled” conditions;
(i) the input depth data lie within a narrow range, (ii) the reflector regions have clearly distinguishable
pixel values on IR images, (iii) there is only one subject to be captured and, in most cases, (iv) the
subject is acting at the center of the scene. On the other hand, the reflector-set estimation task is more
complicated with respect to (i) the estimation of a larger number of reflectors in comparison with the
keypoints detected by CPM approaches and (ii) the fact that the reflector patches are one-side visible.
For instance, the reflectors R15 and R14 are both placed on the right shoulder, but on the front and the
back side of the body respectively, while the right shoulder keypoint in CPM 2D poses is unique for
all views.

The overall FCN method is illustrated in Figure 5. A pair of images, the colorized depth Iv
CD and

the corresponding 3D optical flow Iv
F, are given as input. A FCN simultaneously predicts a set of 2D

confidence maps S of the reflector locations and a set of 2D vector fields L; the latter corresponds to the
optical flow fields (OFFs) from the previous frame to the next one, encoding the temporal correlation
between sequential frames. Both sets contain R = 26 elements, one per reflector Ri ∈ {R1, . . . , R26},
the set S = (SR1 , SR2 , ..., SR26), SRi ∈ Rw×h, where w and h are the width and height of the input images
respectively, and the set L = (LR1 , LR2 , . . . , LR26), where LRi ∈ R2×w×h. Finally, a greedy inference step
is applied on the extracted confidence maps and OFFs, resulting in 2D reflector-set estimation.

Figure 5. Overall 2D reflector-set estimation from confidence maps and optical flow 2D vector fields.
The 2D location for R13 reflector is estimated taking into account its predicted heat map and optical
flow between the predictions r13, f−1 and r13, f .

3.3.1. FCN Architecture

The FCN architecture, shown in Figure 6, introduces a new two-stream, two-branch, multi-stage
CPM-based approach which consumes colorized depth Iv

CD and 3D optical flow Iv
F images. Both input

streams are separately processed by a convolutional network of 10 layers (first 10 layers of VGG-19 [52]),
generating two sets of feature maps FD and FOF, correspondingly. Sequentially, an early stage fusion
takes place, concatenating the feature maps of the two streams, F = FOF ⊕ FD. Let us denote t the stage
of the network. At the first stage (t = 1), the fused feature set F is given to both branches producing
confidence maps, St = ρt(F), and 2D vector fields, Lt = ϕt(F), where ρt and ϕt denote the inference of
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each FCN branch. For all the subsequent T − 1 stages, where T denotes the total number of stages,
the predictions from both branches in the previous stage, along with the features set F, are fused and
used to produce refined predictions based on:

St = ρt(F, St−1, Lt−1), t ∈ {2, . . . , T}
Lt = ϕt(F, St−1, Lt−1), t ∈ {2, . . . , T}

, (1)

where the number of stages T is equal to 6, experimentally set by evaluating the results on the
validation dataset for T = 3 and T = 6 stages, as proposed in [14,16], respectively. At the end of each
stage, two L2 loss functions, Lt

S and Lt
L, between the predictions and the ground truth are applied to

guide the network branches to predict confidence maps and OFFs, respectively. At stage t, for a 2D
location p = (x, y), p ∈ R2, the loss functions are given by:

Lt
S =

R

∑
r=1

∑
p
||St

r(p)− S∗r (p)||22

Lt
L =

R

∑
r=1

∑
p
||Lt

r(p)− L∗r (p)||22

(2)

In that way, the vanishing gradient problem is addressed by the intermediate supervision at each
stage, replenishing the gradient periodically. The overall loss function L of the network is given by:

L =
T

∑
t=1

(Lt
S + Lt

L) (3)

Figure 6. DeepMoCap two-stream, multi-stage FCN architecture. The outcome of each stage
t ∈ {2, . . . , T} and the feature set F are fused and given as input to the next stage.

3.3.2. Confidence Maps and Optical Flow Fields

Lt
S and Lt

L are evaluated during training by generating the ground truth confidence map S∗Ri
(Equation (4)) and vector fields L∗Ri

(Equation (5)), respectively.
Confidence maps: Each confidence map is a 2D representation of the belief that a reflector occurs

at each pixel location. The proposed method performs single person motion capture, therefore, a single
peak should exist in each confidence map. Let xRi , f ∈ R2 be the ground truth 2D location of the
reflector Ri on the image, at frame f . For every 2D location p ∈ R2, the ground truth value of S∗Ri , f is
given by:

S∗Ri , f (p) = exp(−
||p− xRi , f ||22

σ2 ) , (4)
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where σ controls the spread of the peak. At test time, non-maximum suppression is applied on the
predicted confidence maps to localize the reflectors, assigning the confidence map peak value to each
reflector prediction confidence, ES

Ri , f .
Optical Flow Fields: In this work, the feature representation of 2D vector fields proposed in [14],

is used in a temporal manner. Preserving both 2D location and orientation information across a region,
a 2D vector field for each reflector is defined by connecting the reflector 2D locations between f − 1
and f frames. Let xRi , f−1, xRi , f ∈ R2 be the ground truth 2D locations of the reflector Ri at frame f − 1
and f , respectively. The ground truth value for every 2D location p ∈ R2 of L∗Ri , f is given by:

L∗Ri , f (p) =

{
v, i f p on optical f low f ield

0, otherwise

v =
xRi , f − xRi , f−1

||xRi , f − xRi , f−1||2

(5)

The set of points that belong to the optical flow field includes the points within a distance
threshold from the line segment between the reflector 2D locations, given by:

0 ≤ v · (p− xRi , f−1) ≤ dRi

|v⊥ · (p− xRi , f−1)| ≤ σRi

, (6)

where σRi is the width of the field in pixels, dRi is the euclidean distance of the Ri reflector 2D locations
between sequential frames in pixels, i.e., dRi = ||xRi ,t − xRi ,t−1||2 , and v⊥ is a vector perpendicular to
v. As an example, the 2D optical flow field for the reflector R13 is illustrated in Figure 5.

During inference, the optical flow, encoding the temporal correlations, is measured by computing
the line integral over the corresponding optical flow field along the line segment connecting the
candidate reflector locations between two sequential frames. Let rRi , f and rRi , f−1 be the predicted
locations for the reflector Ri at the current frame f and the previous one f − 1, correspondingly.
The predicted optical flow field LRi , f is sampled along the line segment to measure the temporal
correlation confidence between the predicted reflector positions in time by:

EL
Ri , f =

∫ 1

0
LRi , f (p(u)) ·

rRi , f − rRi , f−1

||rRi , f − rRi , f−1||2
du , (7)

where p(u) interpolates the reflector positions rRi , f and rRi , f−1 between sequential frames, as given by:

p(u) = (1− u) · rRi , f−1 + u · rRi , f (8)

In other words, the integral is approximated by sampling and summing uniformly spaced values
of u.

Greedy Inference: Finally, a greedy inference step is introduced, taking into consideration
the temporal correlations between temporally sequential 2D reflector estimates. The confidence
values ES

Ri , f and EL
Ri , f given by the confidence maps and the optical flow fields correspondingly,

are summarized in a weighted manner, in order to give the fused confidence ERi , f for each reflector
estimate. In detail, the major component of ERi , f is ES

Ri , f , however, we weight the confidence EL
Ri , f

based on a wL
Ri , f = (1− ES

Ri , f ) factor that increases when ES
Ri , f decreases as:

ERi , f = ES
Ri , f + wL

Ri , f · E
L
Ri , f (9)

In that way, when a confidence map prediction results in low confidence ES
Ri , f estimates, the total

confidence ERi , f is strongly affected by the optical flow confidence, if high. The final outcome of the 2D
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reflector-set estimation is given by applying non-maximum suppression on the reflector predictions
based on the total confidence ERi , f .

3.4. 3D Optical Data

3.4.1. 2D-to-3D Spatial Mapping

Given the reflector-set 2D locations on the depth image Iv
D, a 3D spatial mapping technique is

applied to precisely extract the corresponding 3D positions. Considering that the reflector locations are
given exclusively when the reflectors are clearly visible, a reflector estimate is considered valid only if
it belongs to a region of more than bmin black pixels in Iv

CD, otherwise it is dropped. The minimum
accepted size in pixels for a region was set bmin = 5, since the same region size was used for the
annotation of the data.

In Figure 7, two of the potential cases with respect to the reflector spatial mapping are shown.
In the first case (Figure 7a), the simple and most common one, E0 ∈ Iv

CD is the detected region for a
reflector Ri ∈ {R1, . . . , R26}. Retrieving a pixel set Pv

Ri
of the E0 region contour in Iv

CD (red pixels in
Figure 7a), and mapping its points to Iv

D, the corresponding raw depth values of Pv
Ri

are given. Using
only the non-zero depth values of Pv

Ri
, the median value dRi is considered the distance of the reflector

Ri from the sensor view v.

(a) (b)

Figure 7. Contour detection (red pixels) of the reflector regions for depth estimation and 3D mapping.
(a) Contour of single reflector region, E0. (b) Contour of multi-reflector region, E1.

The second case is illustrated in Figure 7b, where two or more (although not usual) reflectors
belong to the same region E1. Examining the overlapping between the reflector areas, i.e., when n > 1
reflectors share the same black region, the pixels of the contour are clustered in n clusters, based
on the 2D pixel coordinates and the depth values, and then mapped to the corresponding reflectors.
Subsequently, dRi is determined for each reflector Ri based on the clustered pixel set.

After one-to-one mapping between reflectors and regions, the central 2D point pRi
of each ERi

region is spatially mapped to 3D coordinates using the depth distance value dRi and the intrinsic
parameters of the corresponding IR-D sensor, giving the 3D position Pv

Ri
of the reflector Ri from

viewpoint v.

3.4.2. 3D Point Sets Fusion

Using the extrinsic calibration parameters of each sensor, the extracted 3D positions are spatially
aligned to a global 3D-coordinate system, as shown in Figure 8. For the reflective patches, which are
one-side visible to the sensors, the same retro-reflective region is captured by all IR-D sensors and,
therefore, the 3D mapping yields slightly different estimates. To this end, the 3D points Pv

Ri
for a patch

reflector Ri for all views v are fused to one single 3D point PRi , taking into account the confidence value
Ev

Ri
of the FCN reflector estimation. The 3D point PRi is estimated as the weighted central position of

the 3D points from all views by:

wv
Ri

= Ev
Ri

/
N

∑
v=1

Ev
Ri

PRi =
1
N

N

∑
r=1

wRi P
v
Ri

(10)
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Figure 8. Multiple 2D reflector-set estimates (left) are spatially mapped in a global 3D Cartesian
coordinate system, resulting in 3D optical data extraction (right).

For the reflective straps, since different parts of the reflectors are visible to each sensor, the 3D
points are estimated in different 3D locations around the part of the limb where the strap is placed on.
In this case, the desired 3D point is approximately located to the center of the “circle” where these 3D
points lie on, extracted by the method presented in Appendix A.

The full set of the global retro-reflector 3D positions per multi-view group frame f , i.e.,
the extracted 3D optical data, is denoted as P f , while a total confidence value CRi

f for each Ri
reflector is considered as the average value of the reflector estimation confidence Ev

Ri
for each v−view,

v ∈ {1, . . . .N}, CRi
f = 1

N ∑N
v=1 Ev

Ri
. To refine the quality and stability of the 3D point estimates in time,

Kalman filtering [54] is applied to the extracted 3D optical data.

3.5. Motion Capture

The final stage of the proposed method targets at 3D motion capture based on 3D optical data.
At this point, the extracted 3D optical data P f are mapped to a relative motion representation consisting
of joint 3D positions and orientations. Similarly to [55,56], a body structure calibration technique is
proposed, adapting an articulated humanoid template model to the real body structure of the subject.
Subsequently, the calibrated articulated body is jointly moved by applying forward kinematics.

The proposed articulated body structure consists of 20 joints, j ∈ J, including DDoF = 40 DoFs.
It contains Li ∈ L, i ∈ {0, . . . , 6}, hierarchical joint levels and the bones of the structure are registered
to particular reflectors. To this end, a reflector subsetRSj ⊂ {R1, . . . , R26}, j ∈ J, moves the body joint
j ∈ J according to the body joint hierarchy. The correspondence between the joints and the reflectors is
depicted in Figure 9a, while the reflector-to-body part mapping is illustrated in Figure 9b.

Initially, the template is coarsely scaled based on the first batch of optical data frames P f . Then,
given the 3D positions Pj, j ∈ J per frame, a per-bone alignment process is performed to precisely fit
the body parts of the template to the subject’s real body lengths. This step is sequentially performed to
the bones following the joint hierarchy levels, from L0 to L6. More specifically, after fitting the template
to the optical data, the body root 3D position PHIPS with hierarchical level L0 is given, enabling the
sequential estimation of the rest of the bone lengths. Based on the assumption that the bone lengths are
constant (rigid bones) and using exclusively high-confident (CRi

f > 0.6, experimentally set) optical data
P f , a random particle generation step is applied per level in L− 1 phases. More specifically, a set Gj of
G = 500 particles (experimentally set) is generated around the j-joint location Pj given by the spatially
aligned template placement using P f . After the particle generation, the Gj particles relatively follow
the optical data applying forward kinematics. The particle gj ∈ Gj that moves more rigidly between
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Pjl and Pjl+1
, is considered as the closest one to the real relative position of joint jl+1. The objective

function that estimates this particle is given by:

D0 = ||Pjl ,0 − Pgjl+1
,0||2 + ||Pjl+1,0

− Pgjl+1
,0||2

arg min
gjl+1

D(gjl+1
) =

1
F

F

∑
f=1

(D0 − ||Pjl , f − Pgjl+1
, f ||2 + ||Pjl+1, f − Pgjl+1

, f ||2)
, (11)

where D0 denotes the sum of the 3D euclidean distances at the initial frame of the (l)− (l + 1) level
alignment between the 3D position of the particle gjl+1

and the joints jl and jl+1, as given by the
latest template fitting, Pgjl+1

, f denotes the 3D position of the particle gjl+1
at frame f ∈ {1, . . . , F},

where F is the total number for a window of frames used to align a body part of level l + 1. In a
similar fashion, the next level joints and the corresponding bones are calibrated. Angular body part
movements, especially elbow and knee flexions, enable faster and more efficient convergence of the
per-bone alignment process.

Body Joint, j ∈ J Level Li DoFs SubsetRSj Sj (#) Retro-reflectors

Hips L0 6 RS0 4 {R1, R8, R19, R23}
Spinebase L1 3 RS1 2 {R1, R8}
Neck L2 3 RS2 3 {R2, R3, R7}
Head L3 - RS3 3 {R4, R5, R6}
Left Shoulder L3 3 RS4 2 {R9, R10}
Left Elbow L4 1 RS5 1 {R11}
Left Wrist L5 3 RS6 1 {R12}
Left Hand L6 - RS7 1 {R13}
Right Shoulder L3 3 RS8 2 {R14, R15}
Right Elbow L4 1 RS9 1 {R16}
Right Wrist L5 3 RS10 1 {R17}
Right Hand L6 - RS11 1 {R18}
Left Hip L1 3 RS12 1 {R19}
Left Knee L2 1 RS13 1 {R20}
Left Ankle L3 3 RS14 1 {R21}
Left Foot L4 - RS15 1 {R22}
Right Hip L1 3 RS16 1 {R23}
Right Knee L2 1 RS17 1 {R24}
Right Ankle L3 3 RS18 1 {R25}
Right Foot L4 - RS19 1 {R26}

(a) (b)

Figure 9. (a) Template model joints, hierarchical level, DoFs and correspondence to the reflector subsets.
(b) Reflector mapping to body structure body parts.

4. Evaluation Datasets

Two public datasets have been created (https://vcl.iti.gr/deepmocap/dataset) consisting of
subjects wearing retro-reflectors on their bodies. These datasets are exploited for: (i) motion capture
evaluation in comparison with recent MoCap methods and ground truth and (ii) 2D reflector-set
estimation FCN training and testing.

4.1. DMC3D Dataset

The DMC3D dataset consists of multi-view depth and skeleton data as well as inertial and ground
truth motion capture data. Specifically, 3 Kinect for Xbox One sensors were used to capture the depth
and Kinect skeleton data along with 9 XSens MT [57] inertial measurement units (IMU) to enable the
comparison between the proposed method and inertial MoCap approaches based on [44]. Furthermore,
a PhaseSpace Impulse X2 [5] solution was used to capture ground truth MoCap data. PhaseSpace
Impulse X2 is an optical marker-based MoCap system considered appropriate for the scope of this
dataset due to the usage of active instead of passive retro-reflective markers that would have interfered
with the retro-reflectors. The preparation of the DMC3D dataset required the spatio-temporal alignment

https://vcl.iti.gr/deepmocap/dataset
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of the modalities (Kinect, PhaseSpace, XSens MTs). The setup [48] used for the Kinect recordings
provides spatio-temporally aligned depth and skeleton frames. For the Kinect – IMU synchronization,
a global clock was used to record depth and inertial data with common timestamps. Additionally,
given the timestamps and using the robust recording frequency of PhaseSpace Impulse X2 as reference
clock, the spatio-temporal alignment of the ground truth data was manually achieved.

With respect to the amount and the variety of data, 10 subjects, 2 females and 8 males, wearing
retro-reflectors, inertial sensors and active markers (LEDs) on the body, were recorded performing
15 physical exercises, presented in Table 1. The full dataset contains more than 80× 103 three-view
depth and skeleton frames, the extrinsic calibration parameters and the corresponding inertial and
MoCap data.

Table 1. Data captured per subject in the DMC3D dataset.

Physical Exercise # of Repetitions # of Frames Type

Walking on the spot 10–20 200–300 Free
Single arm raise 10–20 300–500 Bilateral
Elbow flexion 10–20 300–500 Bilateral
Knee flexion 10–20 300–500 Bilateral

Closing arms above head 6–12 200–300 Free
Side steps 6–12 300–500 Bilateral

Jumping jack 6–12 200–300 Free
Butt kicks left-right 6–12 300–500 Bilateral

Forward lunge left-right 4–10 300–500 Bilateral
Classic squat 6–12 200–300 Free

Side step + knee-elbow 6–12 300–500 Bilateral
Side reaches 6–12 300–500 Bilateral
Side jumps 6–12 300–500 Bilateral

Alternate side reaches 6–12 300–500 Bilateral
Kick-box kicking 2–6 200–300 Free

4.2. DMC2.5D Dataset

A second set comprising 2.5D data (DMC2.5D Dataset) was captured in order to train and test the
proposed FCN. Using the recorded IR-D and MoCap data, colorized depth and 3D optical flow data
pairs per view were created, as described in Section 3.2. The samples were randomly selected from 8
of the 10 subjects, excluding 2 of them to use them for the evaluation of the MoCap. More specifically,
25× 103 single-view pair samples were annotated with over 300× 103 total keypoints (i.e., reflector
2D locations of current and previous frames on the image), trying to cover a variety of poses and
movements in the scene. 20× 103, 3× 103 and 2× 103 samples were used for training, validation
and testing the FCN model, respectively. The annotation was realized by applying image processing
and 3D vision techniques on the IR-D and MoCap data. In particular, applying blob detection on
the IR binary image Iv

IRm
yielded the 2D locations of the reflectors, while then, the corresponding 3D

positions were estimated by applying 3D spatially mapping (Section 3.4.1). Finally, the reflectors were
labeled by comparing the euclidean 3D distance per frame between the extracted 3D positions and
the joint 3D positions of the ground truth data. However, the automatic labeling was erroneous in the
cases that the reflector regions were merged (Figure 10) or the poses where complex. The complex pose
issues occurred due to the positional offset between the reflector and the joint 3D positions, confusing
the labeling process. Thus, further processing was required in order to manually refine the dataset.
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Figure 10. Reflector annotation using blob tracking on IR binary mask, visualized though on Iv
IR IR

data for the sake of better understanding. Erroneous estimates occur when reflector regions are merged.

5. Evaluation

For the evaluation of the proposed method, two types of experiments were conducted, presented
and discussed in this section. The first experiment concerns the evaluation of the 2D reflector-set
estimation on the DMC2.5D dataset, while, in the second one, the motion capture results are compared
against robust MoCap solutions and ground truth on the DMC3D dataset. At first, FCN architectures
are evaluated, highlighting the outperformance of the proposed FCN model. Accurate 2D reflector-set
estimation eliminates the errors in 3D optical data extraction and, consequently, to the final motion
capture outcome. Thus, afterwards, applying the proposed FCN model to the DMC3D testing dataset,
3D optical data from multi-view sequences are extracted and accordingly used for motion capture.

5.1. 2D Reflector-Set Estimation on DMC2.5D

5.1.1. FCN Implementation

With respect to the training of the proposed FCN, data augmentation takes place randomly to
increase variation of input by scaling and rotating the data. For each batch of frames being fed into
the network per iteration, the transformation is consistent, thus, lower batch size results in higher
variation between the iterations. Both input images are randomly scaled by fs ∈ [0.6, 1.1], randomly
rotated by fθ ∈ [−40°, 40°] and flipped with binary randomness. Finally, all images are cropped to
368× 368 resolution size, also setting the subject bodies at the image center. Regarding the method
parameterization, the stages are equal to T = 6, using stochastic gradient descent with momentum
αm = 0.9 and weight decay wd = 5× 10−4 to optimize the learning process. The batch size is equal
to 10, while the initial learning rate is lr = 2× 10−5 and drops by fg = 3.33× 10−1 every 30× 103

iterations.

5.1.2. Experimental Framework

The introduced FCN architecture approaches 2D-reflector-set estimation, a similar, yet different
task in comparison with 2D pose estimation. Aiming to evaluate the present FCN approach and the
introduced extension with respect to the temporal correlations between the reflector 2D positions
from frame-to-frame, existing methods for keypoint are adapted and trained to address the present
challenge. In detail, the methods by Wei et al. [16] and Cao et al. [14], included in OpenPose (https:
//github.com/CMU-Perceptual-Computing-Lab/openpose) library, have been adapted and trained
with the DMC2.5D dataset.

For the adaptation, the body parts have been replaced by the reflectors, while it is worth noting
that the Part Affinity Fields (PAFs) have been altered due to the difference of the reflector sub-set
placement between the front and the back side of the body. The adapted association between the
reflectors is illustrated in Figure 11. Moreover, since the proposed method has been developed for
single-person motion capture, even though PAFs branch contributes to the final feature space for the
confidence map prediction, its output is not taken into account for the final reflector-set estimation.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Finally, a two-branch colorized depth and 3D optical flow two-stream approach similar to [14] is
evaluated ([14] + 3D OF), showing remarkable results.

Figure 11. The red arrows illustrate the directional associations between the reflectors to adapt the Part
Affinity Fields, as proposed in [14]. The orange and blue colored labels indicate the reflective straps
and patches, respectively.

With respect to the evaluation metrics, the proposed FCN is evaluated on the DMC2.5D dataset
measuring Average Precision (AP) per reflector and mean Average Precision (mAP) for the entire set,
based on Percentage of Correct Keypoints (PCK) [58] thresholds, i.e., a prediction is considered true if
it falls within a pixel region around the ground-truth keypoint. This region is defined by multiplying
the width and height of the bounding box that contains the subject by a factor α that controls the
relative threshold for correctness consideration.

Setting α = 0.05, the validation set of the DMC2.5D dataset was used to indicate the optimum
minimum confidence threshold cmin for the highest mAP per method, aiming at fair comparison
between them. cmin corresponds to the minimum threshold of confidence for a reflector prediction to
be considered as valid, i.e., ERi , f > cmin. The results are presented in Figure 12, showing the method
mAP against confidence threshold. Maximum mAP on the validation set was achieved for cmin = 0.4
for all methods, thus, considered optimum for the experiments on the DMC2.5D testing set.
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Figure 12. Mean Average Precision based on Percentage of Correct Keypoints thresholds (a = 0.05)
against confidence threshold, mAP(cmin).

5.1.3. Results and Discussion

Evaluating the AP results per reflector, shown in Table 2, the efficiency of the methods in
reflector-set estimation is perceived. The proposed FCN method outperforms the rest of the methods
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for the 80.7% of the reflectors (i.e., 21 out of 26). In particular, the AP is improved for the end-reflectors,
i.e., the reflectors placed on the hands and the feet (R13, R18, R22, R26), and their linked reflectors, i.e.,
the wrists and the ankles (R12, R17, R21, R25), which are placed on the body parts with the highest
moving capability and, therefore, the most rapid movements. From these results, we conclude that the
temporal information implicitly encoded in the proposed FCN model improves the distinction among
these reflectors, while for the reflectors that the AP is slightly lower (R8, R10, R13, R14, R20), we can
assume that the predicted optical flow was not accurate or informative enough to boost the prediction
confidence and, therefore, the accuracy of the estimates.

Table 2. AP for PCK with α = 0.05, for each of the 26 reflectors. The proposed FCN method outperforms
the rest of the methods for the 80.7% of the reflectors (i.e., 21 out of 26).

% R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13

[16] 96.81 96.11 99.22 95.06 90.98 85.26 98.78 99.76 95.25 94.70 96.99 93.33 85.92
[14] 96.95 95.36 98.77 96.69 91.08 85.26 98.78 99.51 96.00 95.89 97.15 93.79 87.64

[14] + 3D OF 96.81 96.61 99.45 94.85 89.98 85.53 98.78 99.45 96.00 96.27 97.25 93.49 87.66
Proposed 98.10 97.31 99.48 97.35 91.36 86.20 99.00 98.27 96.64 95.32 97.81 95.19 87.13

% R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26

[16] 83.42 93.21 98.24 96.25 75.23 98.39 98.38 94.52 74.28 94.88 99.30 97.18 64.73
[14] 84.58 92.88 98.66 95.95 76.19 98.39 98.44 94.88 74.06 96.99 99.52 97.87 71.18

[14] + 3D OF 86.33 94.11 98.44 95.92 72.29 98.40 98.42 95.14 78.68 96.53 99.21 97.76 70.56
Proposed 85.61 94.79 98.81 97.50 77.17 99.30 98.18 96.61 79.23 97.93 100.0 98.73 73.96

However, for all the respective methods, the prediction of the end-reflectors is weak in comparison
with the rest of the reflectors. That is probably due to the fact that these reflectors are not often visible
and are closely placed to their linked reflectors. To highlight this difference, mAP results are presented
in Table 3 with and without the end-reflectors.

Table 3. mAP for PCK with α = 0.05, with and without end-reflectors.

Method Total Total (without End-Reflectors)

[16] 92.16% 95.27%
[14] 92.79% 95.61%

[14] + 3D OF 92.84% 95.67%
Proposed 93.73% 96.77%

The proposed approach outperforms the competitive methods, presenting an absolute increase of
mAP equal to 1.47%, 0.94% and 0.89% with end-reflectors, and 1.5%, 1.16% and 0.9% without them,
in comparison with [16], [14] and [14] + 3D OF, respectively. It is worth noting that the two-stream
approach which takes into account the 3D optical flow ([14] + 3D OF) achieves higher mAP than [14,16],
meaning that the temporal information given by the 3D optical flow stream is encoded in the feature
space of the model, resulting in higher localization accuracy.

Finally, before feeding the motion capture method with the 2D reflector-set estimates, a filtering
process is applied based on two fundamental considerations of the task. At first, the reflectors are
detected only when visible; (i) if the region where a detector is located does not belong to a specific color
(black) region of size greater than or equal to bmin = 5 pixels, this estimate is discarded, and (ii) when
more than one reflectors are detected on the same location (absolute distance less than 3 pixels,
experimentally set), the reflectors with lower confidence are dropped. Secondly, the reflectors are
unique on an image since we approach single-person MoCap; if more than one reflector estimates of
the same reflector are detected, only the one with the highest confidence is considered valid.

The AP results per reflector after filtering are shown in Table 4. As shown, the results for all
reflectors and for all methods are equal or greater than the corresponding results before filtering.
At this experiment, the proposed FCN outperforms the rest of the methods at 14 of 26 (53.84%) of
the reflectors.
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Table 4. AP for PCK with α = 0.05, for each of the 26 reflectors, after filtering.

% R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13

[16] 96.95 96.39 99.45 97.30 91.74 86.81 100.0 100.0 96.62 97.46 98.15 94.16 90.50
[14] 96.95 96.19 98.77 98.31 93.98 86.81 100.0 99.76 96.87 97.46 98.55 94.64 90.79

[14] + 3D OF 96.81 96.88 99.45 97.30 91.72 86.81 100.0 99.70 96.87 97.46 98.55 94.05 91.67
Proposed 98.52 98.61 99.81 98.65 92.58 87.35 100.0 100.0 98.90 96.59 100.0 95.50 89.60

% R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26

[16] 83.78 95.93 99.03 97.19 78.81 98.60 99.41 96.59 74.08 97.59 99.40 98.36 68.64
[14] 90.19 96.40 99.32 97.17 82.82 98.60 99.37 97.25 75.66 99.09 99.61 98.60 69.52

[14] + 3D OF 90.19 96.75 99.14 98.30 78.87 98.50 99.50 96.83 81.69 98.25 99.30 98.52 72.68
Proposed 88.90 95.10 99.13 97.82 78.20 99.63 98.50 96.93 79.49 98.25 100.0 99.05 78.21

The mAP results for the total set of reflectors after filtering, with and without the end-reflectors,
are presented in Table 5, all showing higher accuracy than the corresponding values before filtering.
The proposed method outperforms [16], [14] and [14] + 3D OF by presenting an absolute increment
equal to 1.25%, 0.49% and 0.37% with end-reflectors, and 1.06%, 0.47% and 0.61% without them,
respectively.

Table 5. mAP for PCK with α = 0.05, with and without end-reflectors, after filtering.

Method Total Total (without End-Reflectors)

[16] 93.57% 96.41%
[14] 94.33% 97.00%

[14] + 3D OF 94.45% 96.86%
Proposed 94.82% 97.47%

In that way, the outcome of the 2D reflector-set estimation allows us to detect the 2D locations
of the reflectors and, subsequently, the corresponding 3D optical data in a global coordinate system.
Qualitative results of the proposed FCN outcome on sequential input data are illustrated in Figure 13,
while more qualitative results have been made publicly available (https://vcl.iti.gr/deepmocap).

Figure 13. Visualization of the proposed FCN outcome overlayed on sequential multi-view depth
frames. Five multi-view sequential frames, from frame f − 10 to f + 10 with frame step equal to 5,
are horizontally presented.

https://vcl.iti.gr/deepmocap
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5.2. Motion Capture on DMC3D

5.2.1. Experimental Framework

After the introduction of an efficient FCN model for 2D reflector-set estimation, the final MoCap
outcome is evaluated. Applying the proposed qualified FCN model to multi-view sequences, the 3D
optical data are extracted and fed to the MoCap proposed method. For these experiments, several
sequences of approximately 6× 103 frames in total were selected from 2 subjects that were excluded
from the dataset used to train the FCN model. Considering the ground truth data of the DCM3D
dataset, i.e., the motion data captured with PhaseSpace Impulse X2 [5], the motion capture outcome is
compared against the Kinect for Xbox One skeleton tracking with the highest quality, an inertial MoCap
approach that fuses Kinect skeleton and inertial data from 9 IMU (Fusion) [44], and a second robust
inertial method in a similar fashion as [44] (Fusion++) that fuses ground truth data for initialization
and root positioning instead of Kinect skeleton tracking. It is worth noting that jerky skeleton estimates
of Kinect skeleton tracking that cause highly erroneous root 3D position estimates have been excluded
from the testing sequences, keeping only estimates meaningful for comparison.

Inertial MoCap methods were considered appropriate for a fair comparison due to their robust
way of capturing, independent from self-occlusions. Multiple RGB-D- or 3D-based MoCap approaches
were not taken into account due to the missing parts of depth and, therefore, missing 3D data on
the body parts of the subject where the reflectors were placed on, resulting in unfair comparison.
Finally, 3D MoCap methods from monocular RGB considered out of scope due to one-view and
less-informative input, while motion capture methods from multiple RGB sources were not considered
equal for comparison due to the blurry images of RGB streams on rapid movements.

Regarding the evaluation metrics, DeepMoCap is evaluated on the DMC3D dataset using Mean
Average Error (MAE), Root Mean Squared Error (RMSE) and 3D PCK @ a3D = 20 cm metrics for the
3D euclidean distance between the outcome of the methods and the ground truth on 12 joints spanned
by shoulders, elbows, wrists, hips, knees and ankles. In 3D PCK, an estimate is considered correct
when the 3D euclidean distance is less than a3D.

5.2.2. Results and Discussion

The total results of the comparison between the MoCap methods are presented in Table 6, showing
the outperformance of DeepMoCap in comparison with the rest of the methods. The total MAE,
RMSE and 3D PCK for all sequences are 9.02 cm, 10.06 cm and 92.25%, respectively, showing the
best results of all experimental methods. Fusion++ [44], Fusion [44] and Best Kinect [27] follow the
proposed method presenting 88.75%, 85.93% and 83.37% in 3D PCK accuracy, respectively. Additionally,
it is worth mentioning that the proposed method presents lower than 10 cm total mean average
error (MAE).

Table 6. Comparative evaluation of the motion capture results of the respective methods, presenting
total MAE, RMSE and 3D PCK (α3D = 20 cm) metrics.

Method MAE (cm) RMSE (cm) 3D PCK (a = 20 cm) [58]

Best Kinect [27] 15.35 16.06 82.03%
Fusion [44] 12.31 12.91 85.93%

Fusion++ [44] 10.66 11.30 88.75%
Proposed 9.02 10.06 92.25%

In Table 7, the 3D PCK accuracy results are shown per exercise, giving evidence with respect
to the strengths and the weaknesses of the methods based on the body movement type variations.
DeepMoCap is qualified outperforming the rest of the methods at 12 of the 15 exercises in total
(80%), efficiently capturing most of them. In detail, Walking on the spot, a simple and slow motion,
is efficiently captured from all the methods. Elbow and Knee flexion exercises, which are simple
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rotational joint movements, are captured with high precision by all methods, especially from inertial
MoCap approaches. It is worthnoting that DeepMoCap presents lower accuracy for Side-steps
exercise than Fusion++ probably due to the hand placement on the reflectors of the hips resulting in
merged reflector regions, which complicated the detection and identification of the involved reflectors.
However, in more complex exercises as Butt kicks left-right and Forward lunge left-right where there are
occlusions for Kinect and body stretching for inertial sensors placed on the body, DeepMoCap presents
approximately 5% higher absolute 3D PCK accuracy than Fusion++, which follows. For Jumping
jacks, which is a fast and complex exercise where all body parts are fully involved, DeepMoCap
achieves 96.05% 3D PCK accuracy followed by Best Kinect [27], while inertial MoCap approaches fail
to properly capture the shoulders 3D positions due to rigid body movement of the torso, showing
lower accuracy in such exercises. For Alternate side reaches and Kick-box kicking, which are the most
challenging exercises, the 3D PCK accuracy of the proposed method is 4.84% and 8.33% higher in
comparison with the second best method (Fusion++), respectively. Furthermore, it should be noted
that all exercises are captured by DeepMoCap in 3D PCK accuracy higher than 82.53%, showing low
variation between different types of body movements.

Table 7. Comparative evaluation per exercise using 3D PCK, α3D = 20 cm metric.

Exercise Best Kinect [27] Fusion [44] Fusion++ [44] Proposed

Walking on the spot 96.60% 100.00% 97.54% 100.00%
Single arm raise 93.57% 96.19% 97.38% 100.00%
Elbow flexion 91.12% 100.00% 100.00% 97.40%
Knee flexion 88.36% 94.11% 100.00% 98.80%
Closing arms above head 82.48% 80.08% 83.33% 88.62%
Side steps 85.00% 88.33% 93.33% 87.50%
Jumping jack 95.48% 84.18% 87.57% 96.05%
Butt kicks left-right 81.87% 80.99% 86.26% 90.94%
Forward lunge left-right 57.31% 87.93% 86.05% 92.01%
Classic squat 59.60% 78.67% 83.05% 90.40%
Side step + knee-elbow 77.78% 80.25% 81.94% 89.81%
Side reaches 89.24% 84.55% 87.88% 91.52%
Side jumps 90.00% 89.31% 92.78% 93.47%
Alternate side reaches 68.01% 74.19% 77.69% 82.53%
Kick-box kicking 74.07% 70.14% 76.39% 84.72%

In the plot presented in Figure 14, the total 3D PCK accuracy is given against a3D threshold values.
DeepMoCap shows higher efficiency for all a3D, showing high 3D PCK accuracy from low threshold
values (e.g., 32.25% and 63.27% for α3D = 5 cm and α3D = 10 cm, respectively), in comparison with the
next best method that presents 16.38% and 54.36%, respectively. Given the fact that joint positioning
varies between different motion capture approaches resulting in the existence of a positional offset
between the estimated 3D joint positions, we conclude that DeepMoCap shows high efficiency by
presenting 32.25% of the estimates on average to be closer than 5 cm from ground truth.

In Table 8, the euclidean MAE and RMSE are presented per joint. It can be observed that the
proposed method has the lowest errors for 9 of 12 (75%) joints for MAE and RMSE. For Shoulders
and Right Elbow, Fusion++ [44] shows slightly better results than DeepMoCap probably due to better
skeleton structure positioning. The lower body joints (hips, knees and feet) are captured presenting
6.05 cm and 7.08 cm mean average and root mean squared errors, respectively.
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Figure 14. Comparative evaluation of the motion capture methods using total 3D PCK results in
different α3D threshold values in cm.

Table 8. Experimental results of the respective motion capture methods using (MAE) and (RMSE)
metrics per joint (in cm).

Joint Best Kinect [27] Fusion [44] Fusion++ [44] Proposed

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Left Shoulder 12.83 13.25 8.16 8.37 7.89 8.53 11.41 12.63
Right Shoulder 15.59 15.90 9.71 10.28 8.62 9.19 11.09 11.76
Left Elbow 16.04 17.45 16.46 17.17 15.90 16.60 13.25 14.84
Right Elbow 19.37 19.67 11.61 12.61 10.88 11.68 12.25 13.36
Left Hand 16.01 17.95 14.52 15.87 13.53 14.44 11.94 12.58
Right Hand 21.24 21.55 13.10 14.24 12.42 13.29 12.04 13.05
Left Hip 8.63 8.82 9.99 10.20 6.33 6.45 4.18 4.69
Right Hip 10.89 11.16 10.59 10.81 5.94 6.11 4.53 4.99
Left Knee 10.79 11.73 12.55 13.10 9.97 10.45 5.12 5.82
Right Knee 15.13 15.99 12.17 12.64 8.92 9.45 7.24 8.16
Left Foot 17.74 18.34 16.35 17.11 15.57 16.40 7.00 8.82
Right Foot 19.91 20.86 12.48 12.53 11.93 12.97 8.24 10.00

Qualitative results depicting the 3D outcome of the proposed approach are presented in Figure 15.
In particular, the multi-view input overlayed with the reflector-set estimates and the corresponding
3D motion capture along with optical data results are illustrated. As shown, DeepMoCap approaches
motion capture similarly to the way traditional optical MoCap solutions work, in a more flexible
and low-cost manner though. More qualitative results are publicly available (https://vcl.iti.gr/
deepmocap).

https://vcl.iti.gr/deepmocap
https://vcl.iti.gr/deepmocap
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Figure 15. Five samples of the method results are illustrated in rows. At the left side of the figure,
the multi-view input along with the FCN reflector-set estimates are presented, while, at the right side,
their corresponding 3D optical and motion capture outcomes are shown.

5.3. Performance Analysis

The runtime performance analysis was conducted by measuring the total time required to capture
the motion data from the testing sequences. For approximately 6× 103 three-view pairs of colorized
depth and 3D optical flow frames, thus 18× 103 single-view pairs, raw data pre-processing lasted
1796 s (∼100 ms per sample), while FCN model prediction required 3136 s (∼174 ms per sample).
Thus, the proposed method achieves 2D reflector-set estimation at approximately 6 frames per second
with ∼100 ms latency, while the motion tracking from optical data is real-time, requiring less than
10 ms. With respect to the input, the original frame size is 424× 512, re-sized to 368× 444 during
testing to fit in GPU memory. Thus, DeepMoCap performs motion capture at approximately 2 Hz
for 3-view input of 368× 444, while the performance complexity against number of views, i.e., input
image pairs, is O(n). The runtime analysis was performed on a desktop machine equipped with one
NVIDIA GeForce Titan X GPU. Code (https://github.com/tofis/deepmocap) and dataset tools of the
proposed method are publicly available to encourage further research in the area.

6. Conclusions

In the present work, a deep marker-based optical motion capture method is introduced, using
multiple IR-D sensors and retro-reflectors. DeepMoCap constitutes a robust, fast and flexible approach

https://github.com/tofis/deepmocap
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that automatically extracts labeled 3D optical data and performs immediate motion capture without
the need for post-processing. For this purpose, a novel two-stream, multi-stage CPM-based FCN is
proposed that introduces a non-parametric representation to encode the temporal correlation among
pairs of colorized depthmaps and 3D optical flow frames, resulting in retro-reflector 2D localization
and labeling. This step enables the 3D optical data extraction from multiple spatio-temporally aligned
IR-D sensors and, subsequently, motion capture. For research and evaluation purposes, two new
datasets were created and made publicly available. The proposed method was evaluated with respect
to the 2D reflector-set estimation and the motion capture accuracy on these datasets, outperforming
recent and robust methods in both tasks. Taking into consideration this comparative evaluation,
we conclude that the joint usage of traditional marker-based optical MoCap rationale and recent deep
learning advancements in conjunction with 2.5D and 3D vision techniques can significantly contribute
to the MoCap field, introducing a new way of approaching the task.

With respect to the limitations, the side-view capturing and the highly complex body poses that
occlude or merge reflectors on the image views constitute the main barriers. These limitations can
be eliminated by increasing the number of IR-D sensors around the subject, however, increasing the
cost and complexity of the method. Next steps of this research would include the study of recent
deep learning approaches in 3D pose recovery and motion capture, investigating key features that
will allow us to address main MoCap challenges such as real-time performance, efficient multi-person
capturing, in outdoor environments, with more degrees of freedom of the body to be captured and
higher accuracy.
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Appendix A

Strap Retro-Reflector Point-Set Fusion

Let nvi
Ri

and n
vj
Ri

be the 3D normal vectors of the reflector regions for vi and vj views,
vi, vj ∈ {1, . . . .N}, respectively. These vectors are defined as the normal vectors of the 3D points

given by mapping the corresponding pixel sets Pvi
Ri

and Pvj
Ri

to 3D Cartesian coordinates. The closest

3D points P
vi,j
Ri

and P
vj,i
Ri

between the normal vector lines of nvi
Ri

and n
vj
Ri

, for a view pair vi − vj are given
by applying the equations:

b = nvi
Ri
• n

vj
Ri

c = nvi
Ri
• (Pvi

Ri
− P

vj
Ri
)

s = (b · f − c)/d

P
vi,j
Ri

= Pvi
Ri
+ s · nvi

Ri

d = 1− b2

f = n
vj
Ri
• (Pvi

Ri
− P

vj
Ri
)

t = ( f − c · b)/d

P
vj,i
Ri

= P
vj
Ri
+ t · nvj

Ri

(A1)

Applying Equation (10) for all NRi = 2 ·mRi extracted 3D points, where m is the total number of
pairs, the 3D position of the reflective strap Ri is estimated to the center of the body part. Even when
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only one sensor captures a strap reflector, if the template-based structure is calibrated, the 3D position
can be estimated using the normal vector and the body part (limb) radius.
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