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Abstract
Opticalmarker-basedmotion capture (MoCap) remains the predominantway to acquire high-fidelity articulated bodymotions.
We introduce DeMoCap, the first data-driven approach for end-to-end marker-based MoCap, using only a sparse setup of
spatio-temporally aligned, consumer-grade infrared-depth cameras. Trading off some of their typical features, our approach
is the sole robust option for far lower-cost marker-based MoCap than high-end solutions. We introduce an end-to-end differ-
entiable markers-to-pose model to solve a set of challenges such as under-constrained position estimates, noisy input data and
spatial configuration invariance. We simultaneously handle depth and marker detection noise, label and localize the markers,
and estimate the 3D pose by introducing a novel spatial 3D coordinate regression technique under a multi-view rendering
and supervision concept. DeMoCap is driven by a special dataset captured with 4 spatio-temporally aligned low-cost Intel
RealSense D415 sensors and a 24 MXT40S camera professional MoCap system, used as input and ground truth, respectively.

Keywords Motion capture · Low-cost · Marker-based · Depth-based · Pose regression · Multi-view

1 Introduction

Extensive research efforts have been devoted to the devel-
opment of motion capture (MoCap), one of the de facto
standards for human-centric interactive media capture and
production. Nowadays, optical MoCap solutions, especially
the marker-based ones, are considered essential to several
applications and industry sectors such as film making and
VFX, sports, health, gaming and immersive realities (XR).
MoCap enables online and offline high-fidelity capturing and
digitization of body, hand and facialmovements derived from
the performances of real people and beyond. This enables its
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use in various applications such as 3D character animation,
computer-human interaction, robotic units control, physical
exercise monitoring, and more.

Despite the appearance of several commercial and aca-
demic motion capture solutions, marker-based MoCap still
remains the gold-standard in the field. That is due to its
extremely high accuracy and frequency, as well as the
production-ready maturity that ensures high quality out-
comes in a short amount of time.

Nevertheless, the marker-based MoCap production pro-
cess is not flawless, it suffers from well-known drawbacks.
Raw optical motion capture data are often erroneous, due
to marker occlusions or mislabeling from marker swap-
ping during tracking, with high frequency noise or jitter and
requiring time-consuming post-processing by hand. Beyond
data cleaning, articulated body part fitting to marker subsets
and skeleton retargeting for local joint transformation solv-
ing are further required, undoubtedly making it a laborious
and time-consuming process. On top of that, the complexity
and costs of marker-based MoCap systems with numerous
infrared specialized cameras are high, making them inacces-
sible to the wider interested audience.

These complications attract the interest of the research
community to investigate and propose novel alternatives. On
the one hand, computer graphics researchers intensify their
efforts on models that resolve or soften these issues (Holden
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(2018); Han et al. (2018); Bascones (2019); Perepichka et al.
(2019)), while computer vision labs concentrate their efforts
on ground-breaking markerless methods, posing MoCap
mostly as a 3D pose estimation task (Iskakov et al. (2019);
Qiu et al. (2019); Tu et al. (2020)).

Nevertheless, existing marker-based solutions do not sat-
isfy the need for flexible and low-cost options, while recent
markerless models following the deep learning paradigm,
though effective andmoreflexible, cannot reach equal robust-
ness and precision levels in the absence of strong and
deterministic priors such as body-wornmarkers. Focusing on
this gap, our research is driven by three main factors: (i) the
accuracy and precision of marker-based solutions that obtain
the articulated bodymovementswith the aid of body-attached
markers in a highly accurate and deterministic way, (ii) the
remarkable ability of deepmodels to solve vision-basedprob-
lems and (iii) the recent developments on consumer-grade
and low-cost depth-sensing cameras. We inherit the best of
their characteristics and blend them in an efficient way to
present a “hybrid” lightweight motion capture approach.

In this paper, we propose DeMoCap, targeting low-
cost marker-based motion capture by combining traditional
marker-based MoCap and deep neural networks applied on
visual data captured with low-cost depth-sensors. To the best
of our knowledge, DeMoCap, though not equal to profes-
sional high-end MoCap systems on several aspects such as
the high frequency or the size of the capturing space, is the
first deep model that enables the use of far lower-cost equip-
ment and professional retro-reflective marker configuration
for robust motion capture (Fig. 1).

We employ a sparse, spatio-temporally alignedmulti-view
setupof consumer-grade and low-cost depth-sensing cameras
to track a dense configuration of spherical retro-reflective
markers. To address the marker-based MoCap challenges,
i.e.marker denoising, labeling, tracking and joint transforma-
tion solving and retargeting, and the limitations of low-cost
depth sensor setup, i.e. viewpoint sparsity, depth noise, under
constraint data and infrared image blurriness for accurate
blob detection,we propose an end-to-end, fully differentiable
data-driven model to directly regress the 3D pose. This way,
we pose the problem of MoCap as a markers-to-pose regres-
sion task.

Even though our input is three dimensional, we avoid the
use of 3D convolutions, as we target lightweight, real-time
and close to real-time applications. We introduce a novel
spatial 3D regression module on top of latent heatmaps pre-
dicted by a 2D fully convolutional neural network (FCN) to
regress the markers and joints 3D coordinates, in a fully dif-
ferentiable manner. We experiment with various multi-stage
FCN architectures by building super-stages, i.e. grouping the
former and the latter stages to regress the marker and joint
3D coordinates, respectively, staging a smooth representa-
tion transition from markers to 3D pose (markers-to-pose).

Fig. 1 DeMoCap stands as the first marker-based MoCap solution
enabling the use of only a sparse set of consumer-grade depth sensors for
far lower costs, and higher portability and flexibility, than commercial
high-end solutions, trading off, however, some of their typical features

Following this approach, we drive the network to learn the
spatial and hierarchical relation between the markers and the
underlying pose .

For feeding our network, we apply a volumetric scale
normalization to uniformly distribute the marker cloud in
a cuboid 3D space for higher data spatial invariance and
sparsity. Then, we adopt a multi-view rendering technique
to render the markers from opposing orthographic cameras
whose principal axis passes through the center of the sparse
marker cloud. Notably, we preserve the 3D information of
the markers by splatting their relative depth on multiple
views, sticking to twoopposingviews forDeMoCap, creating
“sparse” depth maps of the markers to feed our model. From
that point, we approach our task as a 3D keypoint regres-
sion problem from dual-view 2D depth maps. The model is
driven to assimilate the articulated relation between mark-
ers and joints, sequentially regressing their 3D coordinates
in a forward pass per infrared-depth multi-view frame, with-
out any body structure prior or explicit association between
body parts and marker subsets. Summarizing, our contribu-
tions are:

• To the best of our knowledge, DeMoCap constitutes the
first data-driven approach that employs efficient fully
convolutional neural networks to simultaneously regress
optical markers and 3D pose from sparse 3D point sets,
captured with the use of a low-cost multi-view depth-
sensor setup .
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• A scale and translation invariant representation in a nor-
malized 3D space is introduced to train our network.
Learning upon it, the model overcomes bias on our rela-
tively limited training data and generalizes well.

• Westage a smooth representation transition frommarkers
to 3D pose. Our model is driven to learn the underly-
ing structural relation between human body and marker
configuration placement, decoding marker and bone
associations from sparse and noisy 3D marker point
clouds, resulting in accurate pose estimation.

• Wepose 3Dkeypoint estimation as a joint 2D localization
and regression objective within our normalized 3D space
to embed the z-dimension indirectlywith the introduction
of a new fully differentiable module for 3D regression.

• We make our special dataset publicly available. Our
dataset contains inter- and intra-systemspatio-temporally
aligned infrared-depth andmotion capture data. On top of
that, the former have been captured with hardware syn-
chronization for precise temporal consistency between
the multiple views.

The rest of the paper is structured as follows. Section 2
gives a brief overview of related data-driven works on (a)
marker-based MoCap automation and refinement, (b) multi-
view markerless vision-based 3D pose estimation and (c)
keypoint localization techniques applicable on pose estima-
tion. Section 3 presents the dataset creation and processing
to familiarize the reader with the nature of our challenge and
the way we approach it. In Sect. 4, our methodical approach
is discussed, presenting and explaining in depth the rationale
behind its contributions. In Sect. 5, we present quantitative
and qualitative experimental results along with ablation out-
comes to justify our contributions. In Sect. 6, we discuss
the pros and cons of DeMoCap in comparison with existing
marker-basedmotion capture solutions and recentmarkerless
pose estimation approaches. Sect. 7 concludes and presents
potential avenues for future work.

2 Related work

Our approach requires domain knowledge from marker-
based practices and recent data-driven 3D pose estima-
tion techniques. To this end, in Sect. 2.1, we first review
approaches recently appeared in the literature that focus on
the processing of marker-based optical motion capture data
(Bascones (2019); Loper et al. (2014); Holden (2018); Han
et al. (2018); Perepichka et al. (2019)). Theseworks highlight
traditional MoCap challenges such as marker labeling and
denoising, or direct joint transformation solving from opti-
cal data in an efficient and automatic fashion by applying
machine learning techniques. Another challenge addressed
by recent works, such as the ones proposed by Loper et al.

(2014); Mahmood et al. (2019), is related to body shape
deformation issues. Similar to most prior works, we do not
explicitly account for this, but instead, focus on simultaneous
overcoming of the aforementioned MoCap challenges.

On the other hand, in spite of the use of reflective markers
in the present work, we pose our solution mostly as a 3D
pose estimation task from noisy and sparse 3D data. Thus,
in Sect. 2.2, we discuss recent data-driven approaches that
estimate 3D pose using FCNs for keypoint 3D coordinate
regression, highlighting the pros and cons of each solution.
Finally, in Sect. 2.3, we give a short overview of keypoint
localization approaches to correlate them with the 3D coor-
dinate regression technique we introduce.

2.1 Marker-Based Optical Motion Capture

Theclassicmarker-basedoptical solutions havebeenundoubt-
edly the gold-standard in motion capture for decades. Nev-
ertheless, the existence of drawbacks such as the need for
post-processing for data cleaning as well as the expensive
hardware and complexity of their setups, are considered a
challenge and attract the interest of the research commu-
nity. We discuss recent and novel works that apply machine
learning techniques on marker-based optical data for marker
denoising and joint transformation solving.

Bascones (2019) tackles automatic marker labeling as
a machine learning classification problem, to train a set
of weak classifiers in an ensemble of partial solvers. The
result is used to feed an online algorithm providing efficient
and lightweight marker labeling. Alexanderson et al. (2017)
present a robust online method for identification and track-
ing of passive motion capture markers attached to non-rigid
structures. The method is especially suited for large capture
volumes and sparse marker sets. By using multiple assign-
ment hypotheses and soft decisions, it can robustly recover
from challenging poseswith several simultaneous occlusions
and false observations (ghost markers). Holden (2018) pro-
poses a fast method for robust joint transformations solving
of optical motion capture data by using machine learn-
ing denoising techniques. This data-driven approach, being
robust to erroneous marker 3D positions, replaces the solv-
ing part of the motion capture pipeline, removing the need
for manual data cleaning. However, the method is limited
to be used with motion capture data from commercial solu-
tions, while not applicable in real-time use cases. Recently,
Perepichka et al. (2019) introduced a method that robustly
detects and repairsmarker trajectories by replacing erroneous
segments with synthetically generated ones producing kine-
matically correct paths. Using the joint transformation solver
proposed by Holden (2018), an initial kinematic motion is
constructed, and using it as reference, erroneous trajecto-
ries are detected and filled by transferring the paths from the
kinematic solver in a shape preserving way.
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Han et al. (2018) introduce an online optical marker label-
ing model for hand tracking, framing the labeling problem
as a direct keypoint regression demonstrating it to sequences
with occluded and ghost markers. The model is accurate and
fast, since trained in a great amount of synthetic data, albeit
not evaluated on highly noisy and challenging marker sets.
The model regresses the marker 3D coordinates with the use
of fully connected layers which are prone to overfitting when
the pool of data is limited, hampering the generalization abil-
ity of the overall network.

Chatzitofis et al. (2019) firstly introduced the joint use
of deep neural networks and multi-view depth-sensing for
marker-based motion capture. Nevertheless, the method is
not based on an end-to-end data-driven model. The model
detects and labels the markers, however the body pose is
estimated by applying forward kinematics to an articulated
human body prior. Moreover, instead of spherical commer-
cial markers that allow for high-fidelity tracking, a sparse and
coarse set of custom retro-reflective straps and patches was
attached on the subjects’ bodies. Despite its valid concept,
the method has limited degrees-of-freedom due to the low
number of markers and its custom marker placement, while
the marker labeling takes place separately for each camera,
most likely making the model biased to the camera poses and
their intrinsic parameters.

Even though classic marker-based MoCap constitutes a
specialized solution for professional motion capture, the
researchworks discussed in this section try to overcomewell-
known issues that MoCap suffers from, i.e. marker labeling,
ghost marker denoising, occluded marker recovery, marker
swapping and joint transformation solving. In the present
work, we overcome these issues in an end-to-end manner by
directly regressing the marker and pose coordinates, staging
in our network a smooth representation transition between
them.

2.2 Markerless 3D Pose Estimation

On top of these challenges, the use of markers increases the
complexity of the motion capture setup, while the body joint
solving from markers is a non-trivial task. During the last
decade, numerous research labs intensively work on sim-
ple, markerless and more flexible approaches using low-cost
resources (Sigal et al. (2012)). Most recent methods focus on
monocular vision, mostly using color (Mehta et al. (2017);
Pavllo et al. (2018); Mehta et al. (2019); Cheng et al. (2019);
Guler and Kokkinos (2019); Rüegg et al. (2020)), and some
using depth (Haque et al. (2016); Park et al. (2017);Martínez-
González et al. (2018b); Martínez-González et al. (2018a)).
Fewer but not limited methods approach 3D pose estima-
tion from multi-view color streams (Burenius et al. (2013);
Elhayek et al. (2015); Rhodin et al. (2018); Qiu et al. (2019);
Iskakov et al. (2019); Tu et al. (2020)), while pose estima-

tion from multi-view depth maps is relatively unexplored
(Bekhtaoui et al. (2020)). More relevant to our approach
are recent 3D pose estimation works on spatio-temporally
aligned multi-view visual streams.

Iskakov et al. (2019) present two variations of a learnable
triangulation-based technique, an algebraic and a volumet-
ric one, to estimate 3D pose jointly from multiple 2D color
views. The former is based on soft triangulation with learn-
able camera-joint confidence weights, while the latter is
based on dense geometric aggregation of 2D heatmap pre-
dictions from multiple viewpoints. The aggregated volume
is then refined via 3D convolutions to produce 3D heatmaps
that allow modelling a human pose prior. The method show-
cases satisfying results, as presented in the original work
and shown in our experiments in Sect. 5.3, however it is slow
and requires multi-view color input, a domain sensitive input
(Buhrmester et al. (2019)).

Qiu et al. (2019) propose another approach under a similar
concept, i.e. estimating 2D heatmaps in multi-view images
and recovering 3D poses frommulti-view 2D predictions. At
first, a convolutional neural network (CNN) jointly estimates
2D poses through a cross-view fusion scheme which allows
for refined 2D pose estimation. Then, applying a recursive
pictorial structure model (RPSM), the 3D pose is recovered
from the multi-view 2D poses and gradually improves, since
RPSM recursively discretizes the volume around each joint
previously predicted 3D location into a finer-grained grid.
The inference performance limits the online operation of the
method.

Tu et al. (2020) recently presented VoxelPose, a multi-
view and multi-person data-driven 3D pose estimation
approach. Contrary to the aforementioned multi-view meth-
ods whose cross-view correspondence is based on weak 2D
pose estimates, VoxelPose directly operates in the 3D space.
Features from the camera views are aggregated in the 3D
space and fed into a cuboid proposal network to localizemul-
tiple subjects in the capturing space by predicting a number
of 3D cuboid proposals from the 3D feature volume. Then, a
separate finer-grained feature volume, centered at each pro-
posal, is created and fed into a 3D pose regression network.
Despite the frequent occlusions between multiple people at
the same scene, the approach is accurate and robust.

Other approaches are based on parametric body models
with skeleton hierarchy that allow the expression of the body
pose andmotion. Joo et al. (2018) build upon generative body
deformation models to fit to data from multiple viewpoints.
Leveraging face, body and hand landmarks with the use of
2D detectors frommultiple views, 3D keypoints are obtained
and used to train the parametric models, also allowing for
capturing of additional variations of hair and clothing. To that
end, full body (face, hands, body) motion capture is achieved
with the use of 3D deformable models. Potential errors of
single-view2Dkeypoint detection can addbias to themodels.
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Zhang et al. (2020b) propose a new multi-view and multi-
person motion capture approach. Based on confidence map
(heatmaps) and part-affinity fields (PAFs) predicted with the
use of OpenPose by Cao et al. (2017), the proposed method
unifies per-view parsing, cross-view matching and temporal
tracking with the introduction of a 4D association graph. The
4D association graph is efficiently solved with the introduc-
tion of 4D limb bundle parsing based on heuristic searching
and a bundle Kruskal’s algorithm.

Contrary to our approach, most of the aforementioned
methods, though effective, are not lightweight, cannot per-
form even close to real-time, requiremulti-view color images
(a domain sensitive input), while most of them are biased to
the errors of the initially required 2D detections.

2.3 Keypoint Localization

We approach MoCap as a cooperative marker and joint 3D
coordinate regression task from sparse depth images and,
thus, we offer an overview of the state-of-the-art approaches
for keypoint localization. Nowadays, many vision-based
problems are posed as 2D/3D keypoint localization tasks,
where deep 2D CNNs and FCNs have been proven effective.
In the recent literature, the state-of-the-art methods for key-
point localization fall into three main categories, i.e. direct
regression, dense prediction, and spatial regression.

Direct regression methods, used in several tasks, such as
pose estimation in DeepPose by Toshev and Szegedy (2014)
and optical marker labeling (Han et al. (2018)), bypass the
spatial nature of images due to its fixed-size representation.
Instead, these methods implicitly learn to directly regress
the 2D/3D positions based on the expressive power of the
models. Nevertheless, direct regression can be supervised
with distance-based losses, which is the direct objective of
keypoint localization.

Dense, heatmap-based prediction methods employ FCNs
to predict confidence scores for each input pixel and are
supervised during training with heatmaps reconstructed in
most cases via 2DGaussian distributionswith fixed-variance.
Such techniques have been employed in well-known pose
estimation works (Cao et al. (2017); Wei et al. (2016)),
presenting higher image translation invariance than direct
regression due to their spatial aspect. The keypoints in these
methods are localized by calculating the ArgMax or alter-
native heuristic approaches (Tompson et al. (2014)) on the
predicted dense heatmap. The main drawback of these meth-
ods is the use of intermediate, structural loss functions that
train the network to predict pixel confidence scores, thus,
the supervision during training is not aligned to the direct
objective of the method, as in direct regression.

Spatial regression methods have proved the most effec-
tive in various vision-based tasks, combining the strengths
of direct regression and dense heatmap prediction methods.

In particular, as in dense heatmap prediction, these mod-
els are translation invariant due to the use of FCNs, also
allowing for distance-based loss supervision. While dense
heatmap prediction methods train the network to predict
heatmaps matching to pre-defined arbitrary heatmaps, spa-
tial regression networks learn the optimal latent heatmap that
yields the most accurate point localization. Spatial regres-
sion, the Center of Mass (CoM) of a probability map as
discussed in the work proposed by Tensmeyer and Martinez
(2019), was almost simultaneously introduced by Sun et al.
(2018) as integral regression, by Nibali et al. (2018) as dif-
ferentiable spatial-to-numerical transform (DSNT), and by
Luvizon et al. (2019) as Soft-argmax.

Given its proved effectiveness, we also adopt spatial
regression for point localization. However, aiming efficient
3D localization, we go beyond standard techniques by jointly
encoding x-, y- the z-dimension in latent heatmaps with
the introduction of a fully differentiable module for 3D
coordinate regression. We describe this new 3D coordinate
regression module in Sect. 4.2.1.

3 Depth-Based Optical Marker Data

We created a special and unique dataset of spatio-temporally
aligned motion capture and multi-view infrared-depth data
to serve our scope (see Sect. 3.2). Our dataset constitutes the
first visual data collection that contains spatio-temporally
aligned multi-view colored infrared and depth images with
3D pose and marker annotations. We captured various
activities performed by actors with retro-reflective markers
attached on their bodies, being visible and distinguishable to
the infrared images. To achieve that, we used the depth sensor
infrared emitters to emit infrared light in the scene causing
reflections on the retro-reflective markers (see Fig. 2). The
infrared and depth images, which are aligned and defined on
the same image domain, enable single-viewmarker 3D local-
ization, which is discussed in Sect. 3.3. We achieve marker
and pose 3D keypoint annotations by addressing the chal-
lenge of synchronization and spatial calibration between a
professional motion capture and a multi-view depth sensor
system, described in detail in Sect. 3.4.

We captured data of 4 actors, 2 males and 2 females, per-
forming 11 different activities of approximately 20s each,
starting their performances in a T-Pose ensuring appropriate
tracking initialization of the commercial MoCap system.1

In total, more than 20,000 samples are included in our
dataset, however details on how we split it for training and
evaluation based on the subject and activity criteria are given
in Sect. 5.1.

1 For the sake of clarity, we mention that T-Pose or any other pose is
not required for the initialization of our method.
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Fig. 2 The capturing setup with 24 VICON (1984) MXT40S cameras
and a low-cost multi-view depth sensor system equipped with 4 Intel
RealSense D415 stereo-based depth sensing devices. Intense marker
reflections are provoked to the infrared streams by emitting infrared
light to the retro-reflective markers attached on the subjects’ body. To
limit the image blurriness, we reduced the exposure time of the sensors

which, consequently, reduced the lightness of the image leading tomore
distinguishable marker reflections in comparison to the default settings.
Infrared-depth image pairs are shown on the bottom of the figure, while
at the left side, the ground truth markers and pose are projected on one
of the infrared views to depict the spatio-temporal alignment between
the motion capture and the infrared-depth systems

3.1 Capturing Setup

AprofessionalVICON(1984)motion capture systemwith 24
Vicon MXT40S cameras and a low-cost volumetric captur-
ing system2 with 4 Intel RealSense D415 stereo-based depth
sensing devices (Keselman et al. (2017)) were used, record-
ing the data at 120 and 30 frames/second, respectively.

3.2 Marker configurations and body structure

For themarker set, we usedM = 53 adhesive spherical retro-
reflective markers of 14mm diameter, which were attached
on the motion capture suits of the actors.

We consider the post-processed, clean marker dataMgt ∈
R

M×3 as ground truth. With respect to the body structure,
the original sequences provide poses of 33 different joints,
however we simplify the structure and use J = 19. The clean
pose data, Jgt ∈ R

J×3, are considered as ground truth. Sam-
ples of the annotated depth-infrared image pairs along with
the capturing setup in the MoCap studio where the dataset
creation took place, are depicted in Fig. 2.

2 For the dataset recordings, we used the publicly available volu-
metric capturing tool (https://github.com/VCL3D/VolumetricCapture)
proposed by Sterzentsenko et al. (2018).

3.3 Optical Marker Data fromMultiple Depth
Sensors

Most of the recent low-cost consumer-grade depth sensing
devices are equipped with infrared cameras and emitters
(Keselman et al. (2017); Zhang (2012)). The Intel RealSense
D415 depth camera is based on active stereo vision to cal-
culate depth, consisting of a two infrared camera eyes and
an infrared projector to improve depth accuracy in scenes
with low texture features. The infrared projector casts static
infrared pattern to the scene where the markers reflect back
to the receiver enabling straightforward amplitude-based
detection. We consider C spatio-temporally aligned depth
cameras c ∈ {1, . . . ,C}, perimetrically placed around a cap-
turing space of approximately 4m diameter, as shown in
Fig. 2. Each camera acquires a pair of one colored infrared
image Ic(p) ∈ R

3 and one depth map Dc(p) ∈ R, with
p := (x, y) ∈ Ω being the coordinates of the pixels in the
image domain Ω defined in a w × h grid, with w and h
being its width and height, respectively. The sensor poses
Tc := [ Rc tc

0 1

]
are known in a common coordinate system,

where Rc and tc denote rotation and translation respectively.
Hence, we can transform the depth image domain coordi-
nates of each view to a global coordinate system by:

Tc(p) = Tcπ
−1(Dc(p),Kc,p), (1)
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with Tc being the relative pose from the local coordinate
system of sensor c to the global one and π−1 denoting the
deprojection function that transforms the depth pixel to 3D
coordinates, using sensor’s intrinsic parameters matrix Kc.
Given that the infrared Ic and depth Dc images of camera c
are aligned and defined on the same image domain Ω , we
apply a linear thresholding as proposed by Gaschler (2011)
for efficient marker segmentation. Following, a fast contour
detection algorithm is applied to yield the blob centers per
view, which we then map in the common, global 3D space
using Eq. 1. During this process, the points not contained in
a 3D bounding box set to limit the capturing 3D space, are
considered as outliers and are discarded. To this end, a sparse
marker cloud,Mr ∈ R

M f ×3 ofM f 3D points is extracted per
frame, containing the rawmarker 3D coordinates as obtained
from the multiple sensors. Given the noise of the sensors as
well as the separate detection from each view, M f is varying
around the real number of markers, i.e. M = 53.

The quality of the raw marker tracking is analogous to the
number of views, as in the majority of multi-view systems,
mostly due to the elimination of occlusions and, conse-
quently, of missing markers. We selected a 4-sensor setup
in a cross placement for the creation of our dataset, consid-
ering it the trade-off between avoiding occlusions and low
cost. Nevertheless, the proposed model is trained on highly
noisy data resulted from weak optical marker tracking (one
valid observation is enough at least in one of the views) in
the form of a sparse and spatially invariant 3D data repre-
sentation, eliminating the bias of the camera poses, intrinsic
parameters or systematic depth noise, as we discuss in our
ablation study, in Sect. 5.4.

3.4 Spatio-Temporal Alignment

High synchronization precision between our low-frequency
depth sensors (30 frames/second in our dataset, see Sect. 3.1
for further details) is a prerequisite. The selected Intel
RealSense D415 offers intra- and inter-sensor hardware
synchronization, allowing for high precision temporal align-
ment. With respect to the inter-system (D415, low-cost -
VICON, high-cost) synchronization, the global temporal off-
set between the systems was detected with a clapperboard
equipped with 2 markers at the beginning of each sequence.
The varying frame rate inter-system sequences were then
aligned considering their local time steps after removing the
global offset.

The spatial alignment between the VICON and depth sen-
sor system is achieved by a two-step process. We perform
an initial alignment by using the 3D positions of the mark-
ers, as estimated by each modality, i.e. triangulation-based
for VICON and depth-based for D415. We exploit the start-
ing, static T-Pose phase of each sequence where the markers
are easily detected from the low-cost system, as the infrared

images are crisp and sharp. We apply Iterative Closest Point
(ICP) to coarsely transform Mr to the coordinate system of
the ground-truth markers Mgt , resulting in M

′
r . We use ICP

since, as mentioned in Sect. 3.3, the number of the detected
markers is varying per frame and there are no direct corre-
spondences.

For an accurate spatial registration, we follow up with
a sensor pose refinement step. At first, we find the corre-
spondences between Mgt and M

′
r ,c, where M

′
r ,c ⊂ M

′
r is

the subset of the markers belonging to each sensor c. To
solve this, we construct bipartite graphs between Mgt and
M

′
r ,c, where the edge weights represent euclidean distances

between 3Dpoints. Finally, we applyminimumweight bipar-
tite matching by:

BM,c(M
′
r ,c,Mgt ) = min

Mgt

∑

i

||xi − yi ||2 (2)

where xi ∈ M
′
r ,c and yi ∈ Mgt . From BM,c, we only use

the correspondences under a strict threshold, ensuring a high
quality correspondence group betweenMgt and the detected
blobs on Ic. Then, we apply Bundle Adjustment (Hartley
and Zisserman (2003)) to refine the sensor poses using Mgt

as reference. In detail, considering Mgt and intrinsic cam-
era parameters Kc constant, we jointly and iteratively refine
the camera poses to minimize the reprojection errors. This
provides a refined spatial alignment based on ground-truth
optical marker data Mgt , resulting in M

′′
r ,c for the markers

of each view and, consequently, to M
′′
r , also by applying

a strict spatial clustering for marker points distances lower
than 10mm to merge only the ones that have been detected
extremely close to each other.

It is worth noting that this alignment process is consid-
ered for the creation of the dataset and is not required during
the model inference where the VICON data are absent. The
results of the spatial and temporal alignment between the
VICON and the multi-sensor system are presented in Fig. 2
where the pose and markers from VICON are overlayed on
an infrared image sample.

3.5 Normalized Orthographic Depth Rendering

Working on a sparse 3Dcloud instead of raw infrared or depth
images allows us to overcomewell-known limitations of such
under constraint data. Several data-drivenmodels suffer from
these limitations such as the bias on specific camera poses and
lightning conditions, the overfitting on the domain specific
training set or the distance and systematic depth sensor noise.

We simplify our task by posing it as a spatial 3D regres-
sion problem on orthographically rendered depthmaps under
a multi-view context, i.e. with the use of two (or more)
opposing renderings to overcome single-view ambiguities.
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We apply a volumetric scale and translation normalization
transform TN in order forM

′′
r to occupy 80% of each dimen-

sion of a normalized cuboid 3D space , i.e. ranging between
[0.1, 0.9] along the axes, resulting in M̂r . Although obvious,
it is worth noting that the same normalization transform TN
is applied on the ground-truth data Mgt and Jgt , resulting
in M̂gt and Ĵgt respectively for supervision. To that end, the
3D bounding box containing every sample occupies the same
volume in 3D, while the margin of 10% from the boundaries
ensures the appropriate behaviour of the 2D convolutions
across the network layers. We then render M̂r from two
opposing views resulting in two sparse depth images through
two orthographic cameras with the principal point centered
on the center of M̂r .We render the depth images in high pixel
resolution (i.e. 800 × 800) and we next linearly interpolate
them to 160 × 160 input’s resolution, aiming to eliminate
the encoding of quantization error and information loss due
to quantized rendering (Zhang et al. (2020a)). On render-
ing, the range of [0.1, 0.9] across “z” axis makes the marker
points distinguishable from zero-values to both rendered
depth maps. To that end, the depth values preserve marker
3D positions by representing their normalized depth as small
areas of splatted depth pixels, creating two “sparse” depth
images, D f ront and Dback , to feed our network. Samples
from these rendered normalized depth maps are illustrated in
Fig. 3.

Before the application of the normalization transform TN ,
we apply a random rotational augmentation around the X, Y
and Z axes by [−10◦, 10◦], [−180◦, 180◦] and [−10◦, 10◦]
ranges respectively, increasing the variance of the human
body part lengths depending on their orientation across the
axes of the cuboid volume. It is worth noting that the 3D rota-
tional augmentation in our case, with the input being a sparse
cloud of 3D points, has the physical meaning of changing the
rendering viewpoint of the camera. This enables the creation
of completely new depth map inputs for the network during
training, contrary to the limited effect of pseudo-rotational
augmentation applied on dense input representations such as
color images, depth maps or any other 2D-grid input.

To this end, we introduce a lightweight model for efficient
inference on sparse 3D data.We avoid the use of 3D convolu-
tional architectures since, despite their effectiveness (Riegler
et al. (2017); Qi et al. (2017); Tu et al. (2020)), 3D convolu-
tions are still computationally expensive and inefficient.

4 Deep Depth-BasedMotion Capture

The key factor of DeMoCap’s low cost is its reliance
on cheap commodity stereo-based infrared-depth sensors,
which, despite their noisy sensing, can satisfactorily observe
the 3D locations of the retro reflective markers in a monocu-

Fig. 3 Input data visualization.D f ront andDback with colorization for
the sake of clarity

lar fashion (i.e without the need for triangulation between
multi-view observations). The low cost of stereo-based
infrared-depth sensing still has the price of observation inac-
curacy which, along with the aforementioned challenges of
marker-based motion capture, we overcome by utilizing a
deep neural network which enables simultaneous and effec-
tive marker and joint 3D coordinate regression.

With DeMoCap, we introduce a data-driven approach for
marker-based motion capture from multiple infrared-depth
streams, modeled as a staged markers-to-pose 3D regression
from noisy marker data, orthographically rendered to mul-
tiple viewpoints as depth maps. Our end-to-end data-driven
model for marker-based MoCap introduces:

• Marker observation clustering by grouping the raw 3D
points as captured by the different viewpoints.

• Ghost marker denoising by ignoring ghost markers
caused by erroneous marker detection.

• Missed marker recovery of either occluded or undetected
markers.

• Recovering from marker swaps, due to the discrete, one-
shot inference.

• Labeled marker localization by spatially regressing the
3D coordinates from latent marker heatmaps.

• Instantaneous 3D pose regression from labeled 3Dmark-
ers without prior knowledge of body structure. This is
backed up by all the above marker-robustness traits in
combination with marker labelling and exploitation of
3D information.

The overall pipeline of the proposed method is illustrated
in Fig. 4. The acquiredmulti-view infrared-depth frames cap-
tured from the sensors are processed for the extraction of
raw marker 3D positions M

′′
r , which are then normalized

yielding M̂r . M̂r are then orthographically rendered on the
two opposing depth images, D f ront and Dback . Given that
D f ront and Dback represent the spatial distribution of the
markers attached on the human body, we feed them to a fully
convolutional markers-to-pose staged network. This model
sequentially predicts marker and joint latent heatmaps on
which we apply a novel dual-view and fully-differentiable
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Fig. 4 Using a multi-view setting with an arbitrary number of spatio-
temporally aligneddepth-infrared cameras perimetrically placed around
a subject with reflective markers attached on the body, we capture the
body movements. We detect the markers exploiting markers’ intense
reflections provoked on the infrared images and sensors’ depth percep-
tion. Rendering the 3D markers after normalization on two opposing

depth images, we train a FCN to jointly and sequentially predict marker
and joint heatmaps, decoding then with a novel fully differentiable
module the 3D markers and joint positions. At run-time, we conduct a
two-step forward pass,where the first stages localize themarkers and the
latter stages estimate the body pose (we illustrate the two-view example
of our multi-view input/supervision concept for the sake of brevity)

spatial 3D regression to precisely regress the normalized 3D
coordinates both of M = 53 markers, X̂M ∈ R

M×3, and
J = 19 joints, X̂J ∈ R

J×3. Finally, we apply the inverse
scale and translation transformation TN −1 (Sect. 3.5) to
recover the marker and pose 3D coordinates to their orig-
inal physical dimensions.

4.1 StagedMarkers-to-Pose Networks

4.1.1 Network Architecture

Our approach is based on a particular concept with respect
to the network design. We propose multi-stage FCN archi-
tectures with smooth staging from markers-to-pose heatmap
predictions that lead tobetter performing, efficiently designed
models, as proved and discussed in Sect. 5.3.1. Given that the
prior of the final pose is the optical marker spatial distribu-
tion, we design our networks to predict/refine the marker
coordinates at an early stage, letting the joint coordinates
to be localized from the latter stages. That way, the prior is
refined before localizing the joint coordinates, resulting in
robust and reliable predictions.

We build upon highly effective heatmap prediction net-
works such as Convolutional Pose Machines (CPM) by Wei
et al. (2016), Stacked Hourglass (SH) by Newell et al. (2016)
and a more recent one, HRNET by Wang et al. (2020). We
predict dual-view heatmaps by feeding D f ront and Dback to
the networks in two separate forwardpasses.Hence, ourmod-
els process each of the views, while both inferences are later
fused to produce a final prediction supervised by a shared
objective.

We follow the same architecture design for all networks.
At first, we feed each Dv, v = { f ront, back} depth map to
an initial pre-processing module to extract a feature map Fv

(F for the sake of brevity). We design a 2K -stage network,
K ∈ N, and we split it in two super-stages consisting of
K stages each. The former super-stage predicts the marker
heatmaps H̄M and the latter the joint heatmaps H̄J , resulted
as aggregations of the intermediate heatmapsHS,st predicted
by each stage st ∈ {1, 2, . . . , 2K } of each super-stage S ∈
{M, J }. The feature map F is concatenated with HS,st , st <

2K at every stage to feed the next one.
Rather than supervising heatmaps as originally proposed

by the authors of the networks (per stage intermediate super-
vision in CPM and SH and last stage heatmap supervision
in HRNET), we supervise only the aggregated heatmaps
H̄M and H̄J with the coordinates and structural heatmaps
of the respective ground truth joints. As further discussed
in Sect. 5.3, this aggregation scheme converges faster and
orchestrates slightly better the staged transition from dense
observations to sparse marker and joint coordinate regres-
sion, as also used and validated by Zanfir et al. (2018).

Network details along with a high-level overview sketch
(Fig. 12) of the proposed architectures are presented in
“Appendix A”.

4.1.2 Heatmap Prediction

Let Hk
st , st ∈ {1, 2, . . . , 2K } denote the k-th latent heatmap

before Softmax at stage st . Then, heatmap aggregation across
stages is performed via summation:

H̄
k =

l∑

st= f

Hk
st (3)

In total, two aggregations are being performed, one for
marker position regression with f = 1 and l = K and one
for joint position regression with f = K + 1 and l = 2K .
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Fig. 5 Surface plotting of the predicted heatmaps before (H̄
k
) and after

Softmax (H̃
k
). We let the network predict latent heatmaps satisfying

both tasks, i.e. the average of H̄
k
values to be equal to the z-coordinate

of the 3D keypoint, while after Softmax, the heatmap H̃
k
to approach a

gaussian distribution for xy-coordinate estimation

By applying Softmax on each of the aggregated heatmaps H̄
k

results in H̃
k
:

H̃
k
(p) = eH̄

k
(p)

∑
p∈Ωk

eH̄
k
(p)

(4)

where p denotes a heatmap layer pixel and Ωk the spatial
domain of the heatmaps. Visualizations of H̄ and H̃ heatmaps
are illustrated in Fig. 5.

4.2 Multi-view Spatial 3D Regression

We regress M = 53 normalized marker position coordinates
X̂M ∈ R

M×3 and J = 19 normalized joint position coordi-
nates X̂J ∈ R

J×3 by decoding heatmaps H̄ and H̃ predicted
by each corresponding super-stage.

4.2.1 Center of Mass 3D with zMean Layer

We contribute to 3D coordinate regression by proposing
Center of Mass in 3-dimensional space (CoM3D) with the
insertion of a fully differentiable zMean layer to the well-
known CoM coordinate decoding from heatmaps technique.
Our statement is that fully convolutional networks can learn
to predict heatmap distributions in varying value ranges,
underlying an extra spatial information layer that allows the
encoding of the third dimension. Thus, we regress 3D coor-
dinates with the introduction ofCoM3D combining two fully
differentiable layers, zMean and CoM , (zMean +CoM =
CoM3D), with zMean being our proposed contribution.
While forCoM we follow the standard procedure introduced
by Tensmeyer and Martinez (2019) for x and y coordi-
nate regression, the motivation behind zMean is to exploit
one extra degree of freedom which Softmax allows under
direct heatmap supervision, in order to additionally constrain
the average of H̄k to approach a ground-truth z coordinate,
leading to a compact 3D coordinate encoding. In detail, let
(xk, yk, zk) denote the predicted normalized 3D coordinates

for marker or joint k, with k being either in {1, . . . , M} or in
{1, . . . , J }, respectively. Then, we regress zk by:

zk = 1

Nx Ny

∑

p∈Ωk

H̄
k
(p) (5)

and (x, y)k by:

(x, y)k =
(

1

Nx
,
1

Ny

)
◦

∑

p∈Ω

H̃
k
(p) · p (6)

with Nx = 40, Ny = 40 the cardinality of each 2D heatmap
pixel coordinate domain, as designed to our network archi-
tectures, and ◦ denoting element-wise multiplication.

4.2.2 Multi-view Supervision

Finally, for two opposing rendering views, we conduct joint
dual-view supervision by estimating one single 3D point
per dual input rotating the normalized coordinate prediction
(xk,back, yk,back, zk,back) forDback by180◦ around theY-axis
and averaging it with the normalized coordinate prediction
(xk, f ront , yk, f ront , zk, f ront ) for D f ront by:

(x̂k, ŷk, ẑk) =
⎛

⎝
1
2 (xk, f ront + (1 − xk,back)),

1
2 (yk, f ront + yk,back),

1
2 (zk, f ront + (1 − zk,back))

⎞

⎠ . (7)

That way, we approach every single 3D coordinate from
two opposing sides covering the 3D volume where the
human body is contained, regressing X̂M and X̂J normal-
ized marker and joint 3D coordinates, correspondingly. In
other words, our model learns to predict heatmaps whose
average value approaches the normalized ground-truth “z”
coordinate while their normalized 2D center of mass, after
Softmax, approaches the normalized ground-truth “x” and
“y” coordinates.

4.3 Losses

During training, we jointly supervise X̂M and X̂J with the
ground truth coordinates, M̂gt and Ĵgt , respectively. On the
one hand, contrary to DSNT proposed byNibali et al. (2018),
instead of using Euclidean Distance loss extended in 3D, we
use Wing loss, Lwing , proposed by Feng et al. (2018) which
leads to a better-learnt data representation.Wing constitutes a
loss function which behaves as a log function with an offset
for small errors, while for larger errors as L1. Lwing loss
function is defined by:

Lwing(x) =
{
w ln(1 + |x |/ε) i f |x | < w

|x | − C otherwise
(8)
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Fig. 6 A high-level diagram of DeMoCap that depicts the various steps
of our concept. The rendered depth multi-view input is fed to the for-
mermarker super-stage that, sequentially, feeds the latter pose one, both
predicting the H̄marker and joint heatmaps, correspondingly, resulting
to H̃ after Softmax. Applying CoM3D, we decode z coordinate from H̄

with zMean and x,y coordinates from H̃withCoM. Regressing that way
the 3D coordinates from each view, we fuse them in the final stage. We
supervise both H̃ and x, y, z marker and joint predictions with LD and
Lwing respectively, to train the network in an end-to-end manner

where the non-negativew sets the range of the nonlinear part
to (−w,w), ε limits the curvature of the non-linear region
andC = w−w ln(1+w/ε) is a constant value that links in a
smooth way the piecewise-defined linear and nonlinear parts
of the function. The input x toLwing is the 3D euclidean dis-
tance between predicted and ground-truth points of interest.

On the other hand, similarly to DSNT, we directly super-
vise also the spread of the heatmap since the strongly
supervised pixel-wise gradients enhance the training of the
model, improving its performance. We impose strict regu-
larization on latent heatmap to directly drive it towards a
certain shape and distribution. More specifically, we force
the heatmaps to resemble spherical Gaussians by minimiz-
ing the divergence between generated heatmaps and targeted
gaussian distributions centered at the 2D orthographic pro-
jectionspgt of the normalized ground truth 3Dpositions from
the respective viewpoint. The distribution regularization term
is defined by:

LD(H̃,pgt ) = D(H̃ ||N (pgt , σ
2I2)) (9)

where D(·||·) is the Jensen–Shannon divergence (Fuglede
and Topsoe (2004)), σ denotes the target variance and N ()

the target normal distribution.
Finally, the total loss used to compute the network gradi-

ents is defined as:

Ltotal = λ1(Lwing,M + Lwing,J ) + λ2(LD, f ront + LD,back),

(10)

where λ1, λ2 are hyper-parameters that weight the coor-
dinates and heatmap distribution losses, respectively. A
high-level diagram that depicts the various steps of our con-
cept is illustrated in Fig. 6.

5 Experimental Evaluation

In this section, we present the experiments we conducted to
assess our method. In Sect. 5.1, we present the dataset cre-
ated according to the pre-processing steps we described in
Sect. 3 andused for training, validating and testing ourmodel.
Then,we discuss the evaluationmethodologywe followed by
presenting the metrics we used (Sect. 5.2.1), the state-of-the-
art methods we compared against ours (Sect. 5.2.2) and the
implementation details for the executionof these experiments
(Sect. 5.2.3). In Sect. 5.3, we present and discuss quantita-
tive and qualitative experimental results, giving insights with
respect to the performance of our model. Finally, an ablation
study gives evidence regarding the necessity and impact of
our contributions in Sect. 5.4.

5.1 Dataset

Considering the data capturing and pre-processing steps
described in Sect. 3, we create a set of 12,197 samples
from 11 single-person activities. We divide the subjects
S1, S2, S3, S4 into two male-female couples using the data
of the first couple (S3 and S4) performing 7 of the 11
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Table 1 Training, validation and testing datasets number of samples,
activities and subjects involved

Activity Samples Set Subjects

Running 639 Train {S3,S4}

Basketball_dribbling 666

Sitting_down 1,205

Object_dropping_n_picking 754

Stretching_n_talking 1,201

Watching_scary_movie 826

In-flight_safety_announc. 2,874

Total train samples 8,165

Jumping_jack 692 val *{S1,S2}

Bending 851

Total val samples 1,543

Punching_n_kicking 930 test *{S1,S2}

Sitting_on_a_stool 1,112

Total test samples 2,042

activities for training (running, basketball_dribbling, sit-
ting_down,object_dropping_n_picking, stretching_n_talking,
watching_scary_movie and in-flight_safety_announcement)
and the data from the second one (S1 and S2) performing the
remaining ones for validation (jumping_jack and bending)
and testing (punching_n_kicking and sitting_on_a_stool).
We split our dataset that way to assess the models on unseen
subjects with different body structures and unseen activities,
providing reliable and fair conclusions with respect to their
performance.

The training, validation and testing data sets consist of
8165, 1990 and 2042 samples, as presented in Table 1.

5.2 Methodology

5.2.1 Metrics

Wemeasure the errors of themethods in physical dimensions
by applying the inverse scale and translation transformation
TN −1, as described in Sec. 3, with the use of the metrics
below:

• We assess the 3D pose regression accuracy by using the
commonly used mean per joint position error (MP J PE )
(Li et al. (2015)) and mean per marker position error
(MPMPE ) when applicable, i.e. when markers are pre-
dicted by the models.

• In a similar fashion, we also measure the Root Mean
Squared Per Joint andMarker Position errors (RMSP J PE

and RMSPMPE ) which constitute variations of MP J PE

and MPMPE , respectively, based on Root Mean Square
Error (RMSE) instead of Mean Absolute Error (MAE),

as used by Chatzitofis et al. (2020). Both metrics are
affected by large outliers but RMSP J PE and RMSPMPE

incorporate better the variance of the predictions and their
bias.

• We use mean Average Precision (mAP) using Percent-
age of Correct Keypoints 3D (PCK3D) metric proposed
by Yang and Ramanan (2011) in a range of α3D error
thresholds.

• Beyond the position-based metrics, we present results
calculated by fusing the pose data (forward direction
of the bones) and the orientation driven by the various
marker groups mapped to joints, providing an extra met-
ric with respect to the stability of the predictions and the
capabilities provided by the simultaneous regression of
markers and joints. We consider the mean and root mean
per joint angular errors,MP J AE and RMSP J AE , bymea-
suring the angle θ in degrees, between the ground truth
and predicted joint orientations by:

θ = cos−1(2〈 q̂ j,gt , q̂ j 〉2 − 1) (11)

where 〈 q̂ j,gt , q̂〉 denotes the inner product between q̂ j,gt

and q̂ j of joint j .

It is worth noting that for the sake of comparability against
other methods, we use 17 out of the 19 total joints of the
regressed pose for the assessment, excluding the toes.

5.2.2 Comparison against State-of-the-art Methods

Due to the lack of public state-of-the-art methods targeting
this specific task, i.e. markers and pose regression from noisy
optical marker data, relevant methods were identified and re-
trained to adapt in our dataset, offering valid comparisons.
We identify marker-based and markerless methods; for the
former, the input is M̂r , i.e. the normalized sparse cloud of
the detected markers, while for the latter, we use the spatio-
temporally alignedmulti-view colored infrared images along
with the camera intrinsic and extrinsic parameters.

In detail, we compare ourmodel against twomarker-based
methods, an adaptation of a graph-based model designed
for image-based hand-object pose estimation proposed by
Doosti et al. (2020) (HOPE) adapted to our task and a direct
3D regressionmethodused for onlinemarker labeling (OML)
adapted for simultaneous marker-joint 3D coordinate regres-
sion frommarkers by feeding a single and dual marker depth
map (Han et al. (2018)). On top of that, we further assess
three markerless methods, two top-down pose estimation
methods from spatio-temporally aligned multi-view color
images relying on the concept of learnable triangulation (LT),
proposed by Iskakov et al. (2019) and one bottom-up multi-
view and graph-based pose estimation approach (4DA) from
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spatio-temporally aligned multi-view color images proposed
by Zhang et al. (2020b).

Marker-based methods: HOPE is a lightweight model
designed to jointly estimate hand and object pose in 2D and
3D space based on a cascade of two adaptive graph convo-
lutional neural networks. We adapt the first one to estimate
2D coordinates of the joints on the orthographic depth maps,
followed by the second, Adaptive Graph-U-Net (Gao and Ji
(2019)), to convert 2D to 3D coordinates.We alsomodify the
input to our depth map resolution (1× 160× 160) instead of
the color images of the original work and we train the model
from scratch with Xavier (Glorot and Bengio (2010)) weight
initialization.

As in HOPE, we adapt OML to the new input depth map
resolution (160 × 160 instead of 52 × 52 of the original
work), initializing the model weights with Xavier initializa-
tion. Furthermore, we adapt the output of the network to
predict a vector with M = 53 and J = 19 3D positions, i.e.
the target of our task, while we present an extra variation of
the approach that consumes multi-view depth data similarly
to our concept.

Markerless methods: With respect to the LT methods,
LT(alg.) is based on algebraic triangulation with learnable
camera-joint confidence weights, while LT(vol) constitutes a
volumetric triangulation approach based on dense geometric
aggregation of 2D heatmap predictions from multiple view-
points. The input used to train these models is a batch of N
spatio-temporally aligned color images along with the corre-
sponding camera poses and intrinsic parameters. Aiming at
a fair comparison between LT methods and DeMoCap, we
re-train the LT models on our dataset initializing with the
pre-trained weights due to the domain differences between
the datasets.

For the initial bounding box detection, LT methods use
MaskR-CNN2Ddetector (He et al. (2017))withResNet-152
(He et al. (2016)) backbone to predict the human bounding
boxes, however we use the ground truth bounding boxes to
avoid the need for re-training of the detector.

We use the weights of the pre-trained models3 trained
on Human3.6 (Ionescu et al. (2013)) with the 2D backbone
pre-trained on COCO dataset (Lin et al. (2014)) and we fur-
ther train them on our colored infrared dataset for 10 epochs
adopting the training configuration proposed by the authors.
Weuse the colored infrared data to re-train themodels instead
of the sparse data renderings which would require training of
the models from scratch. Note that the predictions obtained
from the algebraic are used for the volumetric triangulation

3 The models that were publicly available in the official repository of
the authors at the time of this work.

approach. For training, we use the official repository and
guidelines provided by the authors4.

4DA considers the temporal aspect of consecutive frames.
With the use of OpenPose by Cao et al. (2017), human
body part candidates (heatmaps) and connection confidence
(part affinity fields) scores between body parts are retrieved
from each single view. Fusing the obtained human body part
features between two sequential frames, a 4D graph is con-
structed with per-view parsing edges connecting adjacent
body parts, cross-view matching edges connecting the same
body part across the various views, and temporal tracking
edges for mapping detected 3D nodes on a previous frame
with new 2D detections on the next one. With the same prac-
tice we followed for LT, we re-train the model for 10 epochs,
initializating it with the weigths of the pre-trained model of
the official repository of OpenPose5.

5.2.3 Implementation details

We train our network for 200 epochs using Adam (Kingma
and Ba (2014)) optimizer with an initial learning rate equal
to 1e − 4, while we apply a frequent linear rolling drop of
0.95 every 4 epochs. The batch size is 16, and the heatmap
standard deviation during supervision is σ = 1.0. λ weights
ofLwing andLD losses, as defined in Eq. 10, are set toλ1 = 2
and λ2 = 1, and the parameters for the wing loss Lwing are
set to w = 10 and ε = 2.

The model is implemented with PyTorch (Paszke et al.
(2019)) and moai (2021) and the experiments ran on a con-
ventional computer with 1 single NVIDIA GTX 1080 Ti
graphics card of 12 GB RAM, and an Intel i7(R) proces-
sor, using the same manual seed for all epxeriments for fair
comparison and reproducibility. The code and the dataset are
publicly available online6.

5.3 Experimental Results

The validation set was used for training hyper-parameter
tuning, while the evaluation on the test set took place after
the selection of the best models. We present results on both
sets, showing the variance of the inference accuracy between
them for the various models, indicating their generalization
potential.

4 https://github.com/karfly/learnable-triangulation-pytorch/tree/
9d1a26ea893a513bdff55f30ecbfd2ca8217bf5d
5 https://github.com/CMU-Perceptual-Computing-Lab/openpose/
tree/1f1aa9c59fe59c90cca685b724f4f97f76137224
6 https://github.com/tofis/democap
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Fig. 7 We design all FCN architectures in 3 variations to assess
our staged markers-to-pose concept. We feed D f ront and Dback to
all variations with pose, markers+pose and markers-to-pose yield-
ing joints only (X̂J ∈ R

J×3), simultaneously markers and joints
(X̂M+J ∈ R

(M+J )×3), and sequentially markers (X̂M ∈ R
M×3) and

joints (X̂J ∈ R
J×3), correspondingly

5.3.1 Assessment with various FCN networks

At first, we assess DeMoCap by building our staged concept
upon various FCN architectures, as discussed in Sec. 4.1.
The reason is twofold; i) to validate our position that staged
architectures for markers-to-pose predictions perform bet-
ter independently of which FCN architecture used to predict
the heatmaps and ii) to select the best performing model for
the comparison against state-of-the-art. We train DeMoCap
building uponCPM,SHandHRNET in three variations each:

• pose: We train the models in an end-to-end design,
regressing and supervising only the pose heatmaps with
markers absent, though focusing on one single task, the
prediction of joint 3D positions X̂J ∈ R

J×3.
• markers+pose: Similarly to pose variation, we train the

models in an end-to-end concept, however regressing and
supervising both the joint and the marker heatmaps in
every forward pass, resulting in X̂M+J ∈ R

(M+J )×3.
• markers-to-pose: We train DeMoCap on its original con-
cept where the first super-stage predicts the marker, and
the second one the pose only heatmaps, resulting sequen-
tially in X̂M ∈ R

M×3 and X̂J ∈ R
J×3, correspondingly.

The outcomes of these experiments are illustrated in
Table 2. The markers-to-pose staged approach achieves
higher performance for all models on the main task of the
method, i.e. the estimation of the pose, however, in some
experiments, the markers are more precisely localized by the
markers+pose variation. For cooperative marker and pose
regression, which also enables joint 3D rotation estimation,
the computation load per stage and the network weights are
the optimum for the markers-to-pose approach, since, for
markers+pose, the marker and joint heatmaps are predicted
across all the stages of the network.

With respect to themodels, although SHperforms remark-
ably in the testing set outperforming HRNET, we consider

the latter for the rest of the experiments since our indica-
tions were based on the experimental results retrieved in the
validation set.

5.3.2 Quantitative Analysis

We compare DeMoCapHRNET−8−{markers−to−pose}, refer-
ring to it as DeMoCap for the sake of brevity, against other
methods (Sect. 5.2.2) presenting and discussing total, per
joint and per action quantitative results.

TotalResults. InTable 3,we depict the results of themethods
with the use of MP J PE , RMSP J PE , MPMPE , RMSPMPE ,
mAP50mm, MP J AE and RMSP J AE metrics.

The markerless multi-view color-based pose estimation
models 4DAandLT are effective showing their ability to esti-
mate 3D poses frommultiple spatio-temporally aligned color
views, being relatively robust to body part occlusions and
partial views. As presented in the original work by Iskakov
et al. (2019), the volumetric approach performs better in our
dataset, showing greater accuracy than the algebraic one.

Our method yields more reliable and accurate predic-
tions than 4DA and LT across all metrics with respect to
the total results presenting lower MP J PE , greater mAP50mm

and lower RMSP J PE , despite the fact that these models have
been trained with far larger datasets than ours. That is due
to the major differences of DeMoCap against multi-view
methods built to operate with dense visual data. DeMoCap is
trained to predict markers and pose from sparse marker data
where the input is exclusively related to the human body
pose in 3D space. There is no context redundancy including
various backgrounds, cloth types, fabric or colors, lighting
conditions or any other aspect as happening for deep models
trained on dense visual streams. In other words, the input for
DeMoCap is not domain sensitive as color, depth or any other
dense visual stream is. On top of that, DeMoCap is trained on
purely 3D data, while LT and 4DA are based on the fusion
of multiple partial 2D detections, weakening the localiza-
tion of the final 3D keypoints. Despite the trial to reduce the
weights of erroneous 2D predictions with learnable weight-
ingor graph association techniques before thefinal 3D fusion,
the errors cannot be totally eliminated, leading to erroneous
estimates when body parts are exceeding the field of view
of at least one of the cameras or being occluded resulting
in malicious predictions. For DeMoCap, the disappearance
of a marker from one of the views is not considered enough
to drive the model in failure. At least one marker detection
from one single depth camera, a highly possible case when
multiple depth sensors are capturing the performance, can
be enough to lead the model to accurate prediction given the
low variance of the 3D input.

Despite our efforts to finetune the HOPE and OML
models, their performance is relatively low, struggling to
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Fig. 8 A plot comparison between Han et al. (2018)OML , Iskakov et al.
(2019)LT and DeMoCap showing mAP using PCK3D metric against
α3D threshold inmillimeters in the test set. Our results reach high scores
at low α3D thresholds showcasing the effectiveness of our method

accurately regress the 3Dcoordinates in samples fromunseen
subjects and activities.

Their low performance could be potentially explained by
the use of direct regression with the use of fully connected
layers (fully connected andgraph layers forHOPE) in the net-
work and our relatively small training dataset, contrary to the
dataset size of the original works and the use of pre-trained
modelswhichwere not applicable on depthmap input.More-
over, our 3D coordinate regression task is more challenging
since we regress M + J = 72 3D coordinates in compari-
son with HOPE and OML designed to regress less than 30
3D keypoints. Nevertheless, it is worth noting that the dual-
view trained OML presents relatively better results than the
single-view model, showcasing the potential of the multi-
view supervision concept.

A more comprehensive analysis with respect to the per-
formance of the methods in the testing set is illustrated in
Fig. 8, where we compare the methods with mAP metric
using PCK 3D against α3D threshold in mm. DeMoCap out-
performs the rest of themethods with highermAP against the
whole range of α3D thresholds, while for α3D = 35mm, the
mAP is already 70%. OML methods are incapable of being
comparable to 4DA, LT and DeMoCap for α3D ∈ (0, 60) in
mm. Finally, both LTmodels showcase higher precision than
4DA.
Per Joint Results. Beyond the presentation of the total results,
we evaluate the performance of the methods on a per human
body joint analysis in Table 4, where DeMoCap outperforms
the compared methods to most of the body joints.

This analysis allows us to assess the consistency of the
models in the estimation of the various joints individually.
The rationale behind this analysis is that, traditionally in
human pose estimation, the difficulty level for the local-
ization of joints gradually increases while moving from the
torso joints of the body, i.e. hips, spines, shoulders, neck,
to the head and the end joints of the limbs, i.e. the ankles
and the wrists. The latter, being end nodes of an articulated
structure, i.e. the human body, move more freely than the
rest of the body showing large variance with respect to their
global and local body positioning. Nevertheless, we consider
it significant for a method that targets human motion capture
to present robustness and consistency across all joints esti-
mates. In our experiments, the same challenge applies to all
methods, however the errors between end and torso joints
for HOPE, OML, 4DA and LT show higher variance than
ours, meaning that DeMoCap regresses the pose with more
equally balanced accuracy across the joints of the body than
the other approaches. Rapid body part movements when
fast actions are performed cause image blurriness leading
the vision-based models to erroneous estimates. To over-
come this challenge, DeMoCap has been explicitly designed
to perform the pose regression on two phases. The initial
noisy and incomplete marker input is refined/recovered on
a first phase, driving the estimation of the pose in a later
stage based on refined marker data. The refinement of the
markers allow the model to more accurately perform the
last stage estimates of the joints, which are only related to
the marker positions, without any other contextual binding
to the initial blurry color input. We obtain the remarkably
lower errors forWrists andAnkles joints inTable 4, especially
in the testing set where during the totally freely performed
punching_n_kicking action, many body parts are out of the
cameras’ field of view for several frames.
Per Action Results. In Table 5, we present and discuss
the model outcomes on a per action analysis to assess
the model performance across sequences of varying poses.
Including the actions both of the validation and testing
sets, we present MP J PE for 4 actions: jumping_jack, bend-
ing, punching_n_kicking and sitting_on_a_stool. Despite the
fine-tuning of themodels on the validation set, both sets share
the same characteristics considering that both include unseen
subjects and actions in relation to the training set. Hence,
the difficulty level for capturing these motions is determined
mostly by the objective challenges of each specific perfor-
mance such as their complexity and speed, resulting in several
occlusions ormissing data, or body partmovements out of the
field of views of the cameras. That is proved from the lower
errors in sitting_on_a_stool actionwhich demonstrates lower
errors than the validation set actions.

For the punching_n_kicking action, the subjects were
asked to punch and kick in front of the cameras without
guidance or other constraints. This resulted in extremely
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Table 4 3D Euclidean Distance Error per joint in millimeters

Method \ Joints (mm) Set-In Head Neck Shoulders Elbows Wrists Pelvis Spines Hips Knees Ankles

Zhang et al. (2020b) val-C 64.22 27.95 49.54 77.89 97.01 25.47 - 34.00 34.25 33.54

Iskakov et al. (2019)(alg.) 32.82 25.57 41.08 56.98 68.43 36.12 33.37 45.26 53.22 53.16

Iskakov et al. (2019)(vol.) 32.68 25.77 39.43 51.84 61.99 34.82 33.04 42.29 48.54 48.17

Doosti et al. (2020)(adapt .) val-M 103.64 85.76 91.71 155.68 161.11 119.87 82.49 132.99 154.47 122.11

Han et al. (2018)(adapt .) 81.76 61.79 88.71 151.48 232.93 91.60 84.38 93.01 98.50 97.00

Han et al. (2018)(dual−adapt .) 81.35 60.58 83.50 148.87 219.25 83.27 81.55 90.51 92.70 94.61

DeMoCap 26.34 27.06 35.18 35.44 40.38 26.78 30.55 28.63 35.12 42.18

Zhang et al. (2020b) test-C 62.25 25.67 50.49 46.31 51.71 38.85 - 47.20 54.82 65.85

Iskakov et al. (2019)(alg.) 28.96 20.93 32.63 53.21 65.67 34.51 30.59 54.96 55.69 86.36

Iskakov et al. (2019)(vol.) 28.53 20.69 31.54 50.23 61.00 33.18 30.21 51.39 52.15 79.14

Doosti et al. (2020)(adapt .) test-M 98.14 80.23 98.05 128.29 149.24 72.66 68.00 76.08 172.01 164.61

Han et al. (2018)(adapt .) 45.35 51.22 80.85 132.28 147.66 73.87 63.56 73.92 117.46 129.59

Han et al. (2018)(dual−adapt .) 45.12 50.22 76.38 130.09 138.75 67.15 61.42 71.94 110.25 126.40

DeMoCap 30.09 19.30 23.28 28.94 45.25 49.38 31.39 27.85 32.95 52.62

bold-italic indicate bilateral joints for which the average error is presented. For the sake of clarity, C for Color and M for Marker data input with
cell colorization indicate the markerless and marker-based methods, respectively

Table 5 MP J PE per action results for the validation and testing sets, presenting the performance of the models across different actions. For the
sake of clarity, C for Color and M for Marker data input with cell colorization indicate the markerless and marker-based methods, respectively

Method \ Action In Jumping Jackval Bendingval Punching & Kickingtest Sitting on stooltest

Zhang et al. (2020b) C 51.17 51.52 61.46 37.67

Iskakov et al. (2019)(alg.) 44.18 48.63 64.36 34.83

Iskakov et al. (2019)(vol.) 41.47 45.22 59.74 33.71

Doosti et al. (2020)(adapt .) M 103.44 143.03 147.82 88.63

Han et al. (2018)(adapt .) 101.12 123.87 131.76 69.29

Han et al. (2018)(dual−adapt .) 97.34 119.03 124.96 67.71

DeMoCap 28.74 38.47 57.19 25.77

challenging data due to the rapid and free-style movements
with noisy samples due to blurriness, partial occlusions or
body parts out of the field of view of the cameras. This is
observed in the per action analysis where the results of all
methods on this specific action present the highest errors.

5.3.3 Qualitative Analysis

In this section, we present and discuss qualitative outcomes,
as illustrated in Fig. 9. We project the marker and pose 3D
coordinates on the infrared views in order to correlate them
with the actors’ actual performances. For the sake of visual-
ization clarity,we depict the rawnoisy input, the ground-truth
and the predicted marker data separately. The predicted and
ground-truth poses are visualized together to facilitate the
visual comparison between them.

Given the infrared images in the background, we highlight
the targeted and addressed challenges by ourmodel. In partic-
ular,we indicate themarker corrections on the noisy input and
the robust pose regression behaviour of the predictions. One
can easily observe that the raw marker input captured with
the low-cost D415 system is highly noisy. That is due to the
marker 3D localization from each sensor separately, which,
in combination with the depth sensor errors, result in con-
siderably distant 3D points that represent the 3D position of
the same marker. Comparing the regressed marker positions
against the initial input, we point the solutions given to this
marker-based MoCap problem. Marker observation cluster-
ing is achieved by automatically grouping the noisy raw 3D
points captured by different sensors (Fig. 9, yellow circles).
In this rationale, ghost markers from erroneous detection are
ignored (Fig. 9, red circles). Missedmarkers, either occluded
or non-detected, are recovered (Fig. 9, magenta). Image blur-
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Fig. 9 In the first three columns, we visualize noisy raw (yellow),
ground-truth (blue) and predicted (green) markers projected on one
single infrared view per group frame (different group frame per row).
In the fourth column, we illustrate the predicted poses (yellow) and

ground-truth (blue). Red, magenta and yellow circles indicate ghost
marker cleaning, recovery of missing markers, and depth sensor errors,
correspondingly. Green circles highlight the blurriness issues that our
model overcomes
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riness are effectively handled to eliminate the joint coordinate
regression errors (Fig. 9, green circles). In other words, we
accurately localize and label optical markers captured with
low-cost sensors that provide highly noisy data. Due to the
discrete inference on every single frame, marker swapping
present in traditional MoCap is resolved. Our model directly
provides instantaneous 3D pose regression from labeled 3D
markers without the use of any humanoid prior or knowledge
for body structure, meaning that there is no prior informa-
tion or side inference with respect to bone lengths and joint
relative placement, instead, the model predicts the pose in
one single-shot. Nevertheless, it is significant to highlight
that DeMoCap models are trained based on a specific marker
configuration prior, meaning that different marker placement
can lead our MoCap model in erroneous predictions.

In Fig. 10, we present more qualitative results with the
use of 3D visualizations. We illustrate a batch of 20 samples
from the testing set, illustrating the ground-truth data in blue
and our predictions in yellow, including failure cases in the
last row of the grid.

5.4 Ablation

We conducted and discuss an extensive ablation study to jus-
tify the design of the proposed approach.We replace, remove
or tune differently one single contribution of our approach per
experiment, showcasing its weight to the reader separately.
In detail, we ablate:

1. Our newly introduced fully differentiableCoM3Dmodule
(Sect. 4.2.1) against integral 3D regressionmodule by Sun
et al. (2018),

2. The 1- versus dual-view input/supervision (Sect. 4.2.2),
3. The 4- versus dual-view input/supervision (Sect. 4.2.2),
4. The quantization bias between high- (Sect. 3.5) and low-

resolution depth rendering of the input,
5. The use of data augmentation (Sect. 3.5),
6. The use of data normalization (Sect. 3.5),
7. The use of intermediate heatmap aggregation (Sect. 4.1)

against last stage only heatmap prediction,
8. The inference of our model on marker data captured by 3

cameras only,
9. The inference of our model on marker data captured by 2

opposing cameras only.

The summary of this ablation following the same enumera-
tion is shown in Table 6.
#1. Integral 3D regression versus CoM3D. One of themain
contributions of ourmethod is the introduction of theCoM3D
fully differentiable module for 3D regression comprising a
zMean layer followed by Softmax and aCoM layer. Themain
difference against other spatial regression approaches is the
use of zMean for z-coordinate regression. In order to assess its

value, we train our model substituting CoM3D module with
integral pose regression proposed by Sun et al. (2018). As
shown in Table 6, the use of integral pose regression module
is not effective enough in our task resulting in greater errors
than the original model (83.68mm and 89.32mm against
33.83mm and 40.04mm MP J PE in validation and testing
sets, respectively), while the inference time increases notice-
ably.

Number of rendering views.The input of ourmodel is a pair
of depth maps resulted by rendering the 3D positions of the
reflective markers from two opposing viewpoints. Conceptu-
ally, we take advantage of the three dimensional information
as well as its sparsity that allows us to “generate” numerous
2D inputs from one single 3D sample, claiming that multi-
view input and supervision yields more robust inference. To
assess this claim, we conduct two experiments tweaking the
number of rendering views.
#2. 1- versus 2-view depth input. At first, we render only
one single depth map and train the network with single-view
input. As depicted in Table 6 (exp #2), this model showcases
lower performance in comparison with the proposed dual-
view approach across all metrics, validating that the multi-
view concept drives the model to more accurate and robust
predictions.
#3. 4- versus 2-view depth input. On top of that, another
experiment with increased number of rendering views is
conducted (Table 6 (exp #9)). We train and assess a model
with a 4-view input showing favorable comparison against
the proposed dual-view original model. In detail, the model
performs similarly in the validation set, showing clear out-
performance nevertheless in the testing set across all metrics,
i.e. approximately 3mm absolute improvement across all
euclidean distance-based errormetrics, 1.72%mAP50mm and
3.67◦ and 5.41◦ MP J AE and RMSP J AE , respectively, given
the higher reliability of the results when trained on multiple
inputs and based on higher number of multi-view estimates.

The conclusion for these experiments is threefold; firstly,
despite the sparsity of the marker point cloud, single-view
ambiguities still exist in challenging and complex body
poses, resulting in locally dense marker subsets and potential
marker occlusions, which multi-view rendering can over-
come. Secondly, increasing the number of rendering views,
the reliability and accuracy of the predictions is improved,
validating our claims with respect to the contribution of
multi-view supervision. Finally, increasing the number of
rendered depth inputs linearly increases the computational
complexity and performance costs of the model. We find the
use of two opposing depth renderings ideal as a trade-off
between effectiveness and efficiency for deployment, given
their comparable results.
#4. High- versus low-resolution rendering. We build
DeMoCap posing a purely 3D problem as a 3D regression
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Fig. 10 Qualitative results of the ground-truth (blue) and predicted (yellow) poses in 3D. Our model regresses 3D poses comparable to ground-truth.
In the last row, failure cases are illustrated, when the poses of the subjects are extremely challenging and fast
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from multiple 2.5D inputs mission, allowing the use of 2D
fully convolutional architectures with proved and remark-
able effectiveness in keypoint localization tasks. That way
though, we pay the cost of encoding 3D non-quantized data
to quantized 2D grids, leading to some loss of information.
Specifically, the rendered depth maps based on quantized
coordinates are not totally accurate leading to sub-optimal
supervision and degraded model performance. We limit the
quantization error and information loss by rendering the
depth images in high pixel resolution, i.e. 800 × 800, and
linearly interpolate them to our input size, i.e. 160 × 160.

In Table 6 (exp #4), we train and assess the model with
data directly rendered to low-resolution, thereby encoding
higher quantization errors. This models shows lower per-
formance, validating the consideration that low-resolution
rendering leads to biased coordinate regression. It is worth
mentioning that the errors are not extremely higher than ours,
assuming that the multi-view supervision can better handle
this bias as well as the sub-pixel coordinate regression char-
acteristics of CoM3D heatmap coordinate decoding module.
#5. W/o versus w/data augmentation. To demonstrate
the contribution of 3D rotational augmentation of our data
(Sect. 3.5), we train our model by excluding it (Table 6 (exp
#5)). Our sparse point cloud input provides us the privilege
to actually rotate it before rendering, tremendously increas-
ing the amount of new depth map inputs during training with
significant effect as figured in the results, an important differ-
ence in comparison with the limitations of pseudo-rotational
augmentation applied on 2D visual data.
#6. W/o versus w/ data normalization. In Table 6 (exp
#6), we evaluate the contribution of the volumetric scale and
translation normalization transform TN we perform to the
marker point cloud to occupy equal volume in the normalized
voxel-grid for all samples. We observe that this normaliza-
tion boosts the performance of our model across all metrics.
Our consideration is that this transform leads to high vari-
ance with respect to the human body structures, allowing the
model to learn how to directly reconstruct the scale normal-
ized absolute 3D poses.
#7. W/o versus w/ heatmap aggregation. In our approach,
instead of supervising heatmaps as originally proposed for
the architectures we build upon, we supervise only the aggre-
gated heatmaps. This aggregation schemedrives ourmodel to
faster convergence and slightly better results, especially for
the marker estimation, as shown in Table 6 (exp #7), in com-
parison with last stage only supervision (HRNetV1), as pro-
posed forHRNET in the respectivework (Wanget al. (2020)).
Number of sensors. Finally, we conduct experiments of our
model on the validation and testing sets taking into account
the marker observations only from 3 and 2 sensors (Table 6
(exp #8 and #9)), respectively, instead of the full 4-sensor
setup with which we trained DeMoCap. We present this
experiment to assess the bias of our model on the training

set and the generalization capabilities, as well as its sensitiv-
ity to sensor decrease.
#8. 3 versus 4 capturing depth sensors. As expected,
the accuracy is lower in relation to the 4-sensor captured
data, nevertheless, the results are still better than the com-
paredmethods, showing lowerMP J PE andRMSP J PE errors
and higher mAP50mm accuracy (46.81mm, 53.50mm and
77.17% in the validation and 47.58mm, 60.02mm and
81.88mm in the testing set, respectively).
#9. 2 versus 4 capturing depth sensors. On the 2-sensor
assessment, the performance is further decreased, however,
the results can be considered fair enough given the lack of
information. Our conclusion from this experiment is that
DeMoCap follows a reasonable dependency on the number
of sensors that capture the markers, as the high-end MoCap
systems do with their specialized cameras.

5.5 Study on CleanMoCap data

5.5.1 On DeMoCap Dataset

We further benchmark our model by training and assessing
it using as input the post-processed, clean marker data from
VICON used as ground-truth, under the same learning con-
figurations. These experiments showcase the behaviour of the
model in ideal conditions where the marker data are totally
clean and highly precise, without the noise present in unclean
optical marker data either captured with low-cost depth sen-
sors or high-end MoCap systems before post-processing.
In Table 7, we present results of DeMoCap and DeMoCap
trained with VICON data (DeMoCapvicon) assessed both on
clean VICON and noisy data from consumer-grade depth
sensors (RS).

As expected, DeMoCapvicon achieves significantly high
accuracy both on the validation and testing VICON sets,
achievingMP J PE andMPMPE lower than3cmandmAP50mm

99.81% and 94.07% in each set, respectively. On the other
hand, DeMoCapvicon showcases low performance on noisy
RS data exceeding 6cm for absolute distance errors and
mAP50mm performance lower than 56%, even lower than
DeMoCap assessed on 2-viewpoint data only, given the dis-
similarity of the evaluation sets in comparison to the training
set.

Results of particular interest are presented by our model
when assessed on the clean validation and testing set from
VICON. DeMoCap demonstrates significantly better perfor-
mance in VICON than RS data, though trained on the latter,
letting us consider that the model generalizes well without
bias on the systemic camera noise, poses or pinhole param-
eters. The model is trained to handle noisy and clean data,
showing that increasing the accuracy of the marker capturing
leads to more reliable inference.
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Table 7 Results on DeMoCap clean MoCap data. We train DeMoCap with clean MoCap data to assess the performance of the models in various
combinations between training and validation/testing sets

Method \ Metrics (mm) Set MP J PE RMSP J PE MPMPE RMSPMPE mAP50mm MP J AE RMSP J AE

DeMoCap on VICON data val 29.64 34.58 36.61 42.95 96.11% 16.28 18.60

DeMoCapvicon on RS data 72.76 108.94 94.75 135.48 45.11% 31.42 41.00

DeMoCapvicon on VICON data 21.04 24.24 19.09 24.49 99.81% 11.18 13.52

DeMoCap 33.83 42.65 42.33 51.74 90.41% 18.66 22.47

DeMoCap on VICON data test 37.28 47.63 47.80 59.79 89.86% 14.52 19.40

DeMoCapvicon on RS data 62.81 87.50 90.78 122.57 55.09% 28.34 35.88

DeMoCapvicon on VICON data 25.16 32.98 27.44 37.30 94.07% 10.04 15.28

DeMoCap 40.04 51.69 52.92 66.49 88.05% 19.73 26.18

Bold indicates the results of the best performing methods

Fig. 11 Qualitative results of various frames illustrated on the same scene (locomotion) from DanceTurns002 sequence of SFU Dataset (Ying
(2011)), on totally unseen body structures and activities. The yellowposes represent the predictions ofDeMoCap,while the blue ones the ground-truth
data of the dataset

5.5.2 On SFU Dataset

We also evaluate the performance of our models, DeMoCap
and DeMoCapvicon on a public MoCap dataset with a rela-
tively similar marker configuration and pose structure with
53 markers and 30 joints, SFU Motion Capture Database by
Ying (2011). Indicatively, in our experiments, we include two
challenging activities,DanceTurns0027 andHopOverObsta-
cle001.8 The quantitative results for 575 samples in total are
shown in Table 8. Visually, the models showcase compara-
ble results, as illustrated in Fig. 11, numerically though, only
DeMoCapvicon reaches high scores, while for DeMoCap, the
task is proved more challenging. It is worth highlighting the
spatial offsets existing between different body structures for
the various datasets that insert a constant error in the mea-
surements, as discussed in Sect. 6.

7 http://mocap.cs.sfu.ca/index154af.html?id=0018_DanceTurns002.
bvh
8 http://mocap.cs.sfu.ca/index1fe61.html?id=0015_HopOverObstacle001.
bvh.

Table 8 Results on SFU (Ying (2011)) clean MoCap data. We train
DeMoCap with clean MoCap data to assess the performance of the
models in various combinations between training and validation/testing
sets

Model \ Metrics (mm) MP J PE RMSP J PE mAP50mm

DeMoCap 58.28 69.38 48.95%

DeMoCapvicon 45.28 54.95 75.46%

Bold indicates the results of the best performing methods

6 Discussion

In this section, we present a summary of our observations,
discussing the pros and cons of the various motion capture
solutions, in relation to our approach and beyond.

6.1 Strengths

For decades, marker-basedmotion capture has been the gold-
standard for high-fidelity motion capturing and tracking.
Nevertheless, despite its sub-millimeter accuracy on marker
tracking, the use of marker-based systems is globally limited
given the high costs of the setups, the software licenses, the
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maintenance andmore. To the best of our knowledge, DeMo-
Cap is the first computer vision method that enables the use
of low-cost equipment for marker-based motion capture with
comparable results to high-endMoCap systems, to the extent
the hardware and data limitations allow for.

DeMoCap is one of the pioneering methods in deep
marker-based motion capture that allows one-shot regres-
sion of pose from a sparse set of 3D points. The method
performs better than recent state-of-the-art color-basedmeth-
ods (i.e. LT and 4DA) despite the use of highly erroneous
depth estimates from low-cost sensors (depth error higher
than 3cm in 1.5m distance from the camera), while the mean
average per joint error drops under 2.5cm when trained and
assessed on clean data. DeMoCap generalizes well even with
the use of low number of cameras (2 or 3 sensors, Sect. 5.4),
showcasing increased stability in comparison with methods
based on potentially erroneous partial view detections (e.g.
2D pose detectors). The model is driven to reject outliers and
detect missing markers at the first stage (marker inference),
allowing for pose estimation from refined prior marker infor-
mation.

DeMoCap focuses exclusively on the information that
solves the pose, i.e. the markers attached on the body, with-
out interference from background context as color or dense
depth data do. Finally, DeMoCap performs better when noise
is reduced (as assessed in Sect. 5.5), despite the existence
of systematic noise of the depth sensors in the training set,
showcasing that our model, when the marker configuration
is the same, is affected mostly by the quality of the marker
tracking, as all marker-based motion capture system do.

6.2 Weaknesses

Nonetheless, DeMoCap still presents weaknesses in com-
parison with traditional high-end marker-based systems and
markerless methods based on dense visual data. The cur-
rent consumer-grade sensors used to trade the high costs of
the specialized MoCap cameras are limited with regards to
the capturing frequency (30Hz vs 120/240Hz or higher) and
depth-sensing range (up to 4mkeeping acceptable accuracy).
To this end, contrary to professional marker-based solutions
or methods applied on dense visual data applicable in large
scale capturing areas, e.g. arenas, sport fields or stadiums,
DeMoCap is particularly limitedwith regards to the capturing
space volume, at least based on the existing consumer-grade
depth and infrared sensing technologies.

Furthermore, similarly to all data-driven statistical mod-
els, DeMoCap is trained on a special dataset captured with
a specific 53-marker configuration placement for human
motion capture. That fact will lead DeMoCap in erroneous
predictions in the appearance of different marker configu-
rations or skeleton structures, requiring re-training on data
captured with the settings. Contrarily, traditional MoCap can

be applied on a variety of moving entities, from humans to
animals and objects, where data-driven models lag behind
with regards to this flexibility of the gold-standard marker-
based MoCap solutions. Traditional MoCap also requires
new configuration for marker labeling and skeleton track-
ing, however, it is “cheaper” due to the shorter time and less
effort needed for its completion, without the need for dataset
creation. In other words, for all marker-based solutions, the
placement of markers is a strong prior for their operation,
however, this prior is even stronger for DeMoCap due to its
data-driven modeling.

DeMoCap provides one-shot inference for markers and
pose 3D regression avoiding the possibility for marker swap-
ping, a common case in MoCap tracking when markers are
getting very close to each other. The temporal aspect though
can extremely eliminate potential errors, being a strong driver
for correct predictions. DeMoCap’s inference is instanta-
neous, without considering the temporal aspect of themarker
trajectories. This constitutes a limitation for DeMoCap in
comparison with marker-based solutions designed for out-
of-the-box marker tracking of high stability and precision.

7 Conclusions

In this paper,we introducedDeMoCap, a low-cost lightweight
data-driven model for marker-based motion capture with the
use of spatio-temporally aligned infrared- and depth-sensing
streams acquired with consumer-grade devices. We train our
model on noisy optical marker data captured with a low-cost
multi-view system to accurately regress marker and joint 3D
coordinates by staging a smooth representation transition
from markers to 3D pose to learn the underlying struc-
tural relation between human body and marker configuration
placement in an end-to-end, scale- and translation-invariant
manner. Learning upon it, the model overcomes bias on our
relatively limited training data and generalizes well. Techni-
cally, our method is the first that introduces the use of fully
convolutional networks to be applied on extremely sparse
depthmaps efficiently regressingmarker and joint 3D coordi-
nates by posing their estimation as a joint 2D localization and
regression objective within a normalized 3D space to embed
the z-dimension indirectly with the introduction of a new
fully differentiable module for 3D regression. The special
dataset we created to drive our model is publicly available,
containing inter- and intra-system spatio-temporally aligned
infrared-depth and motion capture data.

We focus our future work to overcome the aforemen-
tioned limitations of our method. Our approach is limited
to regress markers and pose of one single person in the cap-
turing space. That is due to use of spatial regression that
limit us to regress one single coordinate per latent heatmap
layer. We aim to conduct research on that challenging task to
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enable multi-person motion capture. Even though we apply
our method on temporally continuous 3D data, DeMoCap
is not designed to maintain internal memory for sequential
data processing, instead, the inference is single-shot with-
out considering the previous predictions. On the one hand,
the discrete per frame inference allows us to skip issues that
tracking techniques can cause such as marker swaping, how-

ever, considering temporal information can lead to higher
motion capture accuracy and robustness. Hence, we will
explore potential techniques that will allow us to introduce
temporal features in our work for the development of more
efficient and effective deep learning models for motion cap-
ture. Finally, given the regressed labeled marker data, soft
inverse kinematics solvers can be explored to result in joint

Fig. 12 Markers-to-pose multi-stage FCN Architectures. We illustate
in high level the architectures we used to train DeMoCap. In all of them,
we follow the same concept where the first stages predict HM,1...K ,

aggregated to H̄M , while the last stages predict HJ ,K+1,...,2K aggre-
gated to H̄J . The predictions of each stage and the feature maps F are
concatenated for each subsequent stage
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transformation solving similar to professionalmotion capture
solutions that will allow the regression of bone orientation in
a data-driven end-to-end manner.

Appendix A Network Architecture Details

For all architectures, we follow the same schema. All our net-
works consist of 2 super-stages, meaning groups of stages as
defined in multi-stage and multi-branch FCN architectures.
The first super-stage predicts HM,1,...,K heatmaps which are
aggregated to the final marker heatmaps H̄M , while the sec-
ond super-stage predicts heatmaps HJ ,K+1,...,2K which are
aggregated to the final joint heatmaps H̄J . The predictions of
each stage and their corresponding image features are con-
catenated for each subsequent stage. High level designs of
the various architectures are illustrated in Fig. 12.We discuss
each network details below.

A.1 Convolutional Pose Machines (CPM)

Following the original work by Wei et al. (2016), we stack 6
stages in total, separated in the two super-stages of 3 stages
each. However, we reduce the number ofMaxPooling layers
to 2 instead of 3 by removing the third one. This results into
a higher resolution feature map F, (i.e. of 2D spatial size
40× 40) leading to an increased heatmap resolution, similar
to the rest of the networks.

Subsequently, we follow the stage architecture as orig-
inally proposed in the CPM network, i.e. the first stage
consists of one 9×9 followed by two 1×1 convolutional lay-
ers, whilst every next stage is composed of 5 convolutional
layers (3 · 11× 11− 2 · 1× 1). All these stages are fed with
the concatenation of F and the output of the previous stage,
except for Stage1 which is only fed with F alone.

A.2 Stacked Hourglass (SH)

We build a 8-stage Stacked Hourglass (Newell et al. (2016))
based on the configuration of the original work, selecting 4
stages per super-stage. Starting from a pre-processing mod-
ule, a feature map F is extracted which, similarly for all
networks, we concatenate with the intermediate feature map
outputs of each stage. We use hourglass modules with depth
equal to 2, reaching to heatmaps of 2D spatial size equal to
40 × 40.

A.3 High Resolution Network (HRNET)

Following the configuration of the original work (Wang et al.
(2020)), we build a HRNET-based network by staging two 4-
stage HRNET architectures, one per super-stage. Due to the
multi-stage and multi-branch design of HRNET, we select to

build the second super-stage as a 4-stage HRNET instead of
a 8-stage and 8-branch model. Similarly, we feed the second
super-stage with the feature maps F concatenated with the
heatmap outputs. The configuration of each super-stagemod-
ule is similar to the one proposed in the original work. The
initial stage contains 4 residual units formed by a bottleneck
with width equal to 64, followed by one 3 × 3 convolution
reducing the width of feature maps to 40 × 40. We follow
the same schema with the original work where the second,
the third and four stages of each super-stage consist of 1, 4,
3 exchange blocks, correspondingly.
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