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ABSTRACT

This paper presents two algorithms for estimating depth from
integral images, which capture a scene by using multiple
lenses, offering anaglyph depictions. The first algorithm in-
volves the 3-D integral imaging grid formed by casting rays
inversely through the lenses used to capture the integral im-
age. In this formulation, depth estimation is equivalent to
finding correspondences on the ray-crossing points. The sec-
ond algorithm follows the depth-through disparity approach.
In this case, a stereo-like minimization problem is formulated
which is handled by the graph cuts method. The novelty of
the proposed paper lies in constraining the optimization pro-
cedures with the “anchor points”. This results in enhanced
estimation accuracy, while eliminating the optimization com-
plexity. Anchor points is a set of reliable reference points,
detected by applying a robust local image descriptor to view-
point images, called self-similarity descriptor. The perfor-
mance of both algorithms is evaluated on a synthetic integral
image database in comparison with another state-of-the-art al-
gorithm.

Index Terms— Integral image, depth estimation, image
correlation, disparity, self-similarity descriptor, graph cuts.

1. INTRODUCTION

Following the modern trend towards 3-D viewing technolo-
gies, integral imaging, a photography technique dating back
to 1908 [1], has attracted growing research interest over the
last decade. The main idea involves an array of lenses over a
film sheet or an electronic image sensor that captures a spe-
cial 2-D recording of the viewed scene [2]. Multiple neigh-
bouring lenses capture overlapping regions of the scene thus,
allowing parallax information to be encoded into the integral
image. Depending on the shape of the lenses, cylindrical or
spherical, integral images are divided into unidirectional and
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omnidirectional respectively. Cylindrical lenses offer only
horizontal parallax, while spherical offer full parallax infor-
mation. Integral imaging offers many advantages over other
3-D sensing techniques, e.g. sensing 3-D in full parallax, in
full natural colour, in real time and without calibration, that
make it appealing to many fields where depth information is
essential, e.g. biometrics, medical imaging, robotic vision,
etc. However, explicit depth extraction from implicitly en-
coded parallax information into the integral image is not a
trivial task.

Towards this direction, this paper presents two techniques
for depth estimation in unidirectional integral images, though
both are easily expandable in omnidirectional too. The con-
cept of the first technique is exactly the inverse of the cap-
turing concept (Figure 1). The intersections of rays that em-
anate from integral image pixels and are headed, through the
lenses, to the viewed object form a 3D grid of possible ob-
ject elements’ positions (Figure 4). Pixels of the integral im-
age are to be paired and through triangulation the actual 3-
D positions are revealed. The problem can be mathemati-
cally formulated as a global optimization problem of seeking
the subset of the capturing ray intersections that correspond
to the object’s outer surface. The second technique is based
on the depth-through-disparity concept. Disparities are found
between consecutive viewpoint images (i.e. images created
by re-arranging the integral image pixels [2]). Actual dis-
parities are found through an optimization procedure that is
handled by the well known graph cuts approach [3]. For each
pair of consecutive viewpoint images a partial depth-map is
produced and the final complete is calculated by merging all
of them. The difference among the two proposed techniques
lies in the fact that in the first case the problem is treated as
an actual 3-D problem, while in the second one as a merging
of multiple stereo-like problems.

Both of the proposed techniques are based on optimiza-
tion procedures, which often suffer from high complexity and
more importantly they get trapped on local extrema. To over-
come this, constraints are introduced, which refer to reliable



estimations of specific points’ depths, based on a robust cor-
respondence finding technique. This leads to enhanced depth
accuracy in both cases, while the optimization burden gets
downscaled. The employed point correspondence technique
detects pairs of pixels in viewpoint images that correspond
to the same object points, thus enabling the computation of
their 3-D coordinates. These points, which are called an-
chor points, are detected with extremely high accuracy fol-
lowing an image matching approach based on the local “self-
similarity” image descriptor [4]. As it will become evident in
the following sections, the usage of the anchor points leads to
high quality depth maps.

To evaluate the performance of the proposed algorithms
and show their advantages, a small scale database of synthetic
integral images was built and a comparative study with an-
other state-of-the-art technique, proposed by Wu et al. [5],
was performed.

This paper is organized as follows. Section 2 first de-
scribes the basics of integral image generation and viewpoint
image extraction and then proceeds with a report on the re-
lated work. Section 3 presents the proposed algorithms and
their contributions. Finally, the evaluation framework is pre-
sented in Section 4, where a description of the database used
in the experiments, and quantitative and qualitative compar-
isons with the algorithm described in [5] are provided.

2. FUNDAMENTALS AND RELATED WORK

Integral imaging involves a simultaneous recording of a 3-
D object through multiple lenses placed in a regular grid in
front of a recording material, as shown in Figure 1. In the
unidirectional case, the behaviour of a cylindrical lens can be
modelled by a thin slot on the surface of the cylinder. The
projection of a 3-D point P = (X, Y, Z) to the image plane
(Figure 2) is a composite projection including an orthographic
projection along the Y axis and a projective projection along
the X axis. If P lies inside the k-th lens’ field of view, then the
local coordinates (z.,, ye, ) of its projection onto the image
plane behind the k-th lens are given by:

v =1 Xty =y M)
where f stands for the focal length and d., is the horizontal
displacement of the k-th lens’ slot from the origin.

The image formed behind each lens is called elemental
image (EI). Re-arranging the columns of Els leads to the for-
mation of viewpoint images (VI). The first VI is formed by
the first columns of the Els, the second VI is formed by the
second columns of the Els and so on. By construction, the
VIs can be considered as orthographic projections of the ob-
ject onto successively rotated planes whose angles derive by
lens geometry. Specifically, if L is the number of lenses, I
is the horizontal pixel resolution of the lens, H is its vertical
pixel resolution and p is its pitch, then there can be R VIs,
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Fig. 1. Set-up for integral image generation. Top view of a cylindri-
cal lens array.

Fig. 2. Local coordinate systems associated with elemental and
viewpoint images.

each with L x H resolution and angle 6 with the image plane
ranging in [—atan(5), atan(37)]. VIs depict the object un-
der various directions (Figure 2), hence their name. Point’s
P 3-D coordinates (X, Y, Z) and its “viewpoint” coordinates
(2, , Y, ) in the local coordinate system of the r-th VI are

related by:

Ty, = Xcos —Zsinf |, y, =Y 2)

Finally, using the above equations a useful formula for
retrieving 3-D coordinates from VI pixels can be derived. If
L, I,,, denote two VIs forming angles 6,, 8, with the image
plane respectively (Figure 2) and also pixels p, = (24, , Yv, )
in I, and p, = (Zy,,Ys,) in I, correspond to point P =
(X,Y, Z), then the 3-D coordinates of P can be retrieved by:

Ty, SIN O, — Ty, SIN Oy
X = sin (6, — 0y) (%2)
Y = Yo, = Yy (3b)
Ly, COSOg — Ty, COS O
sin (0(1 — 9[,)
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Though a really old idea, integral imaging attracted sub-
stantial research interest only recently. Early works on depth
estimation [6, 7] were based on modelling the entire optical
system by the point spread function of the recording and then
casting depth estimation as an inverse problem. However this
approach leads to an ill-posed problem formulation suitable
for simulation purposes rather than practical applications.

Most recent works approach depth estimation as a stereo
matching problem. The main line of work includes VIs ex-
traction, disparity estimation between them and then straight-
forward depth computation from estimated disparities. Depth
is a direct function of the disparity and therefore accurate dis-
parity establishment is the key issue for high quality depth
map generation.

Following this approach, in [8], Wu et al. test sev-
eral correlation-based disparity estimation methods and show
some preliminary results for one synthetic integral image. To
improve disparity accuracy, in a later work [5], authors in-
clude a smoothness term in the formulation of the correlation-
based disparity metric. Disparity between the blocks of a pair
of VIs is now defined not only by the correlation metric be-
tween the blocks, but also by a weighted sum of the corre-
lation metrics between their neighbouring blocks. The im-
provement brought by smoothness incorporation is demon-
strated on a small set of synthetic and real integral images.
Completing the limited literature, Park et al. [9] work along
the same line and propose a method that uses a lens array con-
sisting of vertically long rectangular lens elements. They also
form VIs and apply a modified correlation-based multibase-
line stereo algorithm that reduces quantization error in depth
extraction.

3. PROPOSED DEPTH ESTIMATION ALGORITHMS

This section presents the two depth estimation algorithms,
which are both primarily based on constraining an optimiza-
tion procedure through the set of points, called anchor points.
Thus, firstly the procedure followed to acquire anchor points
is described, followed by the presentation of its twofold us-
age.

3.1. Anchor Point Detection

Capturing the same object by slightly different angles, ob-
viously increases the integral image self-correlation. Thus,
due to integral imaging nature, inherently there exists rich
information that could be used for depth estimation and it
should be exploited. Toward this, tractable correspondences
among the VIs should be identified, to compute the associ-
ated points’ 3-D coordinates. Despite that rich self correlated
information, a series of experiments showed that simple cor-
relation based metrics failed to robustly indicate true corre-
spondences. Hence, for the proposed work, a more sophisti-
cated local descriptor was chosen, namely the “self-similarity

Fig. 3. An illustration of anchor point detection. Top row: A few
samples from corresponding pixels on viewpoint images. Second
row: Estimated depth for all anchor points (left) and real depth for
entire object (right). The brighter a pixel, the higher its depth.

descriptor” [4].

Anchor point detection starts with the computation of the
self-similarity descriptor for every pixel of every VI. For each
pixel, its surrounding patch is compared with every same-
sized overlapping patch in its larger surrounding region. The
output is a 2-D array listing the sum of squared distances for
each patch comparison. After a normalization step, the SSD
array undergoes a log-polar partition forming the local self-
similarity descriptor.

Descriptors corresponding to large homogeneous image
regions are non-informative and they are filtered out. In order
to match the remaining informative pixels of the central VI',
with pixels in the other VIs, the sigmoid on the L distance
between the descriptors is used. To identify the most reli-
able pairs of corresponding pixels, only the ones with high
similarity are considered. In order a point to be regarded as
an anchor point, it should have a chain of correspondences
of high similarity in consecutive VIs. The chain should have
length equal with the number of the VIs minus the two. This
is to accommodate for points of the outermost VIs that are not
depicted in the rest. Those chained pairs of correspondences
should robustly lie in a very very narrow 3D region, otherwise
the chain gets filtered out. The anchor point’s 3-D coordinates
are computed by least squares fitting in that region.

This procedure yields a set of anchor points whose 3-D
position estimation is of very high accuracy and therefore they
can be safely regarded as true object points (Figure 5). Figure
3 2 depicts six anchor point correspondences in two consecu-
tive VIs, and the depth-map produced by the complete set of
anchor points. As it can be seen, anchor points lie on texture-
rich regions. In this example the mean depth estimation rel-

I'The central VI is the one who has zero angle with the image plane.
2For a coloured version of the figure, and other supplemental material,
please visit ftp.iti.gr/pub/Holoscopy



Fig. 4. The 3-D grid formed by casting rays from pixels through
lenses’ slots.

ative error of those anchor points, comparing with the actual,
is 2.37% with a variance of 5.96%. The importance of the an-
chor points will become evident in the experiments sections,
where their influence in both optimization problems will be
quantitatively stated.

3.2. Depth Estimation Using the Anchored 3-D Integral
Imaging Grid

In this approach, depth estimation is motivated by inverting
the principle idea of capturing an integral image. Assuming
that each pixel in the image plane is the projection of a single
point lying on the object’s surface, the corresponding ray of
projection for each pixel can be defined (Figure 4). It is obvi-
ous that under this assumption the lens array can capture only
3-D points lying on these rays and that object’s surface points
are on their intersections. To estimate the 3-D coordinates
of a point, which under this concept is a rays’ intersection,
at least two corresponding pixels should be identified. There-
fore, the vertices of the 3-D grid formed by rays’ intersections
forms the set of all possible object points. The problem thus
translates to identifying among all vertices, the subset of those
that truly belong to the object. Defining a cost function C', for
each vertex, an optimization problem can be formed: the min-
imization of F, which sums the costs of the vertices that will
be chosen, subject to the obvious fact that only one vertex can
be chosen on each ray, i.e.,

FE = Z z,Cy, subject to:
YveN

Y wggy=1 @

Jr€Jr
Vr € R,

where N is the number of vertices, x,, € {0, 1} denotes if ver-
tex v belongs to the object surface, R is the number of rays,
J. is the set of vertices on ray r and f(j,-) is a re-indexing
function. Anchor points are used on the grid to restrict it by
offering their accurate position predictions as grid’s intersec-
tions, thus a reliable starting point for the minimization pro-
cedure. Further, they do simplify the grid by deleting inter-
sections, as rays can stop expanding once an anchor point is
found.

By the construction of the grid, the set of pixels to which
each vertex is projected is known. Under this projection
model, it can be assumed that for a vertex belonging to the
surface of the object, its associated pixels should record the
same colour. However, it is likely that only few vertices will
fall exactly on the object’s surface, since in practice the sur-
face will lie between the vertices. Also, in practice, pixels
do not record just a point element on the object’s surface, but
actually a small patch of the surface around this point ele-
ment. Considering these facts, the assumption should be re-
laxed so that for each vertex belonging to the object’s surface,
the image regions around its associated pixels should have
similar colours. Mathematically, this can be expressed by a
correlation-based metric between the neighbourhoods of the
associated pixels. Motivated by this conclusion, each vertex
v is assigned a cost C,, such that

C, = (pg;ienA (1—Mp,) (5a)
> (Ip(w) - fp) (Iq(w) - fq)
Myq = alid — — (5b)
> (Ip(w) - Ip) > (Iq(w) - Iq)
weWw weWw

where A, denotes the set of pixels associated to vertex v, I,
and I, denote the image regions of size W around pixels p
and q respectively and I, fq the mean values of I, and I,.
The notion of neighbourhood can be considered either in the
elemental images or in the VIs. The latter were experimen-
tally shown to yield better results.

An obvious disadvantage of this approach, however, is
that even after inserting the anchor points, still a huge number
of vertices has to be checked. In an effort to further reduce
this number, only vertices lying on rays parallel to the Z axis
(horizontal rays in Figure 4) are checked.

To improve depth map quality, a filtering post-processing
procedure is also followed, taking advantage of the accurate
depth estimations of the anchor points. In an effort to prop-
agate this reliable information, pixels around anchor points
whose depth estimations differs more than 50% from the
neighbouring anchor point’s depth are detected. For these
pixels, depth is re-estimated by a very local interpolation.

3.3. Enhanced Disparity Estimation Using Anchored
Graph Cuts

In this case, the depth-through-disparity approach is followed
and a technique for establishing accurate disparity maps be-
tween VlIs is presented. Disparity is estimated by graph cuts
[3], a method used for establishing correspondence between
stereo images. Graph cuts are an efficient method for approx-
imating NP-hard problems that seek to assign bijectively a set
of labels, disparities d,, in this case, to a set of pixels p with
minimal cost, which should be of the form:

E= Z Dp(dp) + Z Z Vp.a(dp, dg) (6)
Vp

Vp qEN,



D,(d,), called data term, is the cost of assigning disparity d,
to pixel p; ¢ is a pixel in the neighbourhood N, of p; and
Vp.q(dp,dy), called smoothness term, is the cost emerging
when two neighbouring pixels p and ¢ are assigned the dis-
parities d,, and d,, respectively. The merit of graph cuts is that
they can model interaction between first ring neighbouring
pixels and also allow for piece-wise smooth solutions, per-
fectly suited in this case of depth map estimation, especially
with the anchor points, since this way the reliable depth es-
timations of the anchor points will further propagate to their
neighbourhoods.

To assert the rational assumption that corresponding pix-
els should have the same colour, the data term is defined as
the norm of corresponding pixels’ colours, i.e.

Dp(dp) = ||I'Uu (p) - I’Ub (p + dp)” @)

VIs are related with a rigid transformation, which is based on
the lens array arrangement. Taking this into consideration,
neighbouring pixels with similar colour in all probability be-
long to the same surface patch of the object and therefore their
disparities should be similar. To assert that fact, the smooth-
ness term is defined as:

szq(dpvdq) = K min(T7, ‘dp - dq‘) 3

Experiments showed that the optimal performance is achieved
for K =400and T = 3.

To exploit anchor points, the data term is modified when
pixels corresponding to anchor points are considered. Since
their disparities are already known, assigning the known dis-
parity to such a pixel should yield zero data cost, while as-
signing any other disparity should yield an infinite cost (in
practice a very high cost). Plugging disparities estimated by
graph cuts to Equations 3a-3c, 3-D coordinates can be recov-
ered.

Although, in principle, depth can be estimated by dispar-
ities between any VIs, we opt to estimate depth from succes-
sive VIs, taking advantage of the larger overlapping regions.
Successive VIs give rise to partial, stereo-like depth maps cor-
responding to the parts of the object that are visible in the di-
rections of the particular VIs. This way, the outermost, side
parts of the object, which may not be visible from the central
VI, can be also captured. However, a problem that arises now
is that, for each VI, there is a vertical band on one of the im-
age’s sides without corresponding region to the next VI and
therefore depth estimation there is faulty. The use of the an-
chor points is once more “catalytic”; the outermost, in both
horizontal directions, anchor points define a wide band where
disparity is reliable, since anchor points exist there and in be-
tween. The reliable bands of the partial depth maps, are then
merged into a single one using a mean rule. Anchor points
come again, to ease this registration, since due to their com-
putation procedure, they have same 3-D positions in all par-
tial depth maps. Thus, anchor points not only leverage on the
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Fig. 5. Comparison of the two proposed methods versus Wu et al. [5]
(continuous line) on the mean relative error (%) for each scene.
“AllG” stands for Anchored 3-D Integral Imaging Grid (dashed-
line), while “AGC” for Anchored Graph Cuts (dotted line). The
accuracy of anchor points is also displayed.

optimization procedure, but also on obtaining a high quality
multi-direction depth map.

4. EXPERIMENTAL RESULTS

4.1. Synthetic Integral Image Generation

To evaluate the performance of both the proposed algorithms,
a database® of synthetic integral images was built. The
database consists of 28 images obtained by simulating a cylin-
drical lenses array. Each image corresponds to a composite
scene composed of 3-D models, of varying texture richness,
available in the internet. The objects were transformed, i.e.
scaled, rotated and translated, so that they can fit the field of
view of the virtual lens array and present a plausible orienta-
tion.

4.2. Depth Estimation Accuracy

The depth accuracy achieved using the presented algorithms
is depicted in Figure 5. The mean relative error* in the entire
database is 37.28% for the Wu et al. [5] algorithm, 36.85%
for the Anchored 3-D Integral Imaging Grid (AIIG) algorithm
and 11.32% for the Anchored Graph Cuts (AGC) algorithm.
AIIG achieved a comparable performance with the algorithm
of [5], while AGC clearly outperformed both.

Regarding the AIIG algorithm, apart from Pearson corre-
lation (M, 4 in Equation 5b), cost functions based on the sum
of squared distances and the mean absolute error were also
tested, but both resulted in lower estimation quality. Post fil-
tering was shown to contribute significantly. This implies that

3The database is available at ftp.iti.gr/pub/Holoscopy.
4The relative error is defined as the absolute difference between estimated
and real depth over real depth.
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Fig. 6. Mean relative error in the entire database with respect to
the number of anchor points (AP) used per image for the proposed
methods.

neglecting the piece-wise smooth nature of the depth map, by
letting each vertex to be estimated independently of its neigh-
bours, is an important source of error, which is not the case
in AGC where pixels are allowed to interact with their neigh-
bours.

In the AGC algorithm, another experiment was also con-
ducted to verify that using pairs of successive VIs rather than
other pairs leads to best performance. In that case, the central
VI was used as reference and then the disparity map to every
VI was estimated. Hence, the depth of every pixel of the cen-
tral VI could be estimated from multiple <central VI, VI>
pairs. To achieve best accuracy, the VI leading to the min-
imum cost in the graph cuts sense (Equation 6) for a small
window around the pixel was kept. Actually, this match-
ing methodology was followed in [5]. However, in the AGC
framework, this methodology was shown to result in inferior
performance due to the fact that outermost object points are
estimated by VIs with high angular distance, which contain
small overlapping regions and thus more errors are produced.

In order to visualize and quantitatively show the impor-
tance of anchor points, how both optimization algorithms
highly depend on them and benefit from them, and how ef-
ficient the blending of the concepts is, a graph showing their
influence in depth estimation was prepared. In Figure 6 the
mean relative error in the entire database with respect to the
number of anchor points used per image is shown. It is clear
that the more the anchor points, the less the error. This is due
to the fact that the 3-D coordinates of the anchor points are
estimated accurately and therefore they significantly bias the
rest of estimations towards the exact values.

S. CONCLUSIONS AND FUTURE WORK

In this paper, an algorithm for detecting anchor points with
high accuracy using a local image descriptor and two algo-

rithms for depth estimation exploiting the detected anchor
points were presented. The first depth estimation algorithm
uses image correlation associated with the vertices of a 3-
D grid refined by anchor points, while the second algorithm
is based on disparity estimation between VIs through a con-
strained graph cuts method. The experiments showed that the
graph cuts algorithm outperforms state-of-the-art algorithms
such as [5], while the 3-D grid algorithm achieves a compa-
rable performance. Regarding the graph cuts approach, the
interaction between neighbouring pixels was shown to be a
key feature to success. The disadvantage is that it is not clear
how to combine optimally disparities between VIs. On the
other hand, the combination of VIs is quite clear when the 3-
D grid is used, but neighbouring vertices do not interact in this
case, revealing a complementarity between the two methods.
To improve depth accuracy, a possible fusion of the presented
algorithms, i.e. the application of graph cuts to a 3-D grid,
will be investigated in the future.
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