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ABSTRACT   

The significance of forest ecosystems in terms of ecosystem processes and services and impacts on humanity is fully 

acknowledged. The constant exploitation of natural resources and the increasing anthropogenic pressure on ecosystems 

continue to put a strain on and irretrievably threaten global forest ecosystems. Global forest health is declining due to 

climate change, air pollution and increased human activities. Protecting and monitoring the health of forest ecosystems is 

a vital resource management function. The technological development in the field of remote sensing provides new tools 

and automated solutions for forest health monitoring. An effective web-based forest health monitoring platform can 

contribute to ecological, social, and economic aspects. This study aims to design rapid and automated workflows (Spatial 

Models-SMs) for time-series forest health monitoring with flexible parameterization and user-friendly interfaces ready 

for feeding WPS web-GIS platforms. Those include: i) SMs that ingest available time-series data and perform pre-

processing activities, ii) SMs that calculate time-series of vegetation, soil and water indices from multispectral optical 

imagery, iii) SMs that create colored composite images from image algebra and SAR polarizations and vi) SMs that 

extract change detection maps from time-series SAR data. The study area is located in the wider region of the Mouzaki, 

Greece, where various types of forest species can be found. Sentinel-1 & 2 data were used while the ERDAS IMAGINE 

software was utilized for the design of the SMs. The results indicate the potential of the designed SMs to feed WPS web-

GIS platforms promptly and efficiently.   
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1. INTRODUCTION  

The constant exploitation of natural resources and the increasing anthropogenic pressure on ecosystems continue to put a 

strain on and irretrievably threaten global forest ecosystems. Global forest health is declining due to climate change, air 

pollution and increased human activities. Protecting and monitoring the health of forest ecosystems is a vital resource 

management function. Standard methods of assessing forest condition is through combined use of ground surveys and 

remote sensing means (aerial and satellite systems). Remote sensing data and methods have been extensively used for 

forest health studies, since they provide timely and cost-effective information at different spatial and temporal scales, 

thus offering insight into the dynamics of stress and mortality patterns caused by different factors1. The technological 

development in the field of remote sensing provides new tools and automated solutions for forest health monitoring. An 

effective web-based forest health monitoring platform can contribute to ecological, social, and economic aspects. Indeed, 

Vegetation Indices (VIs) from multispectral imagery have been broadly utilized for estimating various biophysical 

parameters, such as chlorophyll concentration or Leaf Area Index (LAI), which are useful for detecting and mapping 

stress symptoms (defoliation or discoloration)2. The broadband VIs are based on the near-infrared (NIR) and red (R) 

spectral bands using average spectral information over relatively broad wavelengths. That is due to the high absorption 

of near-infrared radiation and lower absorption of visible radiation occurring in unhealthy or stressed vegetation. 
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Alternatively, many studies focus on the use of narrow spectral wavelengths in the visible, red-edge and NIR spectrum, 

since narrow-band VIs can provide more detailed information regarding the overall amount and quality of photosynthetic 

material (pigments: chlorophylls and carotenoids) in vegetation. Such hyperspectral information has been proven 

particularly useful for the development of stress-sensitive indices (e.g., normalized difference red-edge index – NDREI, 

perpendicular vegetation index – PRI) and assessment of the physiological status of vegetation1. Only a few 

hyperspectral sensors provide data with high spectral and medium to high spatial resolution (Hyperion, CHRIS/Proba)3, 

although recently a new generation of narrow-band multispectral satellite sensors has been designed to include off-

chlorophyll absorption center wavebands (e.g. RapidEye, Worldview-2, SumbandilaSAT). Yet, image availability from 

the aforementioned sensors can be limited either due to distribution policies or due to high purchase costs. With the 

recent launch of the two Sentinel-2 sensors new opportunities arise for systematic ecosystem monitoring. The Sentinel-2 

mission is providing dense series of multispectral data with 8 bands in the visible, red-edge, NIR spectrum at high spatial 

resolution (10-20 m, depending on the band) and at high temporal frequency (5 days at the equator). 

1.1 Our contribution 

The need for automation to the remote sensing field prompted the development of automatic algorithms and workflows 

to reduce complexity and simultaneously increasing accuracy. The main objectives of such approaches are: i) the deep 

analysis of the contextual relations, ii) the adequate treatment of big data and data variability and iii) the presence of a 

critical statistical evaluation of the results obtained. Nowadays, the existence of effective tools have boosted the 

development of automated workflows such as Spatial Models (SMs). The SMs are automated toolkits for building, 

modifying, and running workflows on geospatial data4,5. This paper presents SMs for time-series forest health 

monitoring that exploit optical multispectral and Synthetic Aperture Radar (SAR) data. Four different types of SMs were 

designed: i) SMs that ingest available time-series data and perform pre-processing activities, ii) SMs that calculate time-

series of vegetation, soil and water indices from multispectral optical imagery, iii) SMs that create colored composite 

images from image algebra and SAR polarizations and iv) SMs that extract change detection maps from time-series SAR 

data. The main contributions are: i) development of automated solutions ready to feed web-GIS platforms in terms of a 

Web Processing Service (WPS), ii) user-friendly interface (GUI) of the designed SMs, iii) flexible parameterization of 

the designed SMs, iv) potential high connectivity of the designed SMs through sub-SMs and v) support of a multi-modal 

approach, i.e., utilization and process of optical data (multispectral imagery) and SAR data. 

2. SPECTRAL INDICES AND SAR-INTERFEROMETRIC IMAGING FOR FOREST 

MONITORING  

In this section, a detailed description of the calculated spectral indices from multispectral optical images and SAR- 

interferometric imaging associated with the forest health monitoring is carried out. 

2.1 Spectral indices from optical multispectral imagery 

While the definition of ‘forest health’ may vary according to different social, economic and ecological perspectives, 

objective indicators of forest condition can be specified and measured. Forest health could be considered as a measure of 

a forest ecosystem's capacity to supply and allocate water, nutrients and energy so as to increase or maintain ecosystem 

productivity while maintaining resistance to biotic and abiotic stresses. Agents of forest health disruption, leading to 

forest stress, can be categorized into biotic, such as insects, fungi, bacteria, viruses, insects, parasitic plants, and abiotic, 

such as fires, floods and atmospheric pollution6.  

Forest ecosystems are continuously influenced by abiotic and biotic agents and processes at different spatial scales (i.e. 

individual trees, stands, forest landscapes, entire forest types etc.) and their impact is expected to increase in frequency 

and severity due to climate change consequences in the coming decades7. Therefore, there is a need for the development 

of robust tools and methodologies that will facilitate quantitative measurements of specific indicators related to forest 

condition or stress at various spatiotemporal scales. 

In the literature, several efficient indices have been proposed focused on the monitoring of vegetation, soil, and water. In 

this study, some well-known and efficient vegetation, soil and water indices were calculated as shown in Table 1. GLI, 

RI, VARI and NGRDI indices are helpful not only for satellite imagery, but also for aerial imagery with limited spectral 

information, i.e. when only RGB images are available. The GNDVI, NDVI, BRBA and NDWI exploit information from 

the NIR band highlighting vegetation, soil and water surfaces. 

 



 

 
 

 

 Table 1. Considered indices from optical satellite imagery 

Type of index Name of index Equation 

Vegetation Green Leaf Index (GLI)8 (2G−R−B)/(2G+R+B) 

Vegetation Ratio Index (RI) 9 G/B 

Vegetation Visible Atmospherically Resistant Index (VARI) 9 (G−R)/(R+G−B) 

Vegetation Normalized Green Red Difference Index (NGRDI) 10 (G−R)/(G+R) 

Vegetation Green Normalized Difference Vegetation Index (GNDVI) 11 (NIR−G)/(NIR+G) 

Vegetation Normalized Difference Vegetation Index (NDVI) 12 (NIR−R)/(NIR+R) 

Soil Band Ratio for Built-up Area (BRBA) 13 G/NIR 

Water Normalized Difference Water Index (NDWI) 14 (G−NIR)/(G+NIR) 

 

2.2 SAR-interferometric imaging and polarization image algebra  

The high potential of SAR data for forestry applications is known since several decades15. With the arrival of Sentinel-1, 

SAR based Earth Observation applications have been benefited from such this open source of dual polarization coherent 

data (VV and VH) with a short revisit time16. The combination of these two polarization bands offers the possibility to 

use the backscatter intensities from the C-Band SAR sensor for the classification of various land cover types contributing 

accordingly to forest health monitoring17. Each polarization includes two layers of information, that is, magnitude layer 

and phase (coherence) layer. Polarization image algebra based on the magnitude layer, such difference or division 

between the two polarizations, can also be used in order to create three-channel-color (RGB) multi-view composite 

images and potential feed classification algorithms (e.g. clustering methods, model-based methods, machine 

learning/deep learning schemes, etc.). Furthermore, interferometric products and corresponding three-channel3-color 

(RGB) multi-view composite images based on the phase and/or magnitude layers can contribute to the change detection 

task by extracting: i) coherence images,  ii) interferograms, iii) Interferometric Land Use images (ILU) and vi) Multi-

Temporal Coherence images (MTC). Table 2 shows the considered polarizations and image algebra as well as 

interferometric products from Sentinel-1 mission. 

 Table 2. Considered dual polarizations and image algebra & interferometric products. 

Function Colored composite images 

Based on the magnitude layer for each time period 
VV18                                                                                               

(grayscale colouring) 

Based on the magnitude layer for each time period 
VH18                                                                                               

(grayscale colouring) 

Based on the magnitude layer and image algebra for each time 

period 

VV, VH, VH/VV16                                                                           

(RGB colouring) 

Based on the magnitude layer and image algebra for each time 

period 

VV, VH, VH-VV15                                                                                 

(RGB colouring) 

Change detection for time-series data based on the phase layer  
COHERENCE19                                                                        

(grayscale or false colouring) 



 

 
 

 

Change detection for time-series data based on the phase layer 
INTERFEROGRAM19                                                            

(grayscale or false colouring) 

Change detection for time-series data based on the phase and 
magnitude layers 

ILU20                                                                                                         
R = Coherence, G = Mean magnitude, B = Magnitude 

difference 

Change detection for time-series data based on the phase and 

magnitude layers 

MTC21                                                                                                         
R = Magnitude layer of the first time period, G = Magnitude 

layer of the second time period, B = Coherence 

 

3. APPLICATIONS 

3.1 Description of the area of interest 

The wider area of interest is located in Mouzaki, Thessaly region, Greece (Figure 1). In Greece, 30% of the total area is 

covered by forests, however their contribution to the GDP is almost non-existent. An example is the chestnut production 

in Thessaly region of Greece, and especially in Mouzaki municipality, which is almost abandoned, due to insufficient 

agricultural policies concerning establishment of alternative crops, and consequently leads to loss of potential income for 

the rural economy. The main vegetation zones found in the Mouzaki area are: i) The Quercecion pubescentis 

(Quercetalia pubescentis) and more specifically the Quercion confertae sub-area (hilly, sub-mountainous, mountainous) 

and Tilio-Castanetum growth area representing mixed deciduous forests of deciduous broad-leaved forests; in this zone 

we have mixed forests of Oak and broadleaf broadleaf and ii) Zone of beech forests - fir and mountain coniferous 

conifers (Fagetalia) (mountainous - subalpine) and more specifically in the Fagion moosecaeae sub-area and Abietum 

borisii Regis growth site, where we have forests of Abies borisii Regis. The main species of oak grown are Quercus 

conferta, Q. Pubescens, Q. Coccifera. Other species are the chestnut tree in the most fertile soil, the fox, the arias, the 

malokedros, the anchovies, the faeces, the maple, the cranium, the koutsoupia etc. 

     

Figure 1. The wider area of interest located in Mouzaki, Thessaly region, Greece through the Google Earth Pro (in left) - 
("https://www.google.com/intl/el/earth/desktop/"). 

 

3.2 Description of the used data 

In this study, data from the Copernicus/Sentinel Programme were used. In general, Copernicus is a European Union 

Programme aiming at developing European information services based on satellite Earth Observation data derived from 

Sentinel missions ("https://www.copernicus.eu/en"). Sentinel’s data provide free use, efficient information, high 

temporal frequency and big area cover. More specifically, this study exploits data from Sentinel-1 & 2 missions that are 

freely available on ESA Scientific Data Hub website: "https://scihub.copernicus.eu/dhus/#/home". Table 3 shows the 

Mouzaki 
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main characteristics of Sentinel-1 & 2 missions and the used data of the current study. The information is compiled from 

the Copernicus page of the European Space Agency (ESA) website 

("http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus").  

Table 3. Main characteristics of Sentinel-1 & 2 missions and indication of the used data.  

 Sentinel-1 Sentinel-2 

Launch Date: 
Sentinel-1A, 3 April 2014                                          

Sentinel-1B, 25 April 2016 

Sentinel-2A, 23 June 2015                                         

Sentinel-2B, 7 March 2017 

Data Type: SAR data Optical Data 

Instrument: 

C-band synthetic aperture radar 

(SAR) at 5.405 GHz 

Dual polarization coherent data (VV and VH) 

Multispectral imagery covering 13 spectral 

bands 

Revisit Time: 6 days 
5 days from two-satellite                                      

constellation (at equator) 

Used data of the 

current study: 

  Type: IW/SLC 

  Data: Dual polarization coherent data (VV and VH)   

  Available information: Magnitude and phase layers 

  Pixel spacing: 10 m (High resolution Level-1) 

  Time period: 2 August 2017, 9 August 2018   

  Type: MSIL2A 

  Data: Bands: 2 (B), 3 (G), 4 (R) and 8 (NIR) 

  Pixel size: 10 m 

  Time period: 27 August 2017, 22 August 2018   

 

3.3 Spatial models 

The SMs were designed using the Spatial Modeler SDK tool via the ERDAS IMAGINE software4. The Spatial Modeler 

SDK tool is a C++ toolkit for building, modifying, and running workflows on geospatial data. It is extensible via a plugin 

mechanism where objects, such as operators, data types, and configuration dialogs, are discovered at runtime by on-

demand-loading of all DLLs found in a search path and identifying the Spatial Modeler objects implemented in those 

DLLs are identified. The Spatial Modeler SDK can be used to build add-ons to various Hexagon Geospatial products, 

such as the WPS web-GIS platform of ERDAS APOLLO22 and GeoMedia23. In the following, the designed SMs and the 

corresponding extracted results (Figures 2, 3, 4 and 5) are presented: 

 Spatial model for pre-processing activities  

GUI  Spatial model 

 
  

 

Results 

2017 2018 

  
Figure 2. Spatial model and corresponding results for image stack. 

More specifically, the designed SM collects, through the corresponding GUI, the individual bands of the optical 

satellite imagery (as input layers) and extracts the stacked image (as output layer) for each time period in terms 

of parallel batch processing. 

Input 

layers 

Output 

layer 
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 Spatial models for vegetation, soil and water indices from optical satellite imagery 

                                  GUI                           Spatial model 

  

Results 

2017 

GLI RI VARI NGRDI GNDVI NDVI BRBA NDWI 

        

2018 

GLI RI VARI NGRDI GNDVI NDVI BRBA NDWI 

        
Figure 3. Spatial model and corresponding results for vegetation, soil and water indices from optical satellite imagery. 

 

More specifically, the designed SM collects, through the corresponding GUI, the stacked image of the previous 

designed SM (as input layer) and extracts the considered indices of GLI, RI, VARI, NGRDI, GNDVI, NDVI, 

BRBA and NDWI (as output layers) for each time period in terms of parallel batch processing.  
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 Spatial models for the creation of colored composite images from image algebra and SAR polarizations 

                               GUI                        Spatial model 

 
 

Results 

2017 

VV                                      
(grayscale colouring) 

VH                                         
(grayscale colouring) 

VV, VH, VH/VV                                                                           
(RGB colouring) 

VV, VH, VH-VV                           
(RGB colouring) 

    

2018 

VV                                    

(grayscale colouring) 

VH                                        

(grayscale colouring) 

VV, VH, VH/VV                                                                           

(RGB colouring) 

VV, VH, VH-VV                           

(RGB colouring) 

    
Figure 4. Spatial model and corresponding results of colored composite images from image algebra and SAR polarizations. 

 

More specifically, the designed SM collects, through the corresponding GUI, the dual polarization coherent data 

of VV and VH (as input layers) and extracts the three-channel-color (RGB) multi-view composite images (as 

output layers) for each time period in terms of parallel batch processing.  
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 Spatial models for the extraction of change detection maps from time-series SAR data 

                             GUI                                Spatial model 

 
 

Results 

Change detection task between the time period of 2017-2018 

COHERENCE                                                                        
(grayscale colouring) 

INTERFEROGRAM                                                            
(false colouring) 

ILU                                                                                                         
R = Coherence, G = Mean magnitude, 

B = Magnitude difference 

MTC                                                                                                         
R = Magnitude layer of the first time 

period, G = Magnitude layer of the 

second time period, B = Coherence 

     
Figure 5. Spatial model and corresponding results from the change detection task using time-series SAR data.  

 

More specifically, the designed SM collects, through the corresponding GUI, one polarization (phase layer or 

magnitude layer or both) of each time period (as input layers) and extracts change detection maps in terms of 

parallel batch processing. Also, collects the corresponding parameters and thresholds (as input layers) for the 

interferometry technique 4,19 such signal to noise, window size etc. 
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4. CONCLUSIONS AND FUTURE WORK  

This paper presents automated workflows (Spatial Models-SMs) for time-series forest health monitoring using optical 

multispectral imagery and SAR data. Several types of SMs were designed providing automated solutions, user-friendly 

interface and flexible parameterization. The results indicate the ability of the designed SMs to process several types of 

data derived from Sentinel-1 & 2 missions in order to extract proper spectral indices and change detection maps. In 

addition, the results indicate the potential of the designed SMs to efficiently feed WPS web-GIS platforms. Future 

work is needed to design additional SMs for: i) classification tasks through machine learning schemes, ii) forest health 

monitoring analysis and iii) exploitation of data from other remote sensing sensors. 
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