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Abstract
Adversarial attacks pose a threat to neural networks, requiring robust methods to mitigate
them.Adversarial Training has emerged as a promising approach; however, its practical appli-
cation in real-world deep learning systems is hindered by the trade-offs between efficiency
and robustness, as optimizing for one aspectmay come at cost of the other. This paper presents
a comprehensive investigation into the impact of different Adversarial Training approaches
and model types on the robustness of adversarially trained models, while considering the
dynamic trade-offs involved. Leveraging our previously published method, Delayed Adver-
sarial Training with Non-Sequential Adversarial Epochs – DATNS, we conduct extended
empirical analyses through new experiments to effectively balance these trade-offs and nav-
igate the interplay between efficiency and robustness, as well as catastrophic forgetting and
interpretability. By providing our insights on the discussed trade-offs this research aims to
enable the development ofmore efficient, robust, and interpretablemodels against adversarial
attacks.

Keywords Deep learning · Adversarial robustness · Catastrophic forgetting · Interpretability

1 Introduction

Deep Learning (DL)models have achieved impressive performance in computer vision tasks.
However, they struggle with adversarial samples, which are inputs that undergo subtle per-
turbations [1–4]. These adversarial samples can cause incorrect predictions even with high
confidence, indicating that the models fail to understand essential characteristics of the data
[1, 3]. This discovery shifted the research focus from solely improving model performance
on clean samples to developing methods that mitigate the models’ sensitivity to adversarial
attacks. It also highlighted the importance of integrating safety against adversarial attacks,
particularly in safety-critical domains such as autonomous driving, healthcare, and critical
infrastructures.

Adversarial Training (AT) is acknowledged as one of the most effective strategies for
robust computer vision models [5–8]. AT involves training the model on both clean and
adversarial inputs, introducing adversarial samples to the training set. It can be formulated as

B Efi Kafali
e.kafali92@gmail.com

1 The Visual Computing Lab, Centre for Research and Technology Hellas, Information Technologies
Institute, 6thkm Charilaou-Thermi Road, 57001 Thessaloniki, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-025-11751-z&domain=pdf


47 Page 2 of 24 E. Kafali et al.

a min-max optimization problem, where the inner maximization problem generates the best
adversarial version of the input clean sample at each iteration. Simultaneously, stochastic
gradient descent updates are used to minimize the loss of adversarial samples [8].

Despite its impressive performance, AT has a significant drawback in terms of computa-
tional cost. The need to compute multiple adversarial samples during each update adds to
the complexity of the training process, making it impractical for large, high-resolution image
datasets and complex architectures. This computational demand is often beyond the reach of
many organizations and institutes. Furthermore, the challenge of generalizing well to stan-
dard test data has also been extensively discussed in the literature as a trade-off associated
with AT [9]. To make AT more feasible on a larger scale, it is crucial to improve its training
time efficiency while ensuring that adversarially trained models remain robust and capable
of efficiently classifying both natural and adversarial inputs.

This work aims to shed light on the interplay among the dynamic trade-offs involved
in AT approaches. Leveraging our latest method, Delayed Adversarial Training with Non-
Sequential Adversarial Epochs (DATNS) [10] which managed to reduce the training time of
AT without significantly harming accuracy, in this work we aim to thoroughly investigate
how less complex AT methods can effectively achieve a well-balanced combination of effi-
ciency, robustness, generalization, and interpretability. Building upon our previous findings
that DATNS has the potential to enhance the robustness of trained models while reducing
training time, we delve deeper into the trade-offs and challenges inherent in AT. These aspects
distinguish our work from the previously published paper, which primarily focuses on the
complexity of AT and proposes methods to reduce its training time.

The contributions introduced in this paper can enable the advancement of more efficient,
robust, generalizable, and interpretable models to counter adversarial attacks:

• Through extensive experiments, we show that robust AT is achieved by alternating
between adversarial and clean training epochs. Unlike traditional AT methods that mix
clean and adversarial samples in each epoch, our approach strategically uses adversarial
samples only in select epochs, enhancing both robustness and generalization.

• We find that AT works exceptionally well with wide DL architectures when adversarial
data are presented in a non-sequential manner. The robustness of wide architectures is
proportional to their number of parameters when trained with DATNS.

• Our experimental results demonstrate thatDATNScontributes tominimizing catastrophic
forgetting.

• We confirm that adversarially trained models have more interpretable loss gradients
compared to those trained with standard methods. This holds true even when AT starts
from a posterior epoch. In particular, our empirical study for DATNS shows that the
model focuses on the overall object rather than texture or color details, resulting in easily
interpretable loss gradient visualizations.

The paper is organized as follows: Section 2 provides a detailed analysis on the complexi-
ties of training deep neural networks, as well as the elevated complexities of AT, supported by
early works and state-of-the-art methods. This section also covers research on catastrophic
forgetting and the interpretability of loss gradients in adversarially trained models. Section
3 describes the fundamentals of AT and discusses our previous work [10] with some minor
variations to improve clarity. In Sect. 4, we present and analyze the experiments conducted in
this study, including the experiments we conducted to tune the hyperparamenters of DATNS,
as well as a comparative analysis of DATNS with AT baselines. This section concludes with
a discussion on the strengths and limitations of DATNS. Finally, in Sect. 5, we draw con-
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clusions based on our interpretation of the experimental results and discuss future research
directions.

2 RelatedWork

Our work centers on ATmethods designed to reduce the overhead associated with adversarial
defenses. In this section, we explore key areas of research related to AT and its complexity,
including its impact on model robustness, catastrophic forgetting, and the interpretability of
loss gradients in adversarially trained models.

2.1 Adversarial Training

Recent research has focused on various methods to reduce the complexity of training deep
neural networks, which can be particularly relevant in the context of AT. For instance, the
MoRR-CNNmodel introduces a multi-objective optimization framework designed to reduce
redundancy in convolutional neural networks (CNNs). This model aims to eliminate redun-
dant parameters and improve computational efficiency, demonstrating effectiveness across
several benchmark datasets and CNN architectures [11].

In the domain of time series classification, the NCR-CNNO framework represents another
optimization approach. It involves converting raw time series data into matrix representations
and optimizing CNNs to enhance classification performance. This method addresses chal-
lenges associated with selecting and training deep learning models for time series tasks [12].
Similarly, DropConnect, a stochastic regularizationmethod, has been adapted to dynamically
adjusts the dropout rates based on generalization metrics. This technique helps in managing
overfitting and improving model regularization by adapting dropout rates during training
[13].

Adversarial examples are defined as imperceptible perturbations added to the inputs of a
model, which are capable of disrupting their robustness by causingwrong predictions [1]. The
introduction of adversarial examples triggered the research community, which soon started
to incorporate adversarial examples into the training process, laying the groundwork of AT
as a robust defense mechanism against such attacks.

Algorithms such as the Fast Gradient Sign Method (FGSM) started to be used to generate
adversarial examples based on the assumption that the vulnerability to adversarial attacks
arises from the linear nature of neural networks [2]. However, using single-step attacks, such
as FGSMduringAT, causes the network to converge to a degenerate globalminimum, causing
vulnerability to other types of attacks [14].

In order to address the vulnerability of neural networks trained with single-step attacks,
researchers have proposed to additionally use perturbations transferred from other similar
models. Such approaches can result to increased diversity of the perturbations the model sees
during training [15]. Through a similar perspective, the use of multiple random noise layers
has been explored as a defense against strong attacks [16], while ensembles of quantized
models and full precision networks have also been introduced as a novel approach to improve
robustness against adversarial attacks [17].

Recent research findings have shed light on the limitations of the single-step FGSM
method. Referred to as "catastrophic overfitting," it has been observed that FGSM harms the
model’s generalization ability. Attempts tomitigate this issue through random initialization of
FGSMhave been introduced [18].While FGSMoffers faster training times compared to other
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methods [5], the addition of randomness does not effectively address catastrophic overfitting,
implying that randomness alone cannot significantly improve robustness. Notably, studies
indicate that catastrophic overfitting is not solely influenced by model depth or parameter
count. Thus, despite initial improvements in robustness during early training stages, FGSM’s
overall poor performance is primarily attributed to non-linearity [19].

According to [20], the PGD attack is considered the most reliable method in terms of
robustness for learnedmodels. Further enhancement of the PGDattack has been introduced by
an algorithm that efficiently recycles gradient information during model parameter updates.
This approach enables simultaneous backward passes for both themodel’s parameters and the
crafted perturbations, eliminating the need for separate gradient computations, significantly
reducing computational costs, while approaching the efficiency of natural training [5].

AT is a robust optimization framework that incorporates adversarial samples into the train-
ing process, improvingmodel robustness [8, 21]. The originalwork by [8] achieved significant
robustness on MNIST and CIFAR10 datasets against diverse attacks, formulating AT as a
min-max optimization problem and utilizing the iterative PGD attack. Unlike the single-step
FGSM attack, PGD demonstrated higher accuracy for adversarial samples, reducing label
leaking and overfitting [22]. The importance of wide architectures in enhancing robustness
against adversarial inputs is furthermore supported by several recent studies [8, 10, 23, 24].

Moreover, recent advancements in AT have led to the development of new defense meth-
ods, such as TRADES [25]. This method is inspired by theoretical analysis and trades off
adversarial robustness against accuracy by providing a differentiable upper bound on the
prediction error for adversarial examples. This approach has shown promising results in
enhancing model robustness while maintaining high accuracy levels, as demonstrated in
real-world datasets. However, TRADES appears to be less efficient in terms of training time
than [8], as evidenced by many works, such as [26].

Researchers have further investigated the framework proposed by [8] to address the high
complexity caused by repeated gradient updates during training. Several works have intro-
ducedmodifications to reduce this complexity by altering the attack strength employed during
training. For instance, a curriculum approach has been proposed, incorporating adversarial
examples generated with varying attack strengths, including both weak and strong attacks.
This curriculum strategy has demonstrated notable performance improvements [27]. These
findings are at contrast with earlier conclusions by [8], which suggested that stronger attacks
were necessary for achieving higher robustness. Additionally, researchers have explored the
accumulation of attack strength over epochs. Instead of generating adversarial inputs at the
beginning of each epoch, a method has been proposed where the adversary from the previous
epoch is reused in subsequent epochs, resulting in more efficient AT [26].

Other attempts to confront the complexity of AT involve the reduction in the amount of
training data. An informed data selection strategy has been explored for AT, where only
selected samples based on the loss are used to update the model parameters. As a result, the
training time is reduced and the trade-off between accuracy and robustness is balanced [28].
Random sampling has also been investigated in this context, where only a small subset of the
entire dataset is receiving the attack during some of the training epochs, resulting in reduced
training time [10].

Furthermore, important observations regarding the impact of adversarial examples at dif-
ferent stages of training are demonstrated. A dynamic training strategy has been introduced,
which is progressively improving the convergence quality of crafted adversarial examples.
Training on adversarial samples with better convergence quality in the later phase enhances
robustness, while in the initial phase, adversarial inputs are unnecessary [6]. Additionally, it
has been shown that the initial phase of AT has minimal impact on robustness and can even
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negatively affect accuracy. As a result, AT can be initiated from a posterior epoch, omitting
the initial phase [29].

Building on the research by [29], our latest work, DATNS, introduces a variation of
AT that initiates AT from a posterior epoch and alternates between natural and adversarial
training. Through extensive experiments, we discovered that deep learning classification
models can maintain their robustness when adversarial data is sporadically injected during
training. Specifically, we found that periodically injecting adversarial data yields greater
benefits to robustness compared to random epoch injection. With DATNS, we achieved a
significant reduction in AT training time while preserving robustness at attainable levels
[10].

2.2 Catastrophic Forgetting

When machine learning algorithms are used to solve a sequence of tasks, it is crucial to
specify the notation used to describe these tasks. In this context, J1 : j denotes a sequence of
tasks from J1 to J j , where J1 is the first task and J j is the current or most recent task in the
sequence. Catastrophic forgetting occurs when learning a new task J j leads to the overwriting
or degradation of previously learned knowledge from tasks J1 through J j−1 [30].

Catastrophic forgetting, the phenomenon according to which neural networks lose previ-
ously acquired knowledge when exposed to new, divergent information, has been a subject
of extensive discussion and research [31, 32]. Unlike humans who accumulate knowledge,
neural networks tend to fully adapt to new tasks, resulting in a significant decrease in perfor-
mance on previously learned tasks, a phenomenon also known as catastrophic interference
[32]. The connection between defensive methods against adversarial attacks and catastrophic
forgetting is evident, as deep neural networks excel in classification tasks but struggle with
adversarial inputs. Recent research has thus focused on exploring the relationship between
catastrophic forgetting and adversaries.

In a notable work by [33], a sparse coding technique is introduced for adaptive allocation
ofmodel capacity to different tasks. The authors employ group sparse regularization to assign
parameter groups for each task, freezing them while the rest of the network learns new tasks.
They also propose a meta learning technique that facilitates knowledge transfer between
tasks. By utilizing episodic training-based optimization, the authors promote the learning of
weights expected to be beneficial for future task solving. These approaches effectively reduce
task interference.

The work by [34] highlights the strong link between single-step attacks like FGSM and
catastrophic forgetting. They demonstrate that fixed perturbation magnitudes, rather than
attack directions, lead to decision boundary distortion and highly curved loss surfaces. To
address this, they propose an algorithm that dynamically adjusts the perturbation magnitude
for each image, effectively mitigating catastrophic forgetting. In a related study by [35], the
authors tackle catastrophic forgetting in single-step AT by considering the rapid gradient
growth of each sample. They present a variation of AT that restricts the training process to
a carefully extracted subspace, controlling gradient growth. This approach achieves state-
of-the-art performance in single-step AT. Furthermore, the work by [36] investigates the
impact of multiple exit networks on reducing adversarial perturbations. A multi-exit network
architecture is proposed, that can produce easily identifiable samples at early exits, preventing
catastrophic forgetting in single-step AT.

PGD attack has been shown to be prone to catastrophic forgetting and the use of weak
attacks during training has been suggested as an effectivemitigation strategy [27].Moreover, a
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novel sequential learningmethod has been introduced that incorporates adversarial examples.
The approach utilizes adversarial subspaces from previous tasks to facilitate the learning
of new tasks, preventing catastrophic forgetting [37]. On a related work, it is argued that
AT models cannot be conventionally fine-tuned due to severe catastrophic forgetting. The
inability of AT models to retain previously learned features has been highlighted. To address
this, a novel adversarial fine-tuning method has been inferred [38].

An adversarial feature alignment method has been presented by [39], with the goal to
avoid catastrophic forgetting. In their work, the authors proposed that both the low-level
visual features and high-level semantic features are used as soft targets. Both features guide
the training process in multiple stages and provide adequate supervised information of the
old tasks, contributing to forgetting reduction. The proposedmethod achieves state-of-the-art
performance by means of accuracy on new tasks, however, it also preserves the performance
to old tasks.

Furthering this discussion, the work by [40] introduces an approach that empha-
sizes regularizing network parameters to enhance robustness against adversarial attacks
while mitigating catastrophic forgetting. This method, termed DIversity via Orthogonal-
ity (DIO), incorporates multiple paths within the network and imposes orthogonality
constraints to ensure diversity among these paths. By augmenting the model in this man-
ner, the learned features become more adaptable to diverse inputs, including adversarial
examples, thus reducing the likelihood of catastrophic forgetting. The DIO method demon-
strates its effectiveness across various datasets, structures, and attack scenarios, and it
can also be combined with existing data augmentation techniques for further robustness
gains.

2.3 Visualizing and Interpreting Gradients of Adversarially
TrainedModels

AT has been recognized for its ability to enhance the robustness of deep learning (DL) mod-
els. However, recent studies have uncovered an additional intriguing aspect of AT: it tends to
generate loss gradients that are visually more interpretable compared to DL models trained
with standard methods. This unexpected benefit has significant implications as interpretable
gradients can offer insights into the model’s prediction process and provide a better under-
standing of both the model’s outputs and the inner workings of neural networks. Several
works have confirmed and further elucidated this connection.

The interpretability of gradients has been described as an unexpected benefit of AT by
[41], highlighting that interpretable gradients can shed light on the decision-making process
of classification models. It has also been demonstrated that networks robust to adversarial
perturbations exhibit interpretability in saliency maps [42]. Furthermore, AT has been found
to improve the alignment between gradients and the human visual system, as the loss gradients
tend to lie closer to the image manifold [43]. Moreover, a recent study has visually compared
attribution maps produced by different methods and highlighted that adversarially trained
models generate attributionmaps that are quantitativelymoremeaningful and visually aligned
with human perception [44].

Furthermore, adversarially trained models have been found to prioritize the overall struc-
ture of objects over specific details, a characteristic that aligns with human reasoning. In a
study by [45], adversarially trained CNNs were shown to be more sensitive to global struc-
tures such as shapes and edges, compared to normal CNNs that focused more on texture
information. Adversarially trained models were also less affected by texture distortion and
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exhibited a stronger emphasis on shape information, leading to improved generalization per-
formance. This preference for object structure over details suggests that adversarially trained
models may possess better generalization abilities compared to models trained with standard
methods. Furthermore, research by [46] further supports these findings, demonstrating that
AT encourages a shift towards shape representation, which is a primary factor in human
object recognition.

3 Methodology

3.1 Regular Adversarial Training

We begin by introducing the AT framework proposed by [8] (we refer to it as regular AT). The
objective of regular AT is to find adversarial samples that maximize the loss whileminimizing
it with respect to the model parameters. The framework uses the PGD attack to maximize
the loss and its formulation can be described by (1).

min
θ

ρ(θ);

ρ(θ) = E(x,y)∼D
[

max
‖x̃−x‖∞≤ε

L( fθ (x̃), y)

] (1)

Here, θ represents the classifier’s parameters, x denotes a natural sample, x̃ denotes its
adversarial counterpart, and L is the loss function. The adversarial sample x̃ is generated
within the ε-ball (�∞ norm) around the natural sample x with ground truth label y. The
objective is to find the adversarial sample x̃ that maximizes the loss L while searching for
the model parameters θ that minimize the loss L with respect to x̃ .

3.2 Delayed Adversarial Training with Non-Sequential Adversarial
Epochs (DATNS)

In our previous work [10] we have explored a more efficient variation of AT, namely DATNS.
In DATNS, we begin AT from a posterior epoch and alternate between natural and adversarial
training until the end of the training process. This approach significantly reduces the training
time and computational overhead compared to regular AT.

We introduce the concept of an initial adversarial epoch, denoted as s0, which represents
the first epoch after which AT begins. We also define natural epochs as epochs during which
the model is trained on natural samples and adversarial epochs as epochs during which the
model is trained adversarially. The total number of training epochs is denoted by N .

In DATNS, adversarial epochs occur periodically after s0 and under a time interval t .
Therefore, AT takes place on non-sequential epochs inbetween natural training epochs. The
hyperparameter t needs to satisfy the condition t ≥ 2, given that for t = 1 adversarial epochs
take place sequentially. As soon as the training reaches an epoch ≥ s0 satisfying (2), the
model is trained adversarially for the current epoch. In any other case the model is trained
only on natural samples.

epoch mod t = t (2)

The algorithmic description of DATNS is provided in Algorithm 1.
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Algorithm 1 Delayed Adversarial Training with Non-Sequential Adversarial Epochs
(DATNS)

Input: J training examples
{
(x j ; y j )

}J
j=1; Number of epochs N; Optimizer; PGD attack AT ,ε,α where T is

the number of steps, ε is the ball size, and α is the step size; time interval t ∈ {2, 3, ..., M}
Output: Model parameters θ ;
1: Initialize θ randomly;
2: s0 ← n; {Initialize the first switching point}
3: t ← m; {Initialize the time interval under which adversarial epochs occur}
4: for epoch = 0 to N − 1 do
5: for each batch (xb, yb) do
6: if epoch ≥ s0 then
7: if (epoch mod t) = 0 then
8: Replace with xb ← AT ,ε,α(θ, xb, yb); {If switching point reached, replace natural with adver-

sarial samples}
9: else
10: Proceed with xb without modification; {If the switching point is not reached, keep the batch

unchanged}
11: end if
12: end if
13: Train the model on the batch of input examples (xb, yb) using the optimizer;
14: end for
15: end for

4 Experiments

4.1 Overview of Experimental Setup

In this section, we provide a detailed overview of the experimental setup used to further eval-
uate our previously proposed DATNS method. Our experiments are designed to rigorously
assess the effectiveness of DATNS through two primary avenues: an ablation study and a
comparative analysis. The ablation study focuses on systematically examining the impact
of various hyperparameters on the performance of DATNS, including different patterns of
adversarial data appearance and perturbation levels. This study aims to identify optimal
settings for DATNS that balance robustness and efficiency.

Following this, the comparative analysis evaluatesDATNS against established baselines to
determine its performance in terms of accuracy, training efficiency, robustness, catastrophic
forgetting and interpretability of loss gradients. This analysis involves comparing DATNS
with both standard AT methods and a recent approach that initiates AT from a posterior
epoch. Together, these subsections provide a comprehensive assessment of DATNS and its
potential as an effective defense mechanism in adversarial settings.

Previous Work and Revisited Experiments The vast majority of the reported experiments
are new, aiming to provide new analyses that extend the evaluation of DATNS beyond our
previouswork.However, to provide continuity and context, we reference specific experiments
from our earlier research. The revisited experiment instances are listed below:

1. Hyperparameter Tuning and Ablation Study:

• l∞ perturbation of ε = 8
255 DATNS trainingwithResNet-18:Experiments onCIFAR-

10 and CIFAR-100 datasets, specifically for time intervals t = 2, t = 3, and t = 5
with initial adversarial epochs s0 = 55, s0 = 75, and s0 = 100. The results of these
experiments are included in Figure 1 and Figure 3, along with our new experiments
on different hyperparameter settings.
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Fig. 1 Natural and adversarial accuracy for ResNet-18 trained with DATNS on CIFAR-10, with a maximum
l∞ perturbation of ε = 8

255 and ε = 12
255 , versus different values of s0 and t and grouped by s0

2. Comparative Analysis:

• WRN 28-10 on CIFAR-10: Comparison of DATNS and [29] involving WRN 28-10,
which were previously reported. The results of this experiment are included in Table
1, along with new experiments on a variety of Wide ResNet architectures.

These reused experiments serve as a reference point for validating and comparing new
results, while all the experiments not listed in this list are new.

4.2 Hyperparameter Tuning and Ablation Study

This subsection explores the impact of different hyperparameters on the performance of
DATNS through an ablation study. We aim to investigate how the pattern of adversarial data
appearance influence the overall performance of DATNS, which will inform the setup for
subsequent comparative experiments.

To evaluate the trade-offs between robustness and efficiency, we consider natural accu-
racy which measures the model’s performance on clean, unperturbed test data, reflecting its
generalization ability. Additionally, we consider adversarial accuracy to assess the model’s
robustness by evaluating its performance on adversarial examples. Finally, we consider train-
ing efficiency to examine the impact of adversarial epochs on training resources; specifically,
fewer adversarial epochs lead to more efficient training.

Our experiments for this ablation study utilize a ResNet18 model trained on CIFAR-10
and CIFAR-100 datasets. All models are trained for a total of 200 epochs with a batch size
of 128. We use SGD as the optimizer with a momentum of 0.9, weight decay of 2 × 10−4,
and an initial learning rate of 0.1, which is decreased by a factor of 10 after 100 and 150
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Table 1 Wide ResNets with varying width, depth and total number of parameters trained for 200 epochs on
CIFAR-10 with [8], [29] and DATNS with t = 2, beginning AT from s0 = 100.

Depth Width #Params nat./adv. nat./adv. nat./adv.
accuracy accuracy accuracy
[8] [29] DATNS

40 1 0.6M 77.0% / 41.5% 74.6% / 38.0% 83.9% / 37.7%

40 2 2.2M 79.4% / 45.3% 79.7% / 41.9% 86.1% / 45.6%

40 4 8.9M 82.1% / 51.1% 81.8% / 48.4% 86.4% / 58.2%

40 8 35.7M 83.6% / 52.1% 84.0% / 53.8% 86.6% / 63.0%

28 10 36.5M 83.8% / 52.1% 84.6% / 52.3% 86.5% / 60.8%

28 12 52.5M 83.6% / 50.7% 84.5% / 52.2% 86.8% / 60.1%

22 8 17.2M 82.2% / 50.6% 83.1% / 50.0% 86.5% / 51.0%

22 10 26.8M 84.1% / 53.3% 84.0% / 51.3% 85.9% / 53.5%

16 8 11.0M 81.1% / 48.1% 82.9% / 46.4% 87.0% / 47.6%

16 10 17.1M 82.9% / 52.0% 83.5% / 48.8% 86.8% / 50.4%

Adv. epochs ratio: #adv./#total 200/200 100/200 50/200

Bold values indicate the best-achieved results for each reported experiment

epochs. During adversarial training epochs, the dataset is subjected to PGD attacks with
T = 10 steps. We investigate both l∞ perturbations with ε ∈ { 8

255 ,
12
255 } and l2 perturbations

to examine their effects on model performance.

4.2.1 Pattern of Adversarial Data Appearance

Our previous research [10] has highlighted the importance of the periodic occurrence of
adversarial epochs, as opposed to a predefined number of adversarial epochs at random
intervals, for achieving better overall performance. To further explore this, we conduct a
series of experiments with different time interval values t , such that t ∈ {2, 3, 5, 10, 20, 25}
for adversarial epochs, focusing on a ResNet18 model trained on CIFAR-10 and CIFAR-100
datasets. We consider initial adversarial epoch values s0, such that s0 ∈ {55, 75, 100}, as
explored by [29].

Additionally, for the previous combinations of s0 and t values, we extend our explo-
ration by investigating two values of ε to represent the maximum l∞ perturbation, where
ε ∈ {8/255, 12/255}. This additional dimension enables us to examine the impact of vary-
ing levels of perturbation onmodel performance. Although our focus for the rest of this paper
remains on the l∞ threat model, in this subsection we broaden our scope to include l2 pertur-
bations. Figures 1 and 2 depict the natural and adversarial accuracy results for a ResNet18
trained on CIFAR-10 dataset. These results are presented across various combinations of s0, t
and ε values, showcasing the model’s performance under l∞ (Fig. 1) and l2 (Fig. 2) threat
models.

In Fig. 1 we observe that adversarial accuracy tends to decrease as the time interval
t increases, reflecting the susceptibility to adversarial attacks when adversarial examples
are presented less frequently to the model. Natural accuracy exhibits significant fluctuation
as t values increase across most experiment instances. Despite variations, it’s notable that
across the range of t values explored in this experimental setup, natural accuracy exhibits
closely comparable values for the smallest (t = 2) and largest (t = 25) t values for most
of the experiment instances. In Fig. 2, where the natural and adversarial accuracy results
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Fig. 2 Natural and adversarial accuracy for ResNet-18 trained with DATNS on CIFAR-10, with a maximum
l2 perturbation of ε = 8

255 and ε = 12
255 , versus different values of s0 and t and grouped by s0

for the same ResNet18 model trained on the CIFAR-10 dataset are presented under the l2
perturbation threat model, we observe that adversarial accuracy tends to decrease for larger
values of t . Additionally, in Fig. 2, the overall natural accuracy levels remain relatively more
stable across different combinations of s0, t , and ε values. For both l∞ and l2 threat models,
adversarial accuracy consistently remains lower for ε = 12

255 compared to ε = 8
255 , while

the s0 value appears to exert minimal influence on the levels of both natural and adversarial
accuracy.

In Fig. 3, we present the natural and adversarial accuracy results for a ResNet18 model
trained on the CIFAR-100 dataset, specifically focusing on the l∞ perturbation threat model.
Similarly to the observations from the CIFAR-10 experiments, we note that adversarial accu-
racy tends to decrease as the time interval t increases. Additionally, the natural accuracy in
CIFAR-100 experiments displays a steady decrease with increasing t in most of the exper-
iment instances. This downward trend suggests that the model’s robustness diminishes as
the frequency of adversarial examples decreases. Notably, natural and adversarial accuracy
remain consistently lower for ε = 12

255 compared to ε = 8
255 . The s0 value continues to have

minimal discernible impact on accuracy levels, underscoring that the epoch at which the
adversarial samples first appear may not significantly impact the overall robustness of the
model.

4.2.2 Insights Gained

The ablation study reveals several insights:

• Optimal Configuration: Values of s0 = 100, t = 2, and ε = 8/255 consistently deliver
reliable results in DATNS.
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Fig. 3 Natural and adversarial accuracy for ResNet-18 trained with DATNS on CIFAR-100, with a maximum
l∞ perturbation of ε = 8

255 and ε = 12
255 , versus different values of s0 and t and grouped by s0

• Trade-off Between Robustness and Efficiency: Choosing a late s0 minimizes adversar-
ial epochs, reducing training time without significant performance loss. Larger t values
occasionally improve natural accuracy but do not significantly enhance adversarial accu-
racy.

• Perturbation Levels: An ε value of 8/255 is preferable for comparisons with existing
methods, aligning with more common practices in the literature.

These findings provide a solid foundation for the comparative experiments in the subsequent
sections, allowing us to benchmarkDATNS effectively against othermethods in the literature.

4.3 Comparative Analysis

In this section, we provide a comprehensive analysis of our previously proposed method,
DATNS, by evaluating its performance across various aspects and comparing it with estab-
lished baselines. Our analysis includes multiple dimensions:

1. Adversarial TrainingPerformance:We compareDATNSwith establishedATmethods,
specifically the framework by Madry et al. [8] and the approach by Gupta et al. [29]. The
comparison is conducted on CIFAR-10 and GTSRB datasets, focusing on natural and
adversarial accuracy as well as training efficiency. Additionally, we compare our method
with [25] to provide a deeper understanding of the tradeoffs between robustness and
efficiency. Although exact training times are not reported due to the extensive number of
experiments conducted across various GPUs, we use the fraction of adversarial to total
number of epochs as a key indicator of computational efficiency. This metric helps to
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assess the relative efficiency of each method, given that adversarial epochs are resource
intensive compared to natural epochs.

2. Catastrophic Forgetting: We investigate how DATNS behaves in relevance to the issue
of catastrophic forgetting, a challenge in ATwhere models may forget previously learned
information when trained on adversarial examples. This section explores how DATNS’s
alternating training approach impacts the model’s ability to retain knowledge of both
clean and adversarial data.

3. Interpretability of Loss Gradients: We qualitatively evaluate the interpretability of loss
gradients for models trained using DATNS compared to natural training and other AT
methods. This includes examining how different training approaches affect the clarity
and usefulness of the gradients in understanding model behavior.

To ensure a fair comparison, all methods were trained under consistent conditions, unless
otherwise specified (e.g., TRADES), using a total of 200 epochs and a batch size of 128. The
SGD optimizer was used with a momentum of 0.9, weight decay of 2 × 10−4, and an initial
learning rate of 0.1, decreasing by a factor of 10 after 100 and 150 epochs. During AT, we
employed PGD attacks with T = 10 steps, a maximum l∞ perturbation of ε = 8

255 , and a
gradient ascent step size of α = 2

255 .
By addressing these aspects,we aim to provide awell-rounded viewofDATNS’s strengths,

limitations, and practical implications, thus offering insights into its overall efficacy and
suitability for different AT scenarios.

4.3.1 TrainingWide ResNets with DATNS

In our previous work [10], we found that DATNS increased the robustness of the employed
Wide ResNet baseline, confirming the findings of [23] that wide architectures aremore robust
against adversarial attacks. In this section, we verify that this property is conserved, even
when the total number of adversarial epochs is profoundly reduced. Through a new set of
experiments we further explore how the robustness of Wide ResNets of different depths,
widths and total number of parameters is affected by DATNS.

To evaluate the performance of DATNS compared to [8] and [29] under different hyperpa-
rameter settings, we train 10 Wide ResNet baselines on CIFAR-10 and GTSRB datasets for
200 epochs. For [8] we train the models adversarially for the total number of epochs, while
for [29] and DATNS, we begin AT from s0 = 100. Additionally, for DATNS, we alternate
between adversarial and natural training with a time interval of t = 2. For reference, we
mention here the results for Wide ResNet 28x10 traned on CIFAR-10 from [29], where it is
reported that regular AT [8] achieved an adversarial accuracy of 48.5% and a natural accuracy
of 86.8%, while [29] achieved an adversarial accuracy of 49.7% and a natural accuracy of
87.9% without early stop.

Furthermore, to broaden the scope of our comparative analysis, we include an evaluation of
DATNS against TRADES [25]. TRADES, known for its efficacy in enhancing model robust-
ness, often comes at the cost of increased computational complexity. Therefore, although
we can assume that DATNS is more efficient than TRADES, we include this comparison to
explore the balance between robustness and computational efficiency compared to TRADES.
The results for TRADES are sourced from the study referenced in [24], focusing on a Wide
ResNet 34-10 architecture trained on CIFAR-10. In order to uphold consistency, we train
the same model architecture on CIFAR-10 with DATNS for 100 epochs with a batch size of
128, starting AT from s0 = 20, s0 = 40, s0 = 50 and employing the same time interval of
t = 2. Additionally, for this set of experiments we perform the standard PGD attack using
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Fig. 4 Natural and adversarial accuracy of DATNS, [29] and [8] for theWide ResNets of Table 1 (CIFAR-10),
sorted by total number of parameters

20 steps with step size 0.007, and epsilon 8/255, following [24]. The initial lr is set to 0.1
and is halved after s0, following a similar approach as [24].

In summary, our comparative analysis in this subsection sheds light on the complex nature
ofATmethodologies, revealing trade-offs between adversarial robustness, accuracy, and com-
putational efficiency.We hope that these insights contribute to advancing the understanding of
robust machine learning techniques but also provide valuable guidance for the development
of practical and effective defense mechanisms against adversarial attacks.

CIFAR-10. Table 1 summarizes the results of [8], [29] and DATNS on CIFAR-10 for var-
ious Wide ResNet configurations. It is observed that DATNS consistently leads to increased
natural and adversarial accuracy across most experiment instances. The natural accuracy
improvement over [29] aligns with expectations, given the increased number of natural
epochs. Surprisingly, even with fewer adversarial epochs compared to [29] and [8], DATNS
achieves enhanced adversarial accuracy for a wide range of experiments. Although training
times are not directly compared due to different GPUs used, all threemethods can be assessed
based on the fraction of adversarial epochs over the total number of epochs ( 11 for [8], 1

2 for
[29] versus 1

4 for DATNS). Notably, cases where DATNS performs slightly worse than [29]
or [8] involve Wide ResNet architectures of smaller capacity.

Furthermore, Fig. 4 illustrates that as the total number of parameters increases, both
natural and adversarial accuracy improve for the set of Wide ResNets considered in Table
1. The best performance appears to be achieved by the most complex models, indicating
that while DATNS may not significantly improve the performance of shallower models, it
is particularly effective when combined with complex wide architectures, providing faster
training and competent performance.

In Table 2, we compare the results of DATNS with TRADES [25], which has significant
presence within the field of AT. DATNS achieves lower robustness in terms of adversarial
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Table 2 Comparison of DATNS with TRADES [25]. The reported results for TRADES are sourced from [24]
and involve a Wide ResNet 34-10 trained on CIFAR-10 for 100 epochs, with varying robust regularization
parameter values λ. For DATNS, we experiment with s0 = 20, s0 = 40 and s0 = 50 and t = 2 for the total
of 100 epochs.

Adversarial accuracy Natural accuracy Adv. epochs ratio

λ TRADES [25]

6 54.1% 84.9% 100/100

9 55.2% 84.1%

12 55.9% 83.5%

15 55.9% 82.8%

18 56.4% 82.2%

24 56.0% 81.7%

s0, t DATNS

20, 2 51.2% 86.6% 40/100

40, 2 52.1% 87.9% 30/100

50, 2 50.9% 80.8% 25/100

Bold values indicate the best-achieved results for each reported experiment

Table 3 Wide ResNets with varying width, depth and total number of parameters trained for 200 epochs on
GTSRB dataset with [8], [29] and DATNS with t = 2, beginning AT from s0 = 100.

Depth Width #Params nat./adv. nat./adv. nat./adv.
accuracy accuracy accuracy
[8] [29] DATNS

40 1 0.6M 84.4% / 57.2% 78.7% / 59.0% 96.0% / 57.8%

40 2 2.2M 89.0% / 58.7% 85.3% / 59.7% 95.7% / 59.7%

40 4 8.9M 90.5% / 59.6% 85.3% / 60.7% 96.2% / 61.3%

40 8 35.7M 89.8% / 59.9% 87.4% / 61.3% 96.2% / 61.5%

28 10 36.5M 89.0% / 59.1% 86.2% / 60.1% 95.9% / 60.4%

28 12 52.5M 89.1% / 59.7% 84.8% / 60.5% 96.5% / 61.4%

22 8 17.2M 88.7% / 59.1% 86.9% / 59.8% 96.2% / 60.1%

22 10 26.8M 88.5% / 58.5% 84.1% / 60.9% 95.8% / 60.5%

16 8 11.0M 89.6% / 59.2% 87.4% / 59.3% 96.3% / 59.5%

16 10 17.1M 89.3% / 59.2% 88.3% / 59.8% 95.7% / 59.3%

Adv. epochs ratio: #adv./#total 200/200 100/200 50/200

Bold values indicate the best-achieved results for each reported experiment

accuracy compared to TRADES. However, it achieves better natural accuracy even for a
smaller total number of epochs (100, as compared to 200 for our previous experiments),
indicating that DATNSmaintains strong performance on clean data while providing a certain
level of robustness against adversarial attacks. These improvements are achieved within a
reduced training time compared to TRADES. While there is a trade-off in robustness com-
pared to TRADES, our results note potential advantages of DATNS in practical deployment
scenarios.

German Traffic Sign Recognition Benchmark (GTSRB). We further evaluate DATNS
on the German Traffic Sign Recognition Benchmark (GTSRB) dataset, which is a challeng-
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Fig. 5 Natural and adversarial accuracy of DATNS, [29] and [8] for the Wide ResNets of Table 3 (GTSRB),
sorted by total number of parameters

ing dataset for traffic sign recognition that includes 43 different classes. GTSRB consists of
39,000 training images and 12,000 test images, preprocessed for our experiments to a reso-
lution of 32x32 pixels. Unlike CIFAR-10, which contains more generic categories, GTSRB
involves the classification of traffic signs that often appear in diverse environmental condi-
tions, such as varying lighting and background, making it a suitable benchmark for testing
the robustness of AT methods.

Table 3 presents the results of [8], [29] and DATNS on GTSRB for the same set of Wide
ResNets. DATNS consistently outperforms [8], as well as [29] in terms of natural accuracy
for all experiment instances by an average of approximately 10%. Regarding adversarial
accuracy, DATNS either outperforms the comparedmethods inmost cases or achieves similar
accuracy with [29]. Notably, these performance gains are obtained with faster training, as
DATNS trains the baselines on adversarial data for only aquarter of the total number of epochs.
Fig. 5 visualizes the performance of [8], [29] and DATNS with respect to the total number of
model parameters. DATNS consistently achieves higher natural accuracy and nearly equal
adversarial accuracy, demonstrating its strength in training large capacity models faster while
maintaining competitive performance.

4.3.2 DATNS and Catastrophic Forgetting

In this paragraph, we discuss the connection between catastrophic forgetting and the new
variations of AT. Regular AT involves training models on a specific task from start to finish.
However, in the case of AT starting from a posterior epoch [10, 29], models are trained
incrementally on two related but divergent tasks. Initially, models learn to classify clean
samples during the classification task. However, when AT begins at the switching epoch (s0),
models start learning to classify both clean and adversarial samples. This transition from
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natural to adversarial training raises concerns about catastrophic forgetting, highlighting the
need to evaluate these AT variations in terms of their impact on mitigating catastrophic
forgetting.

Due to the multiple switches between natural and adversarial training, DATNS bears
similarities to multitask and transfer learning. Multitask learning involves training models
to solve multiple tasks simultaneously, leveraging knowledge-based inductive bias during
training. It has been argued that multitask learning complements AT, enhancing the natural
and adversarial performance of single-task models trained using state-of-the-art adversarial
techniques [47]. Transfer learning, on the other hand, involves training a classifier on a single
task and then using the acquired knowledge as a starting point for learning a related task. AT
on the source data generates improved representations, leading to more accurate prediction
when fine-tuning on the target data [48]. Exactly like in these studies, where joint training on
related tasks enhances robustness, we suggest that DATNS follows a similar approach. Based
on our experimental results, DATNS is found to be less sensitive to catastrophic forgetting.

As evidenced in Fig. 6, while DATNS demonstrates lower training adversarial accuracy
compared to [29], it achieves better performance in both natural and adversarial test accu-
racies. This disparity highlights DATNS’s robust generalization capabilities to unseen data
on the two related tasks. Moreover, Fig. 6 highlights the significant impact of the alternating
training process with a time interval of t = 2 on the model’s generalization ability. Gupta’s
method [29], which trains models adversarially after s0 without any switches back to natural
training, potentially leads to overfitting on adversarial data post-s0 until the end of training,
a challenge that DATNS confronts with frequent switches over the two tasks.

Additionally, when employing smaller time interval values, such as t = 2, the model
experiences more frequent switches between natural and adversarial training. This frequent
alternation enables continual adaptation and refinement of the model’s representations to
accommodate both clean and adversarially perturbed samples. Consequently, the model is
less prone to overfitting specific features of either task and is better equipped to generalize to
unseen data, thus reducing catastrophic forgetting. This concept is illustrated in Figures 1-3,
showcasing a tendency for adversarial accuracy to decrease as the time interval t increases,
emphasizing the significance of balanced exposure to both clean and adversarial samples in
reducing catastrophic forgetting.

4.3.3 DATNS and Loss Gradients Interpretability

In this paragraph, we provide a qualitative analysis on the interpretability of loss gradients
in adversarially trained models, specifically focusing on the discussed AT variations where
models are trained on both natural and adversarial samples. To investigate this, we compare
the interpretability of loss gradients in a Wide ResNet 28x10 (WRN) trained on CIFAR-10
using four different methods:

i) Standard training: The WRN is trained solely on natural samples, achieving a standard
test accuracy of approximately 96%.

ii) Madry AT: The WRN is trained using the AT framework proposed in [8]. The model is
trained adversarially from s0 = 0.

iii) Gupta AT: The WRN is trained using the AT variation proposed by [29], starting with
natural samples only until epoch s0 = 100 after which the model is trained adversarially.

iv) DATNS AT: The WRN is trained using our method, which involves begining training
only on natural samples until s0 = 100. After s0 = 100, the model is trained naturally
and adversarially alternately until the end of training.
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Fig. 6 Comparison of training and test natural and adversarial accuracy of a Wide ResNet 28x10 trained
adversarially onCIFAR-10with [29] andDATNS.Top:Natural and adversarial accuracy during training.While
both methods exhibit similar natural accuracy trends, [29] achieves better adversarial accuracy. Bottom: Test
results show DATNS surpasses [29] in both natural and adversarial accuracy, implying better generalization.
Fluctuations in DATNS accuracy indicate alternating between natural and adversarial epochs

To assess the interpretability of loss gradients, we employ PyTorch and matplotlib. We
start by loading a batch of images from the CIFAR-10 test set and subjecting them to the
PGD attack. Next, we compute the gradients of the loss function with respect to the input
(clean and perturbed) images using the backward() function for each model. We visualize
the maximum absolute value of the gradients across the three color channels using the jet
color map.

By comparing the gradients of both natural and adversarial samples for all models, we
gain insights into how each model makes predictions and the factors that contribute to its
performance. This comparison allows us to understand how AT, but also how the alternating
process introduced by DATNS affects the interpretability of the model’s behavior.

To provide a comprehensive evaluation, we visualize the loss gradients for the entire
CIFAR-10 test set. While this analysis may not represent every test sample, we summarize
our conclusions based on a significant portion of the data, referencing the loss gradient
visualizations shown in Fig. 7. The jet color map is used, where cooler colors (blue or
green) indicate small gradient values and warmer colors (yellow or red) represent large
gradient values. Cooler colors suggest regions where the loss function changes slowly with
respect to the input, indicating lower sensitivity of the model in those regions. Warmer colors
indicate regions where the loss function changes rapidly, suggesting areas of greater attention
during prediction. The observations are as follows:

Standard training: The model trained solely on natural samples exhibits smoother, less
noisy gradients for natural images. However, the gradient patterns for perturbed images
appear more unstructured, making their visualizations less interpretable. Additionally, larger
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Fig. 7 Selected examples from the CIFAR-10 test set and the loss gradients for a Wide ResNet 28x10 trained
with Standard training (natural samples only), [8] (AT beginning from s0 = 0), [29] (both standard and
adversarial training, beginning AT from s0 = 100 until the end of the training) and DATNS (both standard
and adversarial training, beginning AT from s0 = 100 and alternating between natural and adversarial training
until the end) respectfully

gradient values seem to be associated with the texture or color of the pixels rather than the
shape or edges of the object. For example, despite achieving 96% standard accuracy, the loss
gradients for the "ship" class indicate larger values for pixels related to the background (sky,
sea).

Madry AT and Gupta AT: Both methods produce more structured and self-explanatory
loss gradients for clean and perturbed inputs. The heatmaps clearly differentiate between
the background pixels and those related to the foreground object. The gradient magnitude
is highest in regions depicting the object’s outline. The model trained with Gupta’s method
tends to have more interpretable gradients compared to the one trained withMadry’s method.

123



47 Page 20 of 24 E. Kafali et al.

While the object’s shape and edges receive larger gradient values, there are occasional slightly
larger gradient values for pixels related to the outline or details inside the object compared
to Madry’s method.

DATNS AT: Despite training for fewer adversarial epochs than Madry AT and Gupta AT
(reducing the adversarial epochs by 3/4 and 1/2, respectively), DATNSmaintains the property
of producing interpretable gradients for both clean and perturbed images. The loss gradients
are more structured, with higher magnitudes in regions associated with the object’s outline
and shape. The foreground and background pixels are more distinguishable, resulting in
more interpretable visualizations. Moreover, compared to Madry AT and Gupta AT, DATNS
tends to exhibit higher gradient magnitudes for details inside the object outline. While we
cannot claim that DATNS always produces more interpretable loss gradients than Madry AT
or Gupta AT, we can conclude that DATNS tends to focus more on the overall object (shape
and details) for many test samples.

These findings suggest that DATNSmaintains the property of producing interpretable loss
gradients while reducing the number of adversarial epochs, enhancing both robustness and
interpretability.

4.4 Discussion and Limitations

The improvedperformance ofDATNS inAT, as evidencedbyour comparative analysis, can be
attributed to several advantages inherent in its design. DATNS alternates between adversarial
and clean training epochs, allowing the model to periodically recalibrate its understanding
of clean data while also defending against adversarial perturbations. This approach prevents
the model from overfitting to adversarial examples, maintaining a balanced representation of
both clean and adversarial data. In contrast, traditional PGD-based AT exposes the model to
adversarial examples in every epoch, which can lead to overfitting and a subsequent decrease
in clean accuracy.

By alternating between these training modes, DATNS retains strong generalization capa-
bilities while enhancing robustness against adversarial attacks. This can result in higher
adversarial accuracy compared to methods that rely solely on continuous adversarial train-
ing, as DATNS is found to mitigate adversarial overfitting more effectively.

In addition to its robustness benefits, DATNS offers significant computational advantages.
Its design requires fewer epochs dedicated to adversarial examples, thereby reducing the
overall training time compared to PGD-based methods. This makes DATNS particularly
suitable for scenarioswith limited computational resources,where achieving aminimum level
of adversarial robustness is crucial without excessive resource expenditure. The flexibility
of DATNS allows for adjustments in the training strategy, such as starting AT earlier or
tailoring the intervals between adversarial epochs to specific needs, making it adaptable to
various resource constraints.

However, some limitations of DATNS should be acknowledged as well. While DATNS
has demonstrated strong performance, particularly withWide ResNet architectures, its effec-
tiveness may not generalize across all model types. This study focused on evaluating DATNS
across a diverse range of model architectures commonly used as baselines in adversarial
training research. Consequently, our findings can may not be generalized to other computer
vision or machine learning architectures that were not assessed within this study’s scope.
Furthermore, while DATNS addresses some of the computational challenges associated with
AT, it may not fully mitigate robustness issues against more sophisticated or novel attack
methods beyond those tested in this study.
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In practice, the choice of AT method should consider the specific context and priori-
ties. For instance, if natural accuracy is the primary concern, DATNS is a reliable solution.
However, in applications where adversarial accuracy is critical-such as in human-in-the-loop
systems where natural samples may be more easily recognized-methods such as [8] or [25],
which consistently achieve high adversarial accuracy, may be more suitable, provided that
computational overhead is not a constraint.

These observations underscore the need for continued research to enhance DATNS’s
applicability across a broader range ofmodels and attack scenarios. Future work should focus
on optimizing DATNS to further improve its robustness, generalization, and adaptability,
ensuring it can meet the demands of diverse real-world applications.

5 Conclusions

In this work, we explored conditions that can enable robust AT with a reduced computational
overhead. We extended our previous work with new experiments and provided an empirical
analysis regarding the pattern of adversarial data appearance during training and discovered
that robust AT is facilitated when natural and adversarial training occur alternately. By exper-
imenting with various time intervals for injecting adversarial data in the training process, we
observed that DATNS excels when adversarial data is presented non-sequentially and not at
the full length ofAT. Particularly, we found that the robustness ofwide deep learning architec-
tures correlates with their number of parameters, emphasizing the importance of architecture
selection in AT.

Moreover, we argued in this work that variations of AT, which introduce adversarial data
from a posterior epoch, should be evaluated based on their ability to minimize catastrophic
forgetting. Models trained with such AT variations should undergo comprehensive analysis
to ensure they maintain their performance on previously learned tasks while adapting to new
adversarial challenges.

Our experimental results demonstrated that DATNS achieves superior performance in
terms of natural and adversarial accuracy within a reduced training time, while preserving
the interpretability of adversarially trained models. The loss gradients produced by DATNS
exhibited more structure and higher magnitudes in regions relevant to the object’s shape
and details. This property of DATNS enhances its ability to focus on important features and
generalize better on unseen data.

Our work highlights the potential of non-sequential AT variations, combined with prin-
ciples from widely known DL techniques such as transfer learning, multitask learning, and
meta-learning, to develop robust models at a lower computational cost. We hope that our
work stimulates further research on AT methods aimed at reducing the computational over-
head and advancing the robustness of computer vision models against adversarial attacks in
real-world systems.
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