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Abstract. Automated detection of small objects poses additional chal-
lenges, compared to bigger-sized ones, due to the former’s limited resolu-
tion for extracting discriminative information. In such cases, even a slight
misalignment between a candidate region and its ground truth target has
a huge impact on their IoU which significantly increases the amount of
noisy information. Given the fact that state of the art two-stage detec-
tion algorithms generate predefined shaped and sized candidate regions
in pixel-level interval, the aforementioned misalignments are very likely
to occur. In this work, a scalable object detection approach is introduced
-specifically dedicated to small object parts- incorporating both learn-
able and handcrafted features. In particular, a set of simplified Gabor
waveforms (SGWs) is applied to the raw data, ultimately producing an
improved set of anchors for the region proposal network. These Gabor
filters are further utilized generating a soft attention mask. Additionally,
the interaction of a human with the object is also exploited by taking
advantage of affordance-based information for further improvement of
detection performance. Experiments have been conducted in a newly in-
troduced device disassembly segmentation dataset, demonstrating the
robustness of the method in detection of small device components.
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1 Introduction

With the advent of industry 4.0, the role of robotics in the industrial environ-
ments has evolved. Traditional industrial robots have started being replaced by
collaborative robots. The rationale behind this selection is, instead of using high-
precision but also dangerous traditional robots in fully automatized processes, to
exploit the ability of collaborative robots to coexist with humans in a fenceless
way, in order to assist the latter in solving complex cognitive tasks. Some ex-
amples include automated parts assembling or disassembling. More specifically,
in the context of a Waste Electrical and Electronic Equipment (WEEE) disas-
sembly scenario, within an industrial WEEE recycling environment, the fully-
robotised disassembly is not feasible due to the complexity and high variability
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of devices. Thus, the role of a collaborative robot in assisting the human worker
in detecting and removing hazardous components from the electronic devices is
much appreciated. In this direction, Computer Vision is necessary to assist the
robot’s perception of the surrounding environment. Nevertheless, recognition of
the small components to be disassembled is a challenging task, since current
state of the art computer vision approaches fail to detect objects in very low
resolution. In this work, a novel methodology is proposed for effective detection
of low-resolution objects, which makes it suitable for automated detection of
very small components in robot-assisted WEEE disassembly tasks.

2 Related Work

Object detection is the process of localizing and classifying the objects appeared
on an image. Moreover, its numerous applications, ranging from self driving cars
to medical image processing along with its importance in providing the ma-
chines with the ability to perceive the world, have attracted many researchers
to this field. A plethora of approaches have been proposed for the object detec-
tion task that can be categorized into two broad groups, namely the two-stage
and the one-stage methods, while there is a complementary set of algorithms
that aims at enhancing the previous two. One of the first attempts to utilise
Convolutional Neural Networks (CNNs) in object detection was the R-CNN [3]
in which a number of class-agnostic candidate regions are proposed and fed to
a CNN to extract a fixed-length feature descriptor for each region. Thereafter,
a set of class-specific Support-Vector Machines (SVMs), classifies these regions
based on their extracted descriptors. Built upon R-CNN success, the Fast R-
CNN [2] targets the inefficiency of having to pass each of the candidate regions
individually through the CNN by forward passing the input image to the net-
work once, generating its feature map and applying ROI pooling for each of the
candidate regions to extract their feature representations. Based on the previ-
ously mentioned methods, Faster R-CNN [12] introduced a trainable mechanism
for the purpose of proposing candidate regions called Regional Proposal Net-
work (RPN). Given a number of fixed shape and size regions, called anchors,
the RPN distinguishes them between foreground and background before pass-
ing the former to the classifier. Mask R-CNN [4] extended the Faster R-CNN
by adding an extra head for segmentation and replaced the ROI pooling with
ROI align resulting in higher accuracy predictions. Guided Anchoring [16] pro-
posed an approach detaching the hyper-parameterizing needed for the anchoring
process. Additional classifiers are added in Cascade R-CNN [1] aiming at pro-
gressively increasing the IOU’s of the proposed regions with the ground truth
objects resulting in improved prediction performance. Prior-knowledge in inter-
preted in the object detection process by Reasoning R-CNN [17] which consists
of two cascade classification levels, in the first one only visual information is
considered, while the second one capitalizes on more informative feature de-
scriptors complemented by high-level information as encoded by the reasoning
module. In contrary to the R-CNN family methods in which the processes of
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region proposing and region classification are done by discrete modules, in the
one-stage methods the regions are generated and classified in a single pass man-
ner. When it comes to one-stage object detection approaches YOLO [11] and the
SSD [9] are the most indicative ones. Although this category of methods offers
faster performance compared to the RPN-based one, they are limited in terms of
accuracy due to having a high imbalance between positive and negative regions
fed to the classifier, where the positive and negative terms refer to the presence
and the absence of ground truth object respectively. A novel Focal loss has been
proposed in [8] addressing that imbalance by having the ambiguous regions con-
tribute more in the loss calculation, thus valuing the hard examples more than
the easily classified ones. The potential of exploiting heuristic information for
the purpose of sampling the generated anchors, that are more likely to include
objects, are presented in [19] and [18] with promising results. Another method
based on handcrafted features is [14], where the High Possible Regions Proposal
Network, similarly to how RPN operates, proposes candidate regions given an
additional feature map as generated by the application of a set of simplified
Gabor wavelets (SGWs) on the input image. The use of context information is
adapted in [13] focusing on detecting small objects, that the baseline one and
two-stage methods struggle with. In [6] the Perceptual Generative Adversarial
Network is introduced targeted at enriching the poor visual representation of
small objects by super-resolving them. Although Deep NNs have proved to be
quite powerful, given sufficient data, they still rely heavily on large datasets and
informative visual representations. In the case of small objects specifically, of-
ten none of the previous requirements are met thus their detection frequently
fails. The motivation behind this work is to effectively boost the performance
of current state of the art object detection methods in detecting small objects
by exploiting additional streams of information to make up for the poor visual
quality small object posses. The main contributions of our work comprise the
effective incorporation of handcrafted features into the object detection process
through either an anchoring or a soft attention mechanism guided by SGWs. Fi-
nally, we have also tested the introduction of an additional input stream based
on object affordances, with the objective of further improving the detection ac-
curacy. The aforementioned term of object affordance, refers to all possible ways
a specific object can be manipulated during its usage.

3 Owur Approach

3.1 Overview

Most of the Computer Vision domains have been greatly benefited from the Deep
Learning (DL) era. Regarding the object detection specifically, replacing the ini-
tial handcrafted feature extraction process with deep data-driven architectures,
has shown considerable potential and displayed remarkable results. Although
current state of the art object detection algorithms achieve sufficient object de-
tection accuracy, they perform disproportionately better at detecting big and
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medium sized objects compared to the smaller ones. The representation gener-
ated by the DL-based models, in the case of small objects, are mostly noisy and
poor in terms of quality. The former relying heavily on rich feature representation
for both object localization and classification combined with the lacking small
objects visual information, results in unsatisfactory object detection. Neverthe-
less, there are applications in which detecting small objects is of high importance.
The motive behind this work is to investigate various ways of increasing small
object detection performance by exploiting additional information streams. A
suitable baseline method is chosen which we progressively enhance through us-
ing both handcrafted feature as well as an additional stream of human-to-object
interaction information. In the context of this work the detection performance
is our main priority, thus we focus on enhancing the two-stage object detection
algorithms, nevertheless our proposed method can be mildly modified in order
to be applicable to one-stage approaches as well.

3.2 Two-Stage Detection pipeline

State of the art two-stage detection approaches are consisted of two discrete
modules responsible for region proposing and classifying respectively. In the
first stage, a set of regions are being validated on their objectness; namely the
possibility of containing a ground truth object. The most confident regions, in
terms of objectness, are passed to the second stage. In the second stage, a feature
representation is extracted for each proposed region which is indicative of the
area the latter occupy on the image. Finally each region is classified into one the
available categories based on their extracted feature.

First Stage - RPN: Given that target objects may appear anywhere on the im-
age, an anchoring scheme is deployed to generate a number of densely distributed
anchors. These anchors are generated on a pixel basis across the feature map
and have their size and shape defined by the hyperparameters of scale and ratio
respectively. These parameters shall be fine-tuned based on the specific appli-
cation through carefully considering the input image resolution, the potential
shapes of the objects interested in detecting as well as their size relatively to
the input. Finally, all the uniformly generated anchors constitute the candidate
regions and are passed to the RPN. Each candidate region is labeled as fore-
ground region if its intersection over union (IOU) with any ground truth object
exceeds a predefined threshold and as background otherwise. Finally the RPN
is trained to classify its input regions between foreground and background as
well as refines those falling in the former category, in order to better fit their
corresponding ground truth targets. The refined foreground regions compose the
proposed Tegions.

Second Stage - Region Classification: For each proposed region a feature
representation is extracted by pooling onto the feature maps that were previ-
ously used for regional proposing. Then these regions are classified into one of
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the available categories and are further refined by class-aware regressors. The
feature maps being shared among the two modules allow for region proposing
and classifying modules to be trained simultaneously.

(a) “ (b)

(©) (d)

Fig.1: (a) Gabor Feature. (b) F. (c) Gabor-driven Soft Attention. (d) Soft
Attention gain (e) Input Image. (f) Edge Anchors. (g) Affordance Mask.

3.3 Background

Mask R-CNN: In cases where heavy overlapping between the relevant objects
occurs, detecting them by their bounding boxes would result in high ambiguity
thus instance segmentation is deemed to be more appropriate. For that purpose
Mask R-CNN [4] was chosen as a base architecture for both its state of the art
performance and its efficiency. Besides that, Mask R-CNN architecture having
discrete feature maps for different object sizes through utilizing the Feature
Pyramid Network (FPN) as proposed in [7], renders it even more appealing
approach in cases where small sized object detection is required.
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Cascade R-CNN: The method as described in [1] is applied on the baseline
architecture, with the purpose of training higher quality classifiers. The term
quality of a classifier refers to the IOU threshold, a proposed region needs to
exceed to be considered as ground truth target, which the classifier was trained
with. The problem with directly increasing the IOU threshold is that only a
handful of candidate region would meet such strict IOU criterion resulting in
insufficient training samples. In the context of each candidate being refined to
better fit its target, the candidate regions are fed through multiple classifiers of
increasing quality to progressively increase their IOU before being passed to the
following classifier of higher quality.

3.4 Anchoring by SGWs:

EA-CNNp: Although the uniform anchoring has proved to be quite effective
in most cases, it is still limited to generating anchors in discrete pixel intervals
with fixed shapes and scales resulting in misalignment between the anchors and
their respective ground truth targets, which can be crucial in the case of small
objects detection. In order to restrict these deviations, additional anchors are
generated considering heuristic information which, unlike the densely distributed
anchors, are not bounded by any extrinsic hyper parameters; thus tend to better
align with the ground truth objects. In figure 3, we depict a candidate-target
IoU comparison between the edge and the default anchors. In order to maintain
efficiency while still improving in detection quality, only the small-sized heuris-
tically generated regions, referred to as edge anchors (figure 1f), are considered;
since the minor misalignments the bigger object exhibit have barely any effect on
their detection. Inspired by [14], the input image is filtered by a set of simplified
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Fig. 2: The architecture combining Cascade with EA-CNNp.
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Gabor wavelets (SGWs) producing an edge-enhanced image, termed as Gabor
feature (figure la). The MSER algorithm is then applied on that feature, to
extract the edge anchors. Finally in this approach, all edge anchors are merged
with the proposed regions and are fed jointly to the classification stage. The ar-
chitecture described above combined with the cascade R-CNN is shown in figure
2.

— .
Edge anchor IoU: 0.74 Edge anchor IoU: 0.74
Default anchor IoU: 0.54 Default anchor IoU: 0.64

Fig.3: Displaying the anchors that align the most with the groud truth tar-
get. The green, red and blue regions refer to edge anchors, densely distributed
(default) anchors and their corresponding ground truth targets respectively.

EA-CNNg: As a next step, we aim at integrating the edge anchors into the
RPN. Due to the former being of varying scale and having continuous center co-
ordinates, some modifications are required so as to be compatible with the RPN
training procedure. In order for the FPN feature map to remain scale specific and
have the bounding box regressors referring to identical shaped anchors, the edge
anchors are refined to match the closest available shape and size configuration,
as dictated by the scale and ratio hyper parameters. The issue of edge anchor
centers not aligning with the pixel grid is addressed through rounding their cen-
ters along with upsampling the feature map with the purpose of lessening the
quantization error. Although restricting the edge anchors into predefined shapes
and sizes, partially opposes the sense of acquiring the best alignment possible
between the candidate regions and the ground truth targets, having scale and
shape consistent feature maps is of high importance for regression stability. In
order to minimize the refinement edge anchors have to undertake to fit the pre-
defined scale configurations, we introduce additional feature map dedicated to
the edge anchors, called edge maps. These maps correspond to different scales
relevant to small objects and are identical to the feature map of the first FPN
level (Fs). After the modifications described above the RPN is able to evaluate
regions given both edge and regular anchors as input. Based that on that, MSER
is applied to both grayscale input image and its edge-enchanced version resulting
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in more but less precise edge anchors. The proposed architecture is shown bellow
in figure 4.
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Fig. 4: The architecture combining Cascade with EA-CNN.

3.5 Attention-based by SGWs:

Attention-SE: In the previously described approach, the Gabor feature (Gg)
is used to guide an additional anchoring mechanism targeted at small objects.
Although the anchors generated by these methods seem to be reasonable, the pre-
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processing step required, does not allow for an end-to-end training. Therefore,
we propose an architecture in which a soft attention mask Attsos € R X% xD
is generated driven by the Gy, where D is a hyperparameter defining the depth
of the FPN feature maps while M and N refer to the input image dimensions.
More specifically, at first the Gy € RM*Nx3 is passed through a CNN called
GabA resulting in Gp € RT X% *D a5 shown in the equation 1. Thereafter
based on the the Squeeze and Excitation [5] approach, a depth-wise attention
vector SE € R'¥P is constructed by applying average global pooling onto the
G'a and feeding the result to a fully connected layer F, € RP*P as shown in the
equation 2. Afterwards, the soft attention mask is calculated through depth-wise
multiplying the SE with the G, as shown in equation 3 . Finally, based on the
equation 4, an enhanced feature map Fey,y, is generated, which will be replacing
F both during region proposing and classification stages. An example on how
the Attsos alters the base F is shown in figure 1d, where the difference between
Fenn and the Fy is visualised. The proposed architecture can be seen in figure
5.

Ga = ReLU[GabA(GY)] (1)
SE = Softmax[F,(Ga)] (2)
Atteot, = ReLU[SE®G4] (3)

Fenn = Fs®Attofy (4)

Attention-SE enhanced by Human-Object Interaction (HOI) informa-
tion: Motivated by the work presented in [15], which achieves increased object
recognition performance by exploiting affordance-based knowledge, we incorpo-
rate a stream related to that kind of information. More specifically, we enhance
the Attention-SE by using the method presented in [10], where potential inter-
action hotspots are predicted given a static image. A brief description on how
their proposed method works is required, in order to better interpret its predic-
tion results. The so-called hotspot prediction is achieved through three discrete
stages. At first a typical action recognition model has been trained to predict the
various action occurring in video sequences where objects of interest are being
manipulated by the human. As a second step, an action anticipation model is
trained to map a static image into its corresponding afforded actions. Finally in
the third step, given the anticipated afforded action the HOI hotspots are gener-
ated by applying a feature visualization technique. An example of HOI hotspot
prediction can be seen figure 1g. These HOI masks, as shown in the architecture
of figure 6, are passed through a set of vanilla 2D convolutional layers in order
to generate the affordance feature maps, where the term affordance corresponds
to the way the human interacts with the object. Finally, while region proposing
in based solely on visual information, during the region classification stage, the
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ROI-pooling is applied to both regular feature maps corresponding to visual in-
formation and the feature maps related to the afforded action. The descriptors
generated from these discrete information streams, are concatenated and fed
to the classifier. Through this approach classification enhancement is achieved
by capitalizing on both visual (sensor) and human-object (motor) information.
Finally, the hotspots prediction are not limited in providing spatial informa-
tion solely, since discrete colorization indicates different ways of human-object
manipulations. The described architecture is shown in figure 6.
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Fig. 6: Attention-SE enhanced by Human-Object Interaction (HOI).

4 Experiments

4.1 Dataset Construction

A set of WEEE disassembly procedures were recorded, in the form of video at
the industrial environment. All the recordings were carried out through three
cameras, two of which were in fixed position while the other one, being hand-
held, resulted in more informative views. Thereafter, a number of frames utilizing
all three views, were manually annotated aiming at maximizing the variance
in terms of unique annotations. A binary mask was defined for each WEEE
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.‘.."",) g e ——
Attention-SE by HOI

Fig. 7: Examples of screw detection performance of the various approaches. The
green and red outlines indicate the successful and the failed screw detection
respectively.
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component as well as their corresponding WEEE device, distinguishing them
from the background environment as well as other instances.

Dataset: Although, our dataset consists of multiple WEEE categories, in this
work we focus on PC-Towers explicitly, since it was found to be the most chal-
lenging due to the presence of class ambiguities, high occlusions and significant
small components. The overall annotated frames referring to the PC-Tower is
395 originated from five unique PC-Tower disassembly procedures. In order to
avoid having similar looking frames during training and evaluation, we split the
dataset on a procedure basis, that is, the training set is formed by getting the
frames only from four disassembly session and leaving the remaining one for eval-
uation purposes. The dataset split as described previously, results in 325 and 70
of fully annotated frames in the training and validation sets respectively. More-
over, there are 23 unique components-categories with all of them being present
in the training set while only 16 of them in validation set.

4.2 Evaluation metrics

To evaluate the performance of each of the modalities added, we report the
standard COCO mean Average Precision (mAP) AP 5.0.95,AP0.5, APy.75, and
mean Average Recall (mAR) ARjg 5.0.095 metrics. Moreover, since we are aiming
at small object detection specifically, we also report the metrics of APgs and ARg
averaged over the [0.5 : 0.95] IoU range thresholds.

4.3 Implementation Details

In all implementations, the ResNet-101 backbone was used for feature extrac-
tion combined with the FPN neck. The network’s weights were initialized using
a model pretrained on MS COCO dataset. The input images were resized such
that they biggest dimension is 512 pixel wide, while their aspect ratio is retained.
The Stochastic gradient descent (SDG) optimizer was used with a momentum
value of 0.9. The model was trained for 400 epochs, using a mini batch size
of one image, with an initial learning rate of 0.001 decayed by a factor of 3
at epoch 100 and 250. During the first 100 epochs the backbone layers were
kept frozen while the whole network was trained thereafter. Non Maximum Sup-
pression (NMS) was applied both during the proposing and classification stages
with thresholds of 0.9 and 0.3 respectively. Regarding the uniform distributed
anchors, they are generated using ratios of 0.5, 1, and 2 while their scales were
set to [10, 32,64, 128,256] targeting objects of various sizes. The RPN was set
to propose 2000 candidate regions at training, while during testing 1000 regions
are proposed and only the 100 most confident predictions are kept. Finally, data
augmentation was applied to address the relatively small dataset, by applying
random rotation as well as adding random motion blur noise during training.
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Gabor-based Anchoring: Finally, for the purpose of generating the edge an-
chors, the regions produced by the MSER algorithm occupying an area larger
than 15'% pixels or having their aspect ratio fall outside the [0.5, 2] interval, are
filtered out. Moreover, when the edge anchors are treated as candidate regions
additional scales of 8,15 and 25 pixels are introduced.

Human-Object Interaction information: The visual information is encoded
into a descriptor of 256 length while the ones referring to based on the Human-
Object Interaction information have a length of 64.

Table 1: Object detection results on PC-Tower dataset.

Method Cascade APO,5;()‘95 APo_s APO.75 APS ARO,5,0.95 ARS

Baseline - 40.3 69.8 | 395 |23.1| 47.3 28.0

v 39.5 66.2 | 40.1 |23.6] 48.8 |29.0

- 38.7 68.2 | 38.0 |22.9] 46.9 28.8

EA-CNNp v 40.9 70.5 | 423 |24.6| 48.2 30.1

- 39.6 69.5 | 40.1 |25.5| 47.2 31.4

EA-CNNe v 10.6 695 | 41.9 |25.2] 48.4 |32.3

] - 41.0 70.1 | 41.2 |24.0| 464 31.0
Attention-SE 7 107 [ 695 | 42.6 250 483 | 284
Attention-SE by Affordance v 38.9 68.6 | 38.9 |25.7 48.7 31.5

4.4 Results

Based on the results presented in Table 1, the best overall AP, 5 is achieved
when edge anchors are fed directly to the classification stage without any sort
of refinement. On the other hand, when more strict IoU thresholds are required,
Attention-SE is the most dominant method in terms of mAP. Comparing the
methods utilising Gabor-based anchoring, superior small object detection is ac-
complished when edge anchors are integrated into the RPN module. Regarding
the Attention-based approaches, the one capitalizing on the affordance modal-
ity performs better at detecting the small objects. Moreover, it is evident that
the best performances have been achieved when the cascade architecture is de-
ployed. Additionally, the qualitative displayed in figure 7, referring to screws, are
indicative of how each of the proposed method can enhance the baseline in terms
of small objects detection quality. Finally, our disassembly dataset consisted of
highly variant views, greatly occluded and significantly small components arises
challenges that affect the object detection performance. Although, the mAP
metrics are relatively low compared to other object detection benchmarks, the
detection performance is deemed to be reasonable considering the challenging
nature of our dataset.
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4.5 Conclusions

In this work we investigated various approaches aiming at boosting the small
object detection. At first a set of handcrafted features are generated in order
to guide an additional anchoring mechanism targeted specifically at small-sized
objects. Applying such anchoring mechanism into the detection pipeline yielded
promising results. Additionally, Attention-based approaches were also consid-
ered, making use of the previously mentioned features to generate a soft atten-
tion mask targeted at small objects. Moreover, build upon the proposed soft
attention approach, we further enhance the object detection by taking advan-
tage of an additional stream of information based on Human-Object interaction.
Finally our proposed approach has generalization capabilities and is seamlessly
applicable to any two-stage object detection approach.

4.6 Future Work

In the future, experiments are to be conducted on the whole disassembly dataset
including all four WEEE devices. Moreover, our dataset will be further enriched
by annotating additional disassembly sessions on different WEEE disassembly
plant premises. Finally, although the authors of [10] state that relatively accurate
interaction hotspots can be generated even in cases of unseen object categories,
as a future work we consider training their proposed model on the WEEE domain
in order to obtain more accurate hotspot interaction prediction and subsequently
increase the detection performance.
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