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Abstract—In this work, a novel federated distillation weight ag-
gregation method is proposed. Specifically, an algorithm designed
for effective learning in distributed environments is introduced.
This algorithm includes an innovative federated distillation
scheme, proposing a sophisticated aggregation of model outputs,
employing a global server model to manage process. On the
server side, feature mixing is employed to aggregate client
representations before they are transmitted back to the client side
for knowledge distillation. During feature mixing a weight factor
is assigned to each client’s logits, penalizing bad quality clients
and preserving system’s credibility. Thorough experimentation
has been conducted to comprehensively study the issue at hand.
Key findings reveal the significant potential of the proposed
solution, which achieves robust performance in a federated setting
while reducing communication costs.

Index Terms—federated distillation, feature mix, representa-
tion learning, image classification

I. INTRODUCTION

The exponential growth in the use of smart devices pre-
cipitates a marked increase in data transmission volumes,
presenting a significant challenge in the field of distributed
data management. A paramount concern in this domain is
the trustworthiness of those systems, as well as data privacy
and protection. To overcome this challenge, Federated learn-
ing (FL) [1] has been developed as a pivotal methodology,
enabling the training of a centralized model whilst ensuring
the retention of users’ sensitive data exclusively within their
personal devices. Moreover, FL can be more robust to poison-
ing attacks aiming to harm a system’s trustworthiness since
the model outcomes depend on the contribution of multiple
models, whereas in centralized systems a malicious attack
to the training model can cause a severe effect to system’s
reliability.

Nevertheless, the FL approach involves a communication
overhead being proportional to model sizes. Particularly, mod-
els of large size prove to be impractical for deployment.
Furthermore, the necessity for model aggregation in the FL
training process imposes a lack of flexibility in the architecture
of client models, as each client is required to train a model
with an identical architectural framework.

Towards this direction, a novel technique known as Fed-
erated Distillation (FD) has been put forward. This approach
diverges from the traditional model aggregation method, opt-

ing instead for the exchange and aggregation of client model
logits. These aggregated logits are then utilized in the model
distillation phase to disseminate the knowledge acquired by
the local datasets among all clients. This alternative method-
ology offers advantages such as reduced communication costs,
greater flexibility in client model architecture, and improved
handling of non-IID (non-independently and identically dis-
tributed) data. At the same time, data are not exchanged
between users and the central server and the system remains
robust against poisoning attacks.

The majority of FD methods in the literature, predominantly
utilize averaging of client logits as their aggregation technique.
However, there has been limited exploration of alternatives
to this approach. The proposed technique delves into the
client logit fusion process during the aggregation process,
which we contend is a crucial factor affecting the performance
of the global model. Consequently, this paper introduces an
innovative aggregation method designed to refine the selection
criterion.

During the client output aggregation, label change can
occur. In contrast, feature mixing can mitigate label change
by reducing the weight factor (and the impact on aggregated
output) of clients that are mostly ”responsible” for label
change. In this respect, drawing inspiration from the work
of Parvaneh et al. [2], a feature mixing aggregation method
is proposed, although with a different objective. In [2], the
potential label change resulting from feature mixing identifies
the images that require labeling. Conversely, in our approach,
any potential label change is considered undesirable and leads
to a reduction in the weight factor. In this way, the proposed
aggregation method can deal with bad quality client logits that
may occur either due to bad training or due to a malicious
attack to this specific node. A trainable alpha vector for the
weighted aggregation of client logits is introduced, while a
global model is maintained on the server side to train this
vector. The main contributions of this work are as follows:

• The introduction of an innovative federated distillation
scheme, which leverages a global server model to guide
the aggregation process, encompassing a more advanced
aggregation of model outputs.

• The proposal of a novel aggregation method is outlined.
This method utilizes feature mixing and incorporates



a trainable vector, designed to assign reduced weight
factors to images that are likely to induce label changes.

• The effectiveness of the proposed approach is vali-
dated through extensive comparative analysis on three of
the most comprehensive publicly accessible benchmarks,
demonstrating its superiority and robustness across a
diverse array of FL scenarios. Experiments evaluating the
system’s resilience against poisoning attacks have also
been performed.

II. RELATED WORK

A. Knowledge Distillation

Knowledge distillation is a strategy for efficiently transfer-
ring knowledge from a large model (the teacher model) to
a smaller one (the student model). The teacher model guides
the student model that improves performance through iterative
learning. Knowledge distillation is widely used for model
deployment on resource-limited devices. In [3], the concept
of distillation learning was introduced, using soft outputs from
the teacher model to guide the training of a smaller model. In
addition, a distillation loss and cross entropy loss are utilised to
balance between data fitting and teacher imitation. Zhao et al.
[4] split knowledge distillation into two parts: target and non-
target. The target knowledge distillation component is a binary
logit distillation of the target class, whereas the non-target
knowledge distillation part is a multi-category logit distillation
of non-target classes. In [5] the deviation between teacher and
student model prediction is studied. A correlation-based loss is
employed to capture both inter-class and intra-class relations
from the teacher. Finally, the knowledge distillation technique
has been extended to the field of FL, as described in II-B.

B. Federated Distillation

Unlike traditional centralized machine learning (ML) tech-
niques, FL trains an algorithm through numerous independent
sessions, each with its own distinct dataset. Initially, research
on FL focused on improving communication efficiency and
model updates. McMahan et al. [1] introduced a novel concept
of averaging local stochastic gradient descent updates (known
as FedAvg) to improve client information usage during com-
munication rounds. To address challenges such as low device
participation and non-IID local data, studies have explored
online knowledge distillation methods. FD introduces a novel
perspective to federated learning, emphasizing the exchange
of model outputs rather than model parameters.

1) Federated Distillation without server model: The FD
technique was first introduced by Jeong et al. [6], where
they proposed using a Generative Adversarial Network (GAN)
as a central model. In this approach, clients upload per-
label averaged soft targets to train the GAN. Subsequently,
clients download the GAN generator and produce samples for
underrepresented labels, aiming to achieve an IID dataset. A
prevalent approach in the literature involves the use of a public
dataset accessible to all clients for local distillation, leading
to improved model performance. In [7], Li et al. presented a
scenario in which each client possesses a small labeled dataset

alongside a larger public dataset accessible to all. The training
process involves initial training on this communal dataset,
followed by training on the private dataset. Logit vectors are
then transmitted to the server for aggregation. In their study
[8], Itahara et al. introduced a semi-supervised method that
employs a labeled private dataset and a communal unlabeled
dataset. They altered the aggregation step by proposing an
Entropy Reduction Aggregation (ERA), demonstrating that
using a temperature lower than one when applying softmax
to aggregated logits reduces the entropy of global soft targets.
This approach is particularly beneficial in non-IID settings.

2) Federated Distillation with server model: A subset of
methods employ the server solely as an aggregator (similar to
conventional FL methods) for locally computed model logits.
More recent strategies have incorporated a server distillation
step, which distills a server-side model that can be used to
construct global logits (or soft targets) for broadcasting. For
instance, Cheng et al. [9] employ both a communal dataset
and a private dataset, utilizing smaller client models alongside
a larger server model. The server categorizes instances in
the communal dataset into correctly and incorrectly predicted
subsets to enhance convergence. In [10], a one-shot distilla-
tion method is introduced. The proposed technique combines
distillation and aggregation mechanisms to support FL. In
this approach, client models are fully trained prior to being
transmitted to the server, which then aggregates per-class
attention maps.

Common ground of the existing federated distillation meth-
ods that employ a central server model is the lack of assess-
ment of the client logits transmitted. In this work, the server
model assesses the quality of the transmitted logits, penalizing
the ones that would cause label change, and thereby ensuring
the system’s trustworthiness.

III. PROPOSED METHOD

A. Problem statement

In a federated system, data are inherently confined to
individual clients, and their exchange with other clients is
stringently prohibited. Following a common literature practice
in FD systems, each client possesses a distinct local dataset.
In addition, there exists a communal dataset, shared among
all clients. On the server side, a global model is maintained,
which is trained using this communal dataset.

A main challenge in federated distillation systems lies
in the aggregation of the client logits on the server side.
The prevailing method in the literature is to simply average
these logits. However, this approach, fails to consider that
data heterogeneity or varying sizes of local datasets might
lead some local models to transmit lower-quality logits to
the server, which could subsequently decrease local models’
performance during distillation process. To address this issue,
the proposed method adopts a strategy where client logits are
gradually added, with a specific focus on penalizing those
logits that result in a label change.



B. Local client training

The local clients undergo supervised training, where each
client is assigned a distinct segment of the dataset. This
allocation remains consistent throughout all federated rounds,
with clients training exclusively on their respective segments.
The training subset of the dataset is used for model training
purposes, whereas the validation subset serves to assess and
verify the performance of the models trained by each client.
During the training phase, the Cross-Entropy loss function is
utilized:

Lce(θ) = −
1

M

M∑
m=1

K∑
k=1

ymk log pmk (1)

where θ represents the model parameters, M denotes the
total number of images, K the total number of classes, ymk

the label of the m, k image and pmk the class probability of
the m, k image.

Aside from each client’s training and validation sets, there
is a communal dataset accessible to all clients, following the
common literature practice ( [7], [9]). This dataset acts as a
reference point for addressing the issue of data heterogeneity
across clients. Each client produces model outputs for each
sample in the communal dataset at the end of each federated
round. These outputs are then transmitted to the server for
aggregation, creating global anchors.

After the aggregation that is performed on the server side,
the global anchors are transmitted back to the clients. To
ensure knowledge alignment across all clients, in the sub-
sequent federated round, each client engages in knowledge
distillation using the aggregated outputs derived from the
communal dataset (the pipeline is also illustrated in Figure
2). The knowledge distillation term is computed using the
following expression:

LKL = ||Φ(ocr)− Φ(or−1)| | (2)

where Φ represents the network function, ocr signifies the
model output of client c at the federated round r and or−1

denotes the global anchors from the previous round. The
addition of this term to the total loss distills the knowledge of
the aggregated model outputs to each local model. Contrary
to the majority of the literature methods that employ global
anchors as soft labels, in this work the mean squared error is
used, because it achieves a superior performance.

C. Multi-scale knowledge distillation

The limited amount of data that is communicated from
the clients to the data in the federated distillation scheme
is a disadvantage, as only the output from the model’s last
fully connected layer is sent to the central server. To mitigate
this limitation, a multi-scale knowledge distillation strategy is
implemented, drawing inspiration from the research of [11]
(Figure 2). Specifically, each client transmits certain interme-
diate representations (also known as hidden representations),
computed over the communal dataset, in addition to the

model’s output; the number and the position of these inter-
mediate representations can vary depending on the specific
requirements of the problem.

Different-level features can be extracted, let zNl =
fN
l (·), l ∈ (1, ..., L), where l are the different model layers,
zNl is the intermediate representation at layer l for the client
N , with size H ∗ W ∗ C and fN

l (·) is the subnetwork for
feature extraction up to the layer l. Then, the final form of
the feature map can be obtained by concatenating the W ∗ C
height-pooled slices and the H∗C width-pooled slices for hN

l :

Φ(zNlj−1
) =

[
1
W

∑W
w=1 z

N
lj−1

[:, w, :]
∣∣∣ ∣∣∣ 1

W

∑H
h=1 z

N
lj−1

[h, :, :]
]

(3)

where [·| |·] denotes concatenation over the channel axis,
N is the number of clients, j is the federated round and
Φ(·) is the network function. The intermediate representations
are calculated over the communal dataset, therefore all clients
extract features from the same subset. After all intermediate
representations of all clients are extracted, they are averaged
per client, Φ(zl) = 1

N

∑N
n=1 Φ(z

N
lr−1

). At the beginning of the
next federated round, for each client, the Euclidean distance
between the mean averaged representation of the clients and
each client’s local representation is calculated. The multi-scale
knowledge distillation term is calculated as:

Lmulti−scaleKL
=

1

L

L∑
l=1

∣∣∣|Φ(zNlj )− Φ(zlj−1
)
∣∣∣ | (4)

In this work, ResNet56 model [12] is utilized on client
side, therefore three intermediate representations are utilized,
corresponding to the outputs of three ResNet layers.

The final form of the loss function is as follows:

Lf = Lce +mc ∗ Lmulti−scaleKL
+ LKL (5)

where mc is the coefficient of the multi-scale knowledge
distillation term.

D. Global representation aggregation

In this work a feature mixing aggregation method is pro-
posed, inspired by [2], i.e., the linear interpolation of different
client outputs.

More specifically, for each client, a tensor a of random
numbers is generated from a normal distribution, with mean
and standard deviation equal to a hyperparameter denoted as
acap. The dimension of the tensor is equal to the model output,
calculated as nclasses ∗ nsamples, where nclasses represents
the number of the dataset classes and nsamples represents
the samples’ number of the communal dataset. This tensor is
utilized to perform interpolation between the current client’s
model output and a convex combination of the model outputs
from the previous clients.



Fig. 1. (a) The outline of the proposed algorithm: Each node is trained with its local dataset and a multi-scale knowledge distillation strategy is implemented
(inspired by [11]), employing the communal dataset. Model outputs are transmitted to the server and they aggregated using the proposed representation
aggregation mechanism. (b) The representation aggregation mechanism on the server-side: The linear interpolation between two clients (or a client and a
convex combination of the previous ones) is computed using the equation 6 and along with the global model output are utilized to calculate the learnable a
tensor cross-entropy loss.

The interpolation process begins with the first client’s
model output being combined with the second client’s model
output. Subsequently, the model output of the third client is
interpolated with the convex combination of the model outputs
from the first two clients, and so on. The interpolation method
described above has also been experimentally evaluated in
Section IV-C2 Linear interpolation is computed using the
following equation:

Ofm = (1− a) o∗ + a on (6)

where a represents the generated tensor, o∗ signifies the
convex combination of the clients’ model outputs (or the first
client) and on denotes the model output of the client n, n ∈
[0, nclients], nclients represents the number of clients.

On the server side, there exists a server model that under-
goes training using the communal dataset. The server model
output is then compared with Ofm. The Cross-Entropy loss
function is utilized as the loss function of the global model:

LG(θ) = −
1

M

M∑
m=1

K∑
k=1

ymk log pmk (7)

The tensor a is learnable and its loss is calculated as follows:

L(a) = − 1

M

M∑
m=1

K∑
k=1

ogmk
log(Ofmmk

) + cnnorm(a) (8)

where ogmk
is the prediction of the global model of the

m, k image (treated as the respective label), Ofmmk
is the

linear interpolation of the m, k image, the norm refers to
the Frobenius norm of the tensor and cn is the coefficient
of the norm. After training the a tensor and prior to the
feature mixing step, it is limited to the range [0, 1). Thus,
the Frobenius norm penalizes large values of a.

The process outlined in this section is repeated nclients− 1
times to integrate each client’s model output for a specified
number of epochs. To prevent overfitting of the global model,
inspired by [13], the global model’s gradients are scaled by
1 ⊘ Odiff , where ⊘ denotes the element-wise division, as
indicated below:

(
∂LG

∂W
)′ = 1⊘Odiff ⊗

∂LG

∂W
, (9)

where W represents the model’s parameters and ⊗ denotes
the element-wise multiplication. Odiff is a hyperparameter
whose value was selected based on the experiments presented
in IV-C3

E. FedFMRL Algorithm

This section presents the training flow of the FedFMRL
procedure, which is organized into four main algorithms.
In Algorithm 1, the main outline of the proposed method
is provided. Algorithm 2 describes the training and update
steps within each local client, while Algorithm 3 details the
distillation process carried out by the local clients. Lastly, in
Algorithm 4, the methodology for aggregating global repre-
sentation is presented.

IV. EXPERIMENTAL RESULTS

A. Dataset settings

The experimental results of the proposed FedFMRL system,
utilizing the CIFAR-10, CIFAR-100 [14] and TinyImagenet
[15] image classification datasets as a benchmark, are reported
in this section. These datasets were adapted to simulate
both IID and non-IID scenarios, incorporating various FL
parameters. In the IID setting, the data was balanced, ensuring
an even distribution among clients. Conversely, in the non-
IID setup, we deliberately created a scenario with extreme
data imbalance. Similarly to prior works [16], a concentration



Fig. 2. The pipeline of the knowledge distillation is illustrated in the first diagram. Initially, client nodes are extracting their intermediate representations and
the final output, computed over the communal dataset. Then, the intermediate representations and the final output are aggregated on the server side, employing
the representation aggregation mechanism. At the beginning of the next federated round, knowledge distillation step is performed, calculating the multi-scale
knowledge distillation term (added to the final loss with the mc coefficient) and the knowledge distillation term.

Algorithm 1 FD Algorithm
Require: T is the number of communication rounds, N is

the total number of clients, θil represents the parameters
of the local models, θg represents the parameters of the
global model,Di

l are the separate datasets for the local
clients, Dcm is the communal training dataset, Dtest is
the communal testing dataset, eg are the epochs of the
global model, η is the learning rate and aη is the learning
rate of the tensor a.

1: for each i from 1 to N do
2: Initialize local models θli
3: Prepare local datasets Dli

4: end for
5: Initialize global models θg
6: initialize tensor a
7: Prepare communal training dataset Dcm

8: Prepare communal testing dataset Dtest

9: Server executes:
10: for each Federated round j = 0, 1, 2, . . . do
11: for each client in parallel do
12: θlj ← ClientUpdate(Dlj , θlj )
13: zj , ..← Extract representations from (θlj )
14: Send representation to server
15: end for
16: aj ← AnchorAggregation(Dcm, θg, zj , N, a, eg, aη)
17: Distribute the updated global anchors
18: for each client in parallel do
19: θlj+1

← KDUpdate(Dcm, θlj , aj)
20: end for
21: end for
22: Validate the updated distillated models on Dtest

Algorithm 2 ClientUpdate Function
1: ClientUpdate(Dl, θ): ▷ Run on specific client
2: for each local epoch i from 1 to E do
3: for each batch in Dl do
4: θl ← θl − η∇L(θl, labels) ▷ Update the client

model with Eq. 1
5: end for
6: end for
7: return θl

Algorithm 3 DistillationUpdate Function
1: KDUpdate(Dcm, θl, a): ▷ Run on specific client
2: for each batch in Dex do
3: lmul ▷ Compute Multi Scale loss with Eq. 4
4: ldis ▷ Compute Distillation loss with Eq. 2
5: L = mc ∗ lmul + ldis
6: θl ← θl − η∇L(θl) ▷ Update the client model with

aggregated loss L
7: end for
8: return θl

parameter beta is used to produce the non-IID data partition
among clients. A total number of 10 participating nodes were
involved, with images distributed among them for experimen-
tation.

B. Implementation Details

1) Architecture and Parameters: The architecture of the
proposed method is grounded in a distributed structure, em-
ploying the ResNet56 [12] model, for the local clients and
the ResNet50 model, on the server side. Local clients un-



Algorithm 4 AnchorAggregation Function
1: AnchorAggregation(Dcm, θg, zj , N, a, eg, aη):
2: for each i from 1 to N − 1 do
3: for each j from 1 to eg do
4: θg, og ← ClientUpdate(Dex, θg)
5: Ofm ▷ Compute linear interpolation with

equation 6
6: a← a− aη∇L(a, og, Ofm) ▷ Update the a

tensor with Eq. 8
7: end for
8: end for
9: return a

dergo training using a multi-loss approach introduced in [11],
which involves three intermediate outputs corresponding to the
outputs of three ResNet layers. The SGD [17] technique is
employed as the optimization technique. The learning rate is
set to 0.1, with a weight decay of 1e − 3, cn is 0.01 and
mc is equal to 0.1. To ensure comprehensive learning and
convergence, the local models are trained for 300 epochs.

The server model is trained for 5 global epochs on the
communal dataset for each feature mixing step. The learning
rate is set to 0.1, with a weight decay of 1e− 5, and cn equal
to 0.01. Regarding the learning rate of the a tensor, it is 0.1
for the first 2

3 of the global epochs and then increased to 10
for the remaining training process.

Deep learning models are implemented in Python 3.8 within
the PyTorch (version 2.0) [18] environment. The code is
available at: https://github.com/chatzikon/FEDFMRL

2) Federated setting: The training paradigm for the pro-
posed FL system, comprising a central server and 10 local
clients, encopasses 6 federated rounds. In each round, local
clients are separately trained for 50 epochs, with no inter-
client communication during training. The final evaluation of
the local models is conducted using the test set of the CIFAR-
10, CIFAR-100 and Tiny ImageNet datasets. The training set
is divided into a communal set that is accessible to all clients,
constituting 20% of the training set, and the remaining 80%
is distributed among the clients. Each client retains 10% of its
local data as its local validation set and uses the rest for its
local training set.

3) Baselines: To comprehensively assess the proposed
method’s efficacy, a comparative performance analysis was
conducted using two distinct configurations. Initially, bench-
mark tests were carried out, encompassing both IID and
non-IID scenarios. Furthermore, the proposed method was
compared with a scheme of locally isolated clients (with no
communication between them), a standard federated distilla-
tion strategy and a variation of the proposed method, without
the use of the multi-scale knowledge distillation term (Eq. 4).
In order to highlight the distinctive properties of our design,
we performed direct comparisons with the aforementioned
baseline approaches, as shown in Table VII.

C. Performance Evaluation

This section provides a summary of the results obtained
through the application of the proposed scheme in several
distinct scenarios under various learning settings. The CIFAR-
10 dataset is employed on those scenarios, apart from the non-
iid and data poisoning scenarios. In those cases, CIFAR-100
dataset is utilized due to the fact that it includes more classes,
allowing for a more reliable evaluation of the proposed method
for data poisoning and client data imbalance experiments. Each
experiment is repeated 3 times and the mean and standard
deviation of the results are presented.

1) Alpha calculation methods: The a tensor can be com-
puted using a closed-form solution or by drawing values from
a Gaussian distribution with a predefined mean and standard
deviation for the tensor a. The closed-form solution introduced
in [2] is employed in this regard. Alternately, in the case of
Gaussian-generated a, the tensor can be employed without
modifications, or the method described in Section 3.3 for a
learnable a tensor can be utilized.

As demonstrated in Table I, a learnable a strategy proved
to be more effective in capturing the diverse properties of
each client and assigning the appropriate weight factor to
each client. This strategy has been adopted for the remaining
experiments.

TABLE I
EXPERIMENTS WITH DIFFERENT METHODS FOR ALPHA CALCULATION ON
THE CIFAR-10 DATASET. THE CLOSED-FORM SOLUTION IS INTRODUCED

IN [2]. THE ALPHA CAN ALSO BE GAUSSIAN GENERATED AND
LEARNABLE (SECTION 3.3).

Alpha calculation Mean Client Accuracy Global Model Accuracy
Closed-form 60.11± 0.68 N/A

Gaussian generated 60.22± 0.68 N/A
Gaussian generated

with learnable a 60.59± 0.34 48.41± 0.34

2) Global aggregation schemes: In this section, the impact
of various global aggregation schemes is evaluated. Three
different methods are subjected to testing:

• Scheme A: This method involves weighted averaging of
the client outputs. For each client, the factor (1− a) ∗ ocr
(representing the model output of client c at the federated
round r) is added to the soft logits tensor. The final soft
logits tensor is then divided by the product of the number
of clients and the acap

• Scheme B: In this scheme, a linear interpolation is
computed, but the o∗ of the Eq. 4 defines the mean model
output of all clients except client n. This is followed by
division by the number of clients.

• Scheme C: This method follows the process described in
Section 3.3.

The results (as presented in Table II) demonstrate that linear
interpolation is a better method for representation aggregation
compared to weighted averaging. The scheme C achieves
better results in both the client and the server sides and has



been chosen as the aggregation scheme for the subsequent
experiments.

TABLE II
COMPARATIVE EVALUATION OF DIFFERENT GLOBAL AGGREGATION

SCHEMES ON THE CIFAR-10 DATASET. SCHEME A INVOLVES WEIGHTED
AVERAGING OF THE CLIENT OUTPUTS. IN SCHEME B A LINEAR

INTERPOLATION IS COMPUTED. THE SCHEME C IS THE PROPOSED
METHOD.

Scheme Mean Client Accuracy Global Model Accuracy
A 10.00± 0.00 48.39± 1.02
B 59.93± 0.99 48.39± 1.02
C 60.59± 0.34 48.41± 1.08

3) Impact of the Odiff factor: In this section, the impact
of different values of the Odiff factor on the accuracy of the
server’s model and the clients’ models is examined. According
to Table III the global model attains the highest accuracy
when Odiff is set to 2. Thus, this value is employed in
the subsequent experiments. It is observed that the client
models are not significantly affected by the variation in the
Odiff factor. This outcome is expected because the global
model is directly influenced during training by Odiff , whereas
the client models are indirectly affected due to the output
modification of the global model.

4) Impact of the acap factor: This experiment addresses the
effect of different values of acap on the local models’ accuracy.
The acap value determines the mean and standard deviation of
the Gaussian distribution used to generate the initial a values.
As illustrated in Table IV, the optimal performance is achieved
when acap = 0.2. Therefore, this value has been selected for
use in subsequent experiments.

5) Impact of client number: In this subsection experiments
with varying number of clients are presented. Those exper-
iments show a decline in local accuracy but stable global
accuracy (illustrated in Table V). Increasing clients decreases
local accuracy, as expected, but global accuracy remains stable
up to 40 clients, demonstrating the method’s robustness.

6) Impact of communal dataset size: The study on the
size of the communal dataset aims at specifying the size
that optimizes the client accuracy. Moreover, for this and
the subsequent experiments the knowledge distillation term is
introduced (Equation 4). As illustrated in VI, the global model
achieves a better performance, the larger the communal data

TABLE III
IMPACT OF DIFFERENT VALUES OF THE Odiff FACTOR ON THE CIFAR-10

DATASET.

Odiff Mean Client Accuracy Global model accuracy
1 59.81± 1.20 45.15± 0.81
2 60.34± 0.44 48.41± 1.08
3 59.89± 0.42 46.77± 0.52
4 60.42± 0.52 47.03± 1.38
5 60.58± 1.11 46.54± 0.94
10 60.09± 0.85 41.72± 0.25
15 60.32± 1.11 40.55± 0.56
20 60.16± 0.42 39.52± 0.44

TABLE IV
IMPACT OF DIFFERENT VALUES OF THE acap FACTOR ON THE CIFAR-10

DATASET.

acap Mean Client Accuracy
0.1 60.47± 1.24

0.2 59.62± 0.69
0.2 60.59± 0.34
0.4 59.55± 1.35
0.5 60.34± 0.44
0.6 59.35± 0.85
0.7 60.04± 0.24
0.8 59.07± 0.67
0.9 58.88± 1.50

TABLE V
IMPACT OF CLIENT NUMBER

Client number Mean Client Accuracy Global model accuracy
5 76.58± 0.09 46.61± 0.52
10 60.59± 0.34 48.41± 1.08
20 53.35± 1.32 46.72± 1.42
30 44.94± 1.49 48.03± 1.92
40 37.04± 1.21 47.33± 0.51
50 35.45± 0.41 44.12± 3.03

set, as expected. However, a larger communal dataset leads to
fewer data to be shared among clients. To ensure that the client
models accurately capture the unique patterns of each client a
trade-off is required between the communal dataset size and
the client private datasets. Based on the results presented in
this section, the communal dataset size was defined to be 20%.

7) Comparison with baseline methods: In this section,
three baseline methods are compared with FedFMRL, as
described in Section IV-B3, using the CIFAR-10, CIFAR-100
and TinyImagenet datasets. In particular, on the CIFAR-10
dataset, FedFMRL achieves remarkable results with a Mean
Client accuracy of 70.72%, surpassing the other methods, ac-
companied by a Global Model accuracy of 48.41%. Similarly,
on the CIFAR-100 dataset, FedFMRL outperforms the other
methods with a Mean Client accuracy of 37.87% and a Global
Model accuracy of 17.83%. In the case of TinyImagenet, the
proposed method achieves a lower accuracy of 19.43 and
a Global Model accuracy of 11.38. The degradation of the
mean client accuracy is expected because TinyImagenet is a
more challenging dataset, with 200 classes, double compared
to the CIFAR-100. It is worth noting that FedFMRL achieves
superior results compared to the traditional FLD boosted with
the knowledge distillation term, highlighting the added value

TABLE VI
IMPACT OF COMMUNAL DATASET SIZES EVALUATED ON THE CIFAR-10

DATASET.

Communal dataset size Mean Client Accuracy Global model accuracy
0.1 42.47± 2.98 42.01± 0.85
0.2 70.72± 0.44 48.41± 1.08
0.3 65.00± 1.47 50.79± 1.20
0.4 57.44± 2.68 52.12± 1.44
0.5 52.78± 2.86 57.08± 2.51



TABLE VII
COMPARATIVE EVALUATION WITH BASELINE METHODS ON CIFAR-10

CIFAR-100 AND TINYIMAGENET DATASETS

Method Mean Client Accuracy Global Model Accuracy
CIFAR-10

Local Isolated Clients 57.47± 0.42 N/A
FLD with multiloss 70.02± 0.47 N/A

FedFMRL w/o multiloss 60.59± 0.34 48.41± 1.08
FedFMRL w multiloss 70.72± 0.44 48.41± 1.08

CIFAR-100
Local Isolated Clients 23.29± 0.26 N/A
FLD with multiloss 37.22± 0.56 N/A

FedFMRL w/o multiloss 31.95± 0.25 17.83± 1.78
FedFMRL with multiloss 37.87± 0.41 17.83± 1.78

TinyImagenet
Local Isolated Clients 11.09± 0.27 N/A
FLD with multiloss 18.99± 0.14 N/A

FedFMRL w/o multiloss 11.40± 0.38 11.38± 0.01
FedFMRL with multiloss 19.43± 0.33 11.38± 0.01

TABLE VIII
EXPERIMENTS WITH NON-IID DATA, FOR DIFFERENT BETA VALUES ON

THE CIFAR-100 DATASET. CONCENTRATION PARAMETER BETA IS USED
TO PRODUCE THE NON-IID DATA PARTITION AMONG CLIENTS, SIMILARLY

TO PREVIOUS WORKS.

beta 0.25 0.5 0.75 1 IID
FLD 16.78± 2.89 22.15± 0.23 22.82± 0.11 24.92± 0.41 30.45± 0.47

FedFMRL 17.04± 1.35 24.29± 1.17 25.49± 1.70 28.90± 1.63 37.87± 0.41

of the FEDFMRL method. On the other hand, isolated clients
who train separately exhibit the lowest accuracy, which was
expected. However, this comparison underscores the value of
the proposed approach.

8) Impact of non-IID data: Non-IID data often exhibit a
wide range of patterns and variations among nodes, making it
challenging to learn a generalized model. Therefore, to assess
the impact of non-IID data on the proposed method, the mean
client accuracy of the FedFMRL method (incorporating the
multi-scale knowledge loss, as in Equation 4) is compared with
the baseline federated distillation method for different values
of beta, as shown in Table VIII. The results demonstrate that
the FedFMRL scheme outperforms the baseline federated dis-
tillation method across all beta values, highlighting the added
value of the feature mixing and the multi-scale knowledge loss
in handling non-IID data.

To evaluate the robustness of the proposed method, a
different setting was also tested: The total number of clients
is restricted to 80, 60 or 40 classes, with beta equal to 0.5.
Each client has a different subset of classes. Moreover, exper-
iments with centralized data were performed for comparison.
As presented in Table IX, in federated setting, accuracy is
decreased a bit more than 10% when each client has 40 classes,
while in centralized setting the accuracy decrease is more than
35%. The results of this section demonstrate the ability of the
proposed method to deal with various non-IID settings.

9) Impact of poisoned classes: FL raises numerous security
and privacy concerns. Poisoning attacks, for example, can
have a substantial impact on client models, while malicious
attackers can prevent client models from converging or even
manipulating their prediction results. The ability of a federated

TABLE IX
EXPERIMENTS, USING CIFAR-100 DATASET, WITH RESTRICTED NUMBER

OF CLASSES FOR EACH CLIENT EMPLOYING TWO DIFFERENT SETTINGS:
THE PROPOSED FD SCHEME, NON-IID DATA, BETA=0.5 AND A

CENTRALIZED SCHEME

Number of classes per client Mean Client Accuracy Single Model Accuracy
100 24.29± 0.23 65.44± 0.23

80 20.59± 1.35 55.11± 1.09
60 17.02± 2.63 42.67± 1.83
40 13.86± 4.21 29.14± 2.07

TABLE X
IMPACT OF POISONED CLASSES, FOR VARIOUS NUMBER OF CLIENTS, ON

THE CIFAR-100 DATASET.

Poisoned classes
Poisoned Clients 1 2 3 4 5

3 37.86± 0.85 37.48± 0.54 37.50± 3.42 36.17± 1.38 34.88± 6.17
10 37.51± 0.77 36.51± 1.05 35.56± 3.95 35.90± 2.31 34.10± 0.53
20 36.54± 1.18 35.62± 1.44 33.32± 2.12 32.00± 3.51 30.98± 3.56
30 35.80± 1.32 34.49± 1.56 31.54± 2.67 29.37± 3.81 27.88± 3.98

system to defend against poisoning attacks is an extremely
critical and difficult task, determining its trustworthiness and
robustness. Therefore, targeted experiments using an inten-
tional data poisoning approach, specifically through label
flipping, were conducted in this subsection.

More specifically, a number of classes (3 to 30) was selected
for each experiment. The labels of each class are randomly
flipped to another class’s labels. For example, in the training
data of the selected nodes, all the ‘leopard’ labels could be
swapped by ‘bed’ labels.

As depicted in Table X, the proposed method has less than
10% accuracy drop with up to almost 1

3 of the classes being
poisoned, even if half of the clients (5 out of 10) are poisoned.
On the contrary, Table XI, on the centralized experiment when
30 classes out of 100 are poisoned, it has an accuracy drop of
20%.

V. CONCLUSION

This work introduces a novel FD weight aggregation method
known as FedFMRL, which leverages feature mixing of the
model outputs at the server side to enhance the accuracy of
local models. FedFMRL offers a comprehensive solution for
scenarios where a more communication-efficient method than
traditional FL methods, like FedAvg, is required, achieving
promising results. In addition, by penalizing bad quality clients
during logit aggregation can preserve system’s crediblity.
Extensive experimentation yields valuable insights into the
suggested learning strategy, especially in highly distributed
settings. This study demonstrates FedFMRL’s capacity to
generate robust local representations, effectively replacing the
computationally intensive transmission of large models, while
maintaining trustworthiness and integrity in FL environments.
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