
Fast and smooth 3D reconstruction using multiple
RGB-Depth sensors

Dimitrios Alexiadis1, Dimitrios Zarpalas2, Petros Daras3

Information Technologies Institute, Centre for Research and Technology - Hellas
6th Km Charilaou-Thermi, Thessaloniki, Greece

1dalexiad@iti.gr, 2zarpalas@iti.gr, 4daras@iti.gr

Abstract—In this paper, the problem of real-time, full 3D
reconstruction of foreground moving objects, an important task
for Tele-Immersion applications, is addressed. More specifically,
the proposed reconstruction method receives input from multiple
consumer RGB-Depth cameras. A fast and efficient method to
calibrate the sensors in initially described. More importantly, an
efficient method to smoothly fuse the captured raw point sets
is then presented, followed by a volumetric method to produce
watertight and manifold meshes. Given the implementation
details, the proposed method can operate at high frame rates.
The experimental results, with respect to reconstruction quality
and rates, verify the effectiveness of the proposed methodology.

Index Terms—Tele-immersion, 3D reconstruction, real-time,
Microsoft Kinect

I. I NTRODUCTION

Realistic inter-personal communications can be supported
by the realization of multi-party 3D Tele-Immersion (TI) [1]
environments. The problem of real-time robust 3D reconstruc-
tion of humans, an important and challenging task for TI
applications, is addressed in this paper. Although accurate 3D
reconstruction methods from passive RGB cameras can be
found in the literature (e.g. [2], [3]), they are not applicable in
TI applications, since they require a processing time of several
minutes per frame. Other, mainly visual hull-based methods
[4], are quite fast, yet they lack the ability to reconstruct
concavities. Regarding methods that use active direct-ranging
sensors (e.g. [5]), they have not been used in real-time ap-
plications; instead, they are applied off-line to combine range
data captured by a single sensor.

Most of the relevant real-time TI-oriented approaches [1],
[6], fuse partial 3D data only at the rendering stage, in order
to synthesize intermediate 2D views. In [1], a high quality
TI system is described, including an accurate method for the
generation of multiple depth-maps from stereo clusters, which
are then combined at the rendering stage to synthesize views
for given viewpoints. A similar TI system is described in [6],
where the depth-maps are captured by multiple MS Kinect
sensors. On the other hand, a Kinect-based 3D reconstruction
system is presented in [7] that produces a single full 3D mesh,
independently to the rendering stage. However, the explicit
mesh “zippering” method of [7] may reject a significant
portion of the captured information during the described
“hard” procedure of decimating overlapping mesh regions.
Moreover, it does not produce watertight and manifold meshes.
On the contrary, in this paper, the captured data are fused in

a weighted manner during an initial smoothing step, based
on the confidence of the corresponding depth measurements.
Data are then implicitly fused to generate manifold watertight
meshes, resulting in superior visual quality, at higher frame
rates, as experimentally demonstrated.

II. CAPTURING SETUP AND CALIBRATION

The RGB-Depth data used in this paper were captured by
5 Kinect sensors, placed in a circular spatial arrangement that
provide full-body360o coverage of a human. In the following,
a method for the calibration of such a multiple-Kinects system
is proposed. We also present experimental results using the
multiple-Kinects dataset of the Huawei/3DLife ACM Mul-
timedia Grand Challenge 2013 [8], captured by a similar
circular configuration. The reader is referred to [8] for details.

In order to accurately estimate the internal parameters of
each single Kinect, the method of [9] is used. For the external
calibration of the system, a simple, yet efficient, method
is proposed that makes use of a large planar chessboard
surface. The idea is based on the detection of a large number
of 3D point correspondences in sets of sensors. Then, the
extrinsic parameters are estimated for all cameras in an all-
to-all manner. The method is summarized as follows.

• A large number of frames is initially captured, with the
calibration pattern being visible to at least two sensors.

• For each RGB camera, the chessboard corners are de-
tected (where visible). The Open CV library is used.

• For each sensor that captures the chessboard pattern,
the dominant plane is detected: a) The depth data are
thresholded and a raw 3D point cloud is generated, which
is then transformed to the coordinate system of the RGB
camera; b) The dominant sample-consensus plane model
is estimated using RANSAC, with an inliers distance
threshold equal to2cm. The PCL library [10] is used.

• The 2D chessboard corners are then backprojected to the
estimated 3D plane and a set of 3D features is extracted.

• Since the chessboard corners are indexed, 3D points
correspondences in pairs of sensors are established.

Let the number of chessboard corners, i.e. feature points per
view per frame, beI (I=9×5 in our pattern). Let alsoK
andN denote the number of sensors and number of frames,
respectively. Then, thei-th 3D feature point for framen
and viewk is denoted asvik,n. The corresponding 3D point,

registered in the global coordinate system using the matrixTk

(to be estimated), is denoted aspi
k,n = Tk · vik,n. Let finally,

Pk,n denote theI × 3 matrix containing the pointspi
k,n.

The exploited method for the estimation of the unknown
external calibration matrices, in an all-to-all manner, is
based on the idea of Global Procrustes Analysis (GPA)
[11]. In the initial formulation of GPA theory, it is assumed
that multiple point-sets contain the same points, which
are expressed inK different 3-D coordinate systems.
In our problem however, not allI points are present
(visible) in each view. Additionally, we have points-sets and
correspondences for multiple frames. Therefore, in order to
take into account the above issues, the following modified
GPA objective function is realized:e(T1, T2, . . . , TK) =
∑N

n=1

∑K

k=1 tr
(

(Pk,n − Cn)
T

Bk,n (Pk,n − Cn)
)

, where
Bk,n is a binary diagonal matrix of sizeI × I, indicating
the “visibility” of the feature points in thek-th view and
n-th frame. Additionally,Cn is a I × 3 matrix containing the
geometrical centroid of the registered points for framen and
is calculated from:Cn = (

∑

k Bk,n)
−1 (

∑

k Bk,nPk,n) .
With the above definitions, the unknown matricesTk are

found in a few iterations of the following steps: 1) The centroid
matricesCn are calculated; 2) The registration matricesTk are
updated by minimizinge(T1,T2, . . . ,TK), 3) The point-sets
are registered using the estimated transformations.

III. 3D RECONSTRUCTION

A. Raw point-cloud reconstruction

In a preprocessing step, a binary silhouette mapSk(u) ∈
{0, 1} of the foreground object (captured human) is generated
for each depth mapDk(u), u = (ux, uy)

T

, k = 1, . . . ,K.
The simplest approach to segment the foreground object is
thresholding of the depth-maps. Then, for each “foreground”
pixel u : Sk(u) = 1 on the k-th depth-map, a “raw” 3D
point is reconstructed:X(u; k) = Π−1

k {u, Dk(u)}, where
Π−1

k defines the back-projection operation according to the
estimated depth-camera intrinsic and extrinsic parameters. We
use the notationX(u) to highlight that each reconstructed 3D
point is associated with a pixel on the depth map. Additionally,
for each “foreground” pixel the raw 3D normalsN(u; k) are
estimated by using simple terrain Step Discontinuity Con-
straint Triangulation (SDCT) [7] on the depth-image plane.
Additionally, a weak 2D moving average filter of diameter
3pixels, is applied to smooth the noisy normal estimates.

B. Confidence-based 3D smoothing

The reconstructed 3D points and their associated normals
are noisy. Therefore, the overlapping surfaces from adjacent
sensors contain a large portion of overlapping “Z-fighting”re-
gions, which introduce geometrical and visual artifacts [7]. To
handle this, [7] applied an iterative procedure that decimates
overlapping surface regions from different sensors, untilthey
just meet and then “zipper” the surfaces at the boundaries.
Based on our observation that this “hard” approach of surface
decimation may reject a significant portion of information
and does not make use of the corresponding measurements’

“quality”, we propose a weighted smoothing approach for
dealing with the overlapping adjacent surface regions.
Confidence values: The objective here is to extract a con-
fidence value for each reconstructed 3D pointX(u; k) and
its associated normal. In practice, it has been observed that
the Kinect depth measurements near the foreground object’s
boundaries are noisy. In order to exploit this observation,an
associated confidence mapC1

k(u) ∈ [0, 1] is calculated from
the binary silhouette mapsSk(u). A fast approach to calculate
such a confidence value for a pixelu is to count the number of
neighbors that belong to the foreground. This is implemented
efficiently by a moving average filter onSk(u), of radius
30pixels in our experiments. Moreover, the “quality” of a depth
measurement depends on the “viewing” angle, i.e. the angle
between the Kinect’s line of sight, defined by the unit vector
X̂ = −X/||X||, and the surface normal at pointX. Based
on this, a confidence value for pixel (vertex)u is computed
from C2

k(u) = max{< X̂(u; k),N(u; k) >, 0}, where< ·, · >
denotes the inner vector product. The total confidence map is
calculated from the productCk(u) = C1

k(u) · C2
k(u).

Smoothing: For each “raw” point X, all 3D neighbors
inside a sphere of fixed radius, set equal to40mm in our
experiments, are found. To avoid time-consuming searching
for neighbors in 3D space, we exploit the fact that each 3D
point is associated with a pixel on the depth map, thus 3D
neighborhoods define 2D neighborhoods on it. We use the
approach that is summarized in Fig. 1.

Let the set of 3D neighbors ofX be denoted asN (X). Then,
we calculate a new vertex position as the weighted average:
X′ =

∑

Xn∈N (X) C(Xn) ·Xn/
∑

Xn∈N (X) C(Xn), whereC(X)
defines the confidence value for pointX. Exactly the same
approach is used to calculate a “smooth” 3D normalN′(X),
as the weighted average of the corresponding point normals.
Instead of replacingX with X′, it is preferable to move the
3D point along only the surface normal vector, to avoid bad
spacing of the points. We therefore calculate the projection of
the displacementdX = X′ −X onto the normal vectorN′(X),
i.e. dX′ =< dX,N′(X) > dX. The new set of 3D points and
normalsX′′ = X + dX′ and N′, respectively, constitute the
output of the proposed confidence-based smoothing approach.

C. Final scalable reconstruction and triangulation

The bounding box of the foreground object is initially
estimated. To remove outliers, the5% min and max percentiles
of the raw 3D points positions are rejected. The box is
discretized into2r × 2r+1 × 2r voxels, wherer defines the
targeted volume resolution. The objective is to calculate a
characteristic volumetric functionA(q) (q stands for voxel),
where the 3D surface is implicitly defined as the isosurface
at an appropriate level. For this purpose, we follow a Fourier
Transform (FT)-based approach [12], which is summarized
below from an implementation point-of-view, highlightinga
few proposed modifications.

The point normals are initially splatted to obtain the gradient
vector fieldV(q). Instead of simply clapping a sample to the
containing voxel, the normals are smoothly splatted according

Fig. 1. Fast search for neighbor 3D vertices

TABLE I
AVERAGE RECONSTRUCTION TIME AND RATES

PREPROCESS RAW RECONSTR SMOOTHING TOTAL
17 msec 18 msec 41 msec 76 msec

RESOLUT. r = 6 RESOLUT.r = 7

FFT RECONSTR. 22 msec 79 msec
TEXTURE MAPPING 1 msec 2 msec
PCL RECONSTR. 76 msec
TOTAL TIME 99 msec 157 msec
RECONSTR. RATE 10.1 fps 6.37 fps
RECONSTR. RATE OF [7] 3.52 fps

to: V(q) =
∑

X w(X; q) · N(X)/
∑

X w(X; q), wherew(X; q)
are appropriate weights based on the Euclidean distance ofX
from the center of voxelq. In order to speed up execution,
the weightsw(X; q) outside the27-neighbors region around
the central voxel are considered equal to zero.

The vector field is transformed to the 3D FT domainV̂(ω)
and multiplied (convolution in the FT domain to speedup
calculations) with the integration filter̂F(ω) = jω/||ω||,
where j =

√
−1 andω = (ωx, ωy, ωz)

T

. This is performed
separately for eachX ,Y andZ component. The functionA(q)
is calculated by applying inverse 3D FT on the integrated
(filtered) vector field and addition of itsX , Y , Z components.

The final 3D mesh surface (vertex position, normals and
connectivity) is obtained by the extraction of the isosurface
A(q) = L using the marching cubes algorithm [13], whereL
is an appropriate level calculated as the average value ofA(q)
at the input sample locationsX.

D. Multi-texture mapping
In case of rendering dense point-clouds (subsection III-A),

colors from multiple RGB cameras are fused to produce a

Fig. 2. Skiing: Raw reconstruction, smoothed/“stitched” reconstruction and
final reconstruction.

Fig. 3. Skiing: Raw, smoothed and final reconstruction.

Fig. 4. Skiing - From left to right: (a) Raw SDCT reconstruction, (b) Output
of [7], (c) Output of [7] after applying the proposed weighted smoothing
method, (d) proposed watertight reconstruction.

single color per vertex. In case of rendering low-poly meshes
(produced by the method of subsection III-C), the vertices are
projected onto the RGB images to find UV coordinates and
each triangle is assigned multiple textures, which are rendered
with OpenGL multi-texture blending. As appropriate weights
for the fusion of colors/textures, we use the already calculated
weightsCk(X) to speed up execution. This approach is sensi-
ble since: a) the confidence valuesCk(X) contain visibility
information; b) they are small near the object boundaries,
where inaccurate Depth-to-RGB camera calibration often leads
to color-mapping artifacts; c) the confidence values incorporate
the practical observation that the captured color quality and
detail depend on the “viewing” angle.

IV. EXPERIMENTAL RESULTS

The experiments ran on a PC with an i7 processor (3.2GHz),
8GB RAM and a CUDA-enabled NVidia GTX 560.
Implementation details: The reconstruction approach was
implemented in CUDA [14] to exploit the parallel computing
capabilities of GPU, since most of its stages involve pixel-wise

Fig. 5. Xenia: Raw point-set, the output of smoothing operation and the
final reconstruction.

Fig. 6. Xenia - From left to right: (a) Raw SDCT reconstruction, (b) Output
of [7], (c) Output of [7] after applying the proposed weighted smoothing
method, (d) proposed watertight reconstruction.

or voxel-wise calculations. Additionally, the CUFFT CUDA
library was used for fast FT calculations.
“Skiing” sequence: The input dataset contains a human on
a ski simulator. Reconstruction results for a specific frameare
given in Fig. 2. In this figure, the reconstructed raw points
are illustrated (rendered using triangles generated by SDCT
[7]), along with the output of the confidence-based smoothing
operation and the volumetric reconstruction. The noise in the
raw point-set, as well as the effect of “Z-fighting” surfaces
is obvious. On the other hand, the smoothed point-sets define
a smooth surface. However, the triangular surface obtained
by terrain SDCT, although visually more pleasant, is non-
manifold and contains cracks and holes. Therefore, a final
watertight and manifold surface is reconstructed using the
method of subsection III-C. Textured reconstruction results are
also given in Fig. 3. Notice that very thin objects, such as the
skiing poles, may not be reconstructed due to the noisy nature
of the captured input and the finite voxel resolution, which is
an inherent characteristic of any volumetric method. However,
it is clear that the final reconstruction results contain much less
artifacts and are visually superior.

Using the same sequence, Fig. 4 provides some comparative
results with the “zippering” method of [7]. One can verify that
a) the proposed methods produces reconstructions with fewer
artifacts and moreover, b) the method of [7] can benefit from
the proposed weighted smoothing method.

Table I summarizes the execution time results obtained
for 200 frames of the sequence. One can observe that high
reconstruction rates, close to10 fps, can be achieved. Ad-
ditionally, the frame-rates achieved with an optimized GPU
implementation of [7] are given. Notice that the achieved
frame-rates are slightly smaller than those reported in [7],
because more Kinects are used in this paper (5 vs 4) and
the overlap between adjacent views is larger.
ACM multimedia GC 2013 sequences:Experimental results
using the dataset of [8] are also given. Figure 5 presents results
for a specific frame of the “Xenia” sequence. The raw textured
point-set is presented on the left, followed by the output ofthe
smoothing operation and the final reconstructed mesh. Fig. 6

Fig. 7. Stavroula: Results for two frames and two view-points

provides comparative results with the “zippering” method of
[7]. Finally, Fig. 7 presents the reconstruction results for two
frames of the “Stavroula” sequence.

V. CONCLUSIONS

This paper presented a complete full-body 3D reconstruc-
tion system using multiple consumer RGB-Depth sensors,
appropriate for real-time applications, such as 3D TI. A
fast and efficient method to smooth in a weighted manner
the separate input raw point sets was presented, followed
by a volumetric method to produce watertight and manifold
meshes. The whole reconstruction process can operate in real-
time when implemented in CUDA. As verified, the method
produces quite accurate and realistic results, even under the
real-time constraints, compared to other works.

ACKNOWLEDGMENT

This work was supported by the EU-funded project 3D-Live
under contract GA 318483.

REFERENCES

[1] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos, R. Ba-
jcsy, and K. Nahrstedt, “High quality visualization for geographically
distributed 3D teleimmersive applications,”IEEE Transactions on Mul-
timedia, vol. 13(3), June 2011.

[2] G. Vogiatzis, C. Hernandez, P. Torr, and R. Cipolla, “Multiview stereo
via volumetric graph-cuts and occlusion robust photo-consistency,” IEEE
Trans. Pattern Anal Mach. Intell., vol. 29(12), pp. 2241 –2246, 2007.

[3] Y. Furukawa and J. Ponce, “Carved visual hulls for image-based
modeling,” Int. Journal of Computer Vision, vol. 81, p. 5367, 2009.

[4] J.-S. Franco and E. Boyer, “Efficient polyhedral modeling from silhou-
ettes,”IEEE Trans. Patt. Anal Mach. Intell., vol. 31, pp. 414–427, 2009.

[5] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” inProc. SIGGRAPH, 1996.

[6] A. Maimone and H. Fuchs, “Encumbrance-free telepresence system with
real-time 3D capture and display using commodity depth cameras,” in
10th IEEE ISMAR 2011.

[7] D. S. Alexiadis, D. Zarpalas, and P. Daras, “Real-time, full 3-D
reconstruction of moving foreground objects from multipleconsumer
depth cameras,”IEEE Trans. on Multimedia, vol. 15, pp. 339–358, 2013.

[8] Online: http://mmv.eecs.qmul.ac.uk/mmgc2013/.
[9] D. Herrera, J. Kannala, and J. Heikkila, “Joint depth andcolor camera

calibration with distortion correction,”IEEE Trans. Pattern Anal Mach.
Intell., vol. 34, 2012.

[10] “The Point Cloud Library,” Online: http://pointclouds.org/.
[11] R. Toldo, A. Beinat, and F. Crosilla, “Global registration of multiple

point clouds embedding the generalized procrustes analysis into an ICP
framework,” in 3DPVT’10, 2010.

[12] M. Kazhdan, “Reconstruction of solid models from oriented point sets,”
in Proc. 3rd Eurographics symposium on Geometry processing, 2005.

[13] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,”Comp. Graphics, vol. 21, 1987.

[14] “CUDA,” Online: www.nvidia.com/object/cudahome new.html.

