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Abstract—In this paper, the problem of real-time, full 3D
reconstruction of foreground moving objects, an importanttask
for Tele-Immersion applications, is addressed. More spefically,
the proposed reconstruction method receives input from muliple
consumer RGB-Depth cameras. A fast and efficient method to
calibrate the sensors in initially described. More importantly, an
efficient method to smoothly fuse the captured raw point sets
is then presented, followed by a volumetric method to produe
watertight and manifold meshes. Given the implementation
details, the proposed method can operate at high frame rates
The experimental results, with respect to reconstruction gality
and rates, verify the effectiveness of the proposed methotimy.

Index Terms—Tele-immersion, 3D reconstruction, real-time,
Microsoft Kinect

I. INTRODUCTION

a weighted manner during an initial smoothing step, based
on the confidence of the corresponding depth measurements.
Data are then implicitly fused to generate manifold wadgsti
meshes, resulting in superior visual quality, at highemiea
rates, as experimentally demonstrated.

II. CAPTURING SETUP AND CALIBRATION

The RGB-Depth data used in this paper were captured by
5 Kinect sensors, placed in a circular spatial arrangentnextt t
provide full-body360° coverage of a human. In the following,
a method for the calibration of such a multiple-Kinects syst
is proposed. We also present experimental results using the
multiple-Kinects dataset of the Huawei/3DLife ACM Mul-

Realistic inter-personal communications can be supportégiedia Grand Challenge 2013 [8], captured by a similar

by the realization of multi-party 3D Tele-Immersion (TI)][1

circular configuration. The reader is referred to [8] foradlst
In order to accurately estimate the internal parameters of

environments. The problem of real-time robust 3D recomstru
tion of humans, an important and challenging task for Tgach single Kinect, the method of [9] is used. For the externa
applications, is addressed in this paper. Although ace8Bt calibration of the system, a simple, yet efficient, method
reconstruction methods from passive RGB cameras can iBeproposed that makes use of a large planar chesshoard
found in the literature (e.g. [2], [3]), they are not applitmin  surface. The idea is based on the detection of a large number
Tl applications, since they require a processing time oésav Of 3D point correspondences in sets of sensors. Then, the
minutes per frame. Other, mainly visual hull-based metho@#trinsic parameters are estimated for all cameras in an all

[4], are quite fast, yet they lack the ability to reconstrud@-all manner. The method is summarized as follows.

concavities. Regarding methods that use active direggingn o
sensors (e.g. [5]), they have not been used in real-time ap-
plications; instead, they are applied off-line to combiaage .
data captured by a single sensor.

Most of the relevant real-time Tl-oriented approaches [1], e
[6], fuse partial 3D data only at the rendering stage, in prde
to synthesize intermediate 2D views. In [1], a high quality
Tl system is described, including an accurate method for the
generation of multiple depth-maps from stereo clusterschvh
are then combined at the rendering stage to synthesize views
for given viewpoints. A similar Tl system is described in,[6]
where the depth-maps are captured by multiple MS Kinecte
sensors. On the other hand, a Kinect-based 3D reconstnuctio
system is presented in [7] that produces a single full 3D mesh e
independently to the rendering stage. However, the explici

A large number of frames is initially captured, with the
calibration pattern being visible to at least two sensors.
For each RGB camera, the chessboard corners are de-
tected (where visible). The Open CV library is used.

For each sensor that captures the chessboard pattern,
the dominant plane is detected: a) The depth data are
thresholded and a raw 3D point cloud is generated, which
is then transformed to the coordinate system of the RGB
camera; b) The dominant sample-consensus plane model
is estimated using RANSAC, with an inliers distance
threshold equal t@cm. The PCL library [10] is used.

The 2D chessboard corners are then backprojected to the
estimated 3D plane and a set of 3D features is extracted.
Since the chessboard corners are indexed, 3D points
correspondences in pairs of sensors are established.

mesh “zippering” method of [7] may reject a significantet the number of chessboard corners, i.e. feature points pe
portion of the captured information during the describedew per frame, bel (I=9x5 in our pattern). Let alsd¥
“hard” procedure of decimating overlapping mesh regionand N denote the number of sensors and number of frames,
Moreover, it does not produce watertight and manifold mesheespectively. Then, thé-th 3D feature point for framen

On the contrary, in this paper, the captured data are fusedaimd viewk is denoted as@_’n. The corresponding 3D point,



registered in the global coordinate system using the maijrix “quality”, we propose a weighted smoothing approach for
(to be estimated), is denoted pgn =Tg v}m Let finally, dealing with the overlapping adjacent surface regions.
Py, denote thel x 3 matrix containing the pointg;, ,,. Confidence values: The objective here is to extract a con-
The exploited method for the estimation of the unknowfidence value for each reconstructed 3D po¥u; k) and
external calibration matrices, in an all-to-all manner, igs associated normal. In practice, it has been observed tha
based on the idea of Global Procrustes Analysis (GP#)e Kinect depth measurements near the foreground object’s
[11]. In the initial formulation of GPA theory, it is assumedooundaries are noisy. In order to exploit this observatam,
that multiple point-sets contain the same points, whicissociated confidence map (u) € [0,1] is calculated from
are expressed inK different 3-D coordinate systems.the binary silhouette maps; (u). A fast approach to calculate
In our problem however, not alll points are present such a confidence value for a pixels to count the number of
(visible) in each view. Additionally, we have points-setsda neighbors that belong to the foreground. This is implenente
correspondences for multiple frames. Therefore, in order ¢fficiently by a moving average filter o8} (u), of radius
take into account the above issues, the following modifigddpixels in our experiments. Moreover, the “quality” of a dept

GPA objective function isTreaIizede(Tl,Tg, ...,Tx) = measurement depends on the “viewing” angle, i.e. the angle
Zi\’zl Zszl tr ((Pr.n — Cn) Bin (Pen —Cn))s where kgetween the Kinect's line of sight, defined by the unit vector
Bi.. is @ binary diagonal matrix of sizé x 7, indicating X = —X/[[X]|, and the surface normal at poixt. Based

the “visibility” of the feature points in thek-th view and ©n this, a confidence value for pixel (vertex)is computed
n-th frame. Additionally,C, is aI x 3 matrix containing the from C(u) = max{< X(u; k), N(u; k) >,0}, where<-,. >
geometrical centroid of the registered points for framand denotes the inner vector product. The total confidence map is
is calculated fromC,, = (3, Ben) ™ (X4 BenPhin) - calculated from the producty (u) = C} (u) - C (u).

With the above definitions, the unknown matrices are Smoothing: For each “raw” pointX, all 3D neighbors
found in a few iterations of the following steps: 1) The ceitr inside a sphere of fixed radius, set equal4tamm in our
matricesC,, are calculated; 2) The registration matridgsare €xperiments, are found. To avoid time-consuming searching
updated by minimizing:(Ty, Ta, ..., Tx), 3) The point-sets for neighbors in 3D space, we exploit the fact that each 3D

are registered using the estimated transformations. point is associated with a pixel on the depth map, thus 3D
neighborhoods define 2D neighborhoods on it. We use the

approach that is summarized in Fig. 1.
A. Raw point-cloud reconstruction Let the set of 3D neighbors & be denoted a8/ (X). Then,

In a preprocessing step, a binary silhouette m$gpu) € we calculate a new vertex position as the weighted average:
{0,1} of the foreground object (captured human) is generatsd = DX, eN(X) C_‘(Xn) Xn/ 2ox,enx) € (Xn), whereC(X)
for each depth may(u), u = (ugz,u,) , kK = 1,...,K. defines the confidence value for poXt Exactly the same
The simplest approach to segment the foreground objectajsproach is used to calculate a “smooth” 3D normN&IX),
thresholding of the depth-maps. Then, for each “foregréunds the weighted average of the corresponding point normals.
pixel u : Sx(u) = 1 on the k-th depth-map, a “raw” 3D Instead of replacing with X', it is preferable to move the
point is reconstructedX (u;k) = II,'{u, Dx(u)}, where 3D point along only the surface normal vector, to avoid bad
H,j,l defines the back-projection operation according to thlspacing of the points. We therefore calculate the projaatib
estimated depth-camera intrinsic and extrinsic parammeie the displacementX = X’ — X onto the normal vectoN’(X),
use the notatioX (u) to highlight that each reconstructed 3D.e. dX’ =< dX,N’(X) > dX. The new set of 3D points and
point is associated with a pixel on the depth map. Additignal normalsX” = X + dX’ and N’, respectively, constitute the
for each “foreground” pixel the raw 3D normal(u; k) are output of the proposed confidence-based smoothing approach
estimated by using simple terrain Step Discontinuity Con- _ . . .
straint Triangulation (SDCT) [7] on the depth-image plané?' Final scala-ble reconstruction and trlangulgtlon. N
Additionally, a weak 2D moving average filter of diameter The bounding box of the foreground object is initially
3pixels, is applied to smooth the noisy normal estimates. estimated. To remove outliers, th& min and max percentiles

of the raw 3D points positions are rejected. The box is

B. Confidence-based 3D smoothing discretized into2” x 271 x 27 voxels, wherer defines the

The reconstructed 3D points and their associated normtdsgeted volume resolution. The objective is to calculate a
are noisy. Therefore, the overlapping surfaces from adjaceharacteristic volumetric functiorl(q) (g stands for voxel),
sensors contain a large portion of overlapping “Z-fighting' where the 3D surface is implicitly defined as the isosurface
gions, which introduce geometrical and visual artifacis Té at an appropriate level. For this purpose, we follow a Faurie
handle this, [7] applied an iterative procedure that det&sa Transform (FT)-based approach [12], which is summarized
overlapping surface regions from different sensors, uhély below from an implementation point-of-view, highlightirey
just meet and then “zipper” the surfaces at the boundariésw proposed modifications.
Based on our observation that this “hard” approach of serfac The point normals are initially splatted to obtain the gesudi
decimation may reject a significant portion of informatiowector fieldV(q). Instead of simply clapping a sample to the
and does not make use of the corresponding measuremeaotsitaining voxel, the normals are smoothly splatted adogrd

IIl. 3D RECONSTRUCTION



Fig. 1. Fast search for neighbor 3D vertices

TABLE |
AVERAGE RECONSTRUCTION TIME AND RATES

PREPROCESS| RAW RECONSTR | SMOOTHING | TOTAL

17 msec 18 msec 41 msec 76 msec
RESOLUT.7 =6 | RESOLUT.r =7
FFTRECONSTR 22 msec 79 msec
TEXTURE MAPPING 1 msec 2 msec
PCLRECONSTR 76 msec
TOTAL TIME 99 msec 57 msec Fig. 4. Skiing - From left to right: (a) Raw SDCT reconstrocti (b) Output
RECONSTR RATE 10.11ps 6.371ps / ; "
of [7], (c) Output of [7] after applying the proposed weigihtemoothing
RECONSTR RATE OF[7] | 3.521ps method, (d) proposed watertight reconstruction.

to: V(q) = Xox w(X;q) - N(X)/ 2oy w(X;q), wherew(X;d)  single color per vertex. In case of rendering low-poly meshe
are appropriate weights based on the Euclidean distanx_e O(produced by the method of subsection I1I-C), the vertiaes a
from the center of voxefj. In order to speed up executionprgjected onto the RGB images to find UV coordinates and
the weightsw(X; q) outside the27-neighbors region around gach triangle is assigned multiple textures, which are e
the central voxel are considered equal to zero. . with OpenGL multi-texture blending. As appropriate wegght
The vector field is transformed to the 3D FT dom&ifw) for the fusion of colors/textures, we use the already cated
and multiplied (convolution in the FT domain to Speeduﬁ/eightsck(x) to speed up execution. This approach is sensi-
calculations) with the integration filteF(w) = jw/[lwl|, ple since: a) the confidence valuég(X) contain visibility
wherej = v/~T andw = (ws,wy,w:) . This is performed information; b) they are small near the object boundaries,
separately for each',Y" andZ component. The functiod(q)  \here inaccurate Depth-to-RGB camera calibration oftadde
is calculated by applying inverse 3D FT on the integratgg color-mapping artifacts; c) the confidence values inooafe

(filtered) vector field and addition of it¥, Y, Z components. {he practical observation that the captured color qualitst a
The final 3D mesh surface (vertex position, normals angkiail depend on the “viewing” angle.

connectivity) is obtained by the extraction of the isoscefa

A(q) = L using the marching cubes algorithm [13], whdre IV. EXPERIMENTAL RESULTS
is an appropriate level calculated as the average valu @f The experiments ran on a PC with an i7 processor (3.2GHz),
at the input sample locations. 8GB RAM and a CUDA-enabled NVidia GTX 560.

Implementation details: The reconstruction approach was
plemented in CUDA [14] to exploit the parallel computing
pabilities of GPU, since most of its stages involve pixile

D. Multi-texture mapping )
In case of rendering dense point-clouds (subsection IJI-A'én
colors from multiple RGB cameras are fused to produce ey

Fig. 2. Skiing: Raw reconstruction, smoothed/“stitchedtanstruction and Fi9- 5. Xenia: Raw point-set, the output of smoothing openaind the
final reconstruction. final reconstruction.



Fig. 7. Stavroula: Results for two frames and two view-point

provides comparative results with the “zippering” methdd o
[7]. Finally, Fig. 7 presents the reconstruction resultstfeo
Fig. 6. Xenia - From left to right: (a) Raw SDCT reconstruntigb) Output  frames of the “Stavroula” sequence.
of [7], (c) Output of [7] after applying the proposed weigihtemoothing
method, (d) proposed watertight reconstruction. V.. CONCLUSIONS
This paper presented a complete full-body 3D reconstruc-
or voxel-wise calculations. Additionally, the CUFFT CUDAtion system using multiple consumer RGB-Depth sensors,
library was used for fast FT calculations. appropriate for real-time applications, such as 3D TI. A
“Skiing” sequence: The input dataset contains a human ofast and efficient method to smooth in a weighted manner
a ski simulator. Reconstruction results for a specific frawee the separate input raw point sets was presented, followed
given in Fig. 2. In this figure, the reconstructed raw pointgy a volumetric method to produce watertight and manifold
are illustrated (rendered using triangles generated by TSD@eshes. The whole reconstruction process can operatelin rea
[7]), along with the output of the confidence-based smogthitime when implemented in CUDA. As verified, the method
operation and the volumetric reconstruction. The noiséné tproduces quite accurate and realistic results, even umder t
raw point-set, as well as the effect of “Z-fighting” surfacegeal-time constraints, compared to other works.
is obvious. On the other hand, the smoothed point-sets define
a smooth surface. However, the triangular surface obtained ) )
by terrain SDCT, although visually more pleasant, is non- This work was supported by the EU-funded project 3D-Live
manifold and contains cracks and holes. Therefore, a firtlder contract GA 318483.
watertight and mz_inifold surface is reconstruc'ged using the REFERENCES
method of subsection 11I-C. Textured reconstruction ressaite [1] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, Ogios, R, B
. K L . . . . Vasudevan, G. Kurillo, E. aton, T. Bernardin, O s, R. Ba-
alsuo given in Fig. 3. Notice that very thin objects, Suc_h as th jcsy, and K. Nahrstedt, “High quality visualization for ggaphically
skiing poles, may not be reconstructed due to the noisy @atur distributed 3D teleimmersive application$£EE Transactions on Mul-
of the captured input and the finite voxel resolution, whigh i _ timedia vol. 13(3), June 2011. _ o
inherent characteristic of anv volumetric method. Havev [2] G. Vogiatzis, C. Hernandez, P. Torr, and R. Cipolla, “ktiew stereo
an n - y ] o e via volumetric graph-cuts and occlusion robust photo-istescy,”|[EEE
it is clear that the final reconstruction results contain miess Trans. Pattern Anal Mach. Intellvol. 29(12), pp. 2241 —2246, 2007.

artifacts and are visually superior. [3] Y. Furukawa and J. Ponce, “Carved visual hulls for imhgsed
. . . . modeling,” Int. Journal of Computer Visigrvol. 81, p. 5367, 2009.
Using the same sequence, Fig. 4 provides some comparatIMF J.-S. Franco and E. Boyer, “Efficient polyhedral modglinom silhou-

results with the “zippering” method of [7]. One can verifyath ettes,”IEEE Trans. Patt. Anal Mach. InteJlvol. 31, pp. 414-427, 2009.

a) the proposed methods produces reconstructions withr fewi@l B- Curless and M. Levoy, “A volumetric method for buildjrcomplex
. . models from range images,” iAroc. SIGGRAPH1996.
artifacts and moreover, b) the method of [7] can benefit fronfs; A maimone and H. Fuchs, “Encumbrance-free telepresaystem with

the proposed weighted smoothing method. real-time 3D capture and display using commodity depth casjein
Table | summarizes the execution time results obtained, 10t IEEE ISMAR 2011 .

_[7] D. S. Alexiadis, D. Zarpalas, and P. Daras, “Real-time]l f3-D
for 200 frames of the sequence. One can observe that high reconstruction of moving foreground objects from multigensumer
reconstruction rates, close t fps, can be achieved. Ad- . ger?th ce;]mer/'ilerEE Trans. oln Mulit(i/medi,avg(l)-l%j, pp. 339-358, 2013.

i ) : : L nline: http://mmv.eecs.gmul.ac.uk/mmgc )

_dltlona”y' th_e frame-rates ac_hleved W_Ith an optimized .GPﬂg D. Herrera, J. Kannala, and J. Heikkila, “Joint depth aatbr camera
implementation of [7] are given. Notice that the achieve calibration with distortion correction/EEE Trans. Pattern Anal Mach.
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