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Abstract—Federated learning has recently been proposed as
a solution to the problem of using private or sensitive data for
training a central deep model, without exchanging the local data.
In federated learning, local models are trained on the client
side using the available data, while a server is responsible for
aggregating the weights of these models into a global model. This
work proposes a novel federated learning weight aggregation
method that estimates the statistical distance of each client’s
parameters from the Gaussianity, and weighs the contribution
of each client to the global model accordingly so that the most
significant information is retained and enhanced. To create an
accurate global model, a complex weighted averaging of the
parameters of customers’ models at the layer level is performed,
considering as low quality the parameters following the Gaussian
distribution. The proposed method can be employed to both
convolutional and linear layers and it is based on the notion that
parameters following a Gaussian distribution do not significantly
affect the output of a model. Experiments with different network
architectures (such as VGG and ResNet) and comparison with
state-of-the-art approaches on three well-known image classifica-
tion datasets, demonstrate the superiority of the proposed method
against state-of-the-art federated learning methods.

Index Terms—federated learning, Gaussian distribution, image
classification

I. INTRODUCTION

Federated learning (FL) [20] is a machine learning approach
that utilizes a number of distributed edge devices or servers
with their own local data samples to train an algorithm without
transferring these data samples. It can be applied in several
application areas, such as healthcare, industrial engineering
and defence [15]. The aim of FL is to overcome challenges
related to the handling of private or sensitive data, requiring
the data to be safely stored in their local storage space and
not being transferred to other locations. During the training
process, the clients and the server periodically communicate
with each other to merge the different models, usually by
averaging the parameters of all local models to update the
global model on the server [20].

FL differs from more typical decentralized approaches,
which frequently presume that local data samples are uni-
formly distributed, as well as standard centralized machine
learning techniques, in which all local datasets are uploaded
to a single server. FL usually employs the parameter server
architecture [8], in which a global model is created on the
server, while the isolated clients use their own private data to
train local models on their devices, thus achieving enhanced

privacy protection and effective distributed training. During
the training process, the clients and the server periodically
communicate with each other to merge the different models,
usually by averaging the parameters of all local models to
update the global model on the server [20].

Multiple FL methods have been released so far. Some meth-
ods aim to improve the performance of FL by either optimizing
the selection criterion, i.e., choosing the appropriate client
parameters that will maximize the performance of the global
model on the server [11] [20] or improving the local training
processes of the clients [12] [17]. Other methods focus on the
improvement of the efficiency of FL in different ways, such
as optimizing the communication efficiency [2] or the local
training efficiency [25] or both [3]. Other works may focus on
data privacy [6], in schemes of non-supervised learning, such
as semi-supervised [18] or unsupervised [10], or in incremental
learning [9].

Although there are several methods in the literature to
improve the communication and training efficiency and ef-
fectiveness in federated learning, there is limited research on
alternatives to the simple federated averaging technique, which
is considered the de facto parameter aggregation approach.
Such alternatives require the analysis of the weight distribution
of the local client parameters and the assessment of their effect
on the performance of the global model, a study that has not
yet been considered in the literature. In our view, the way the
network parameters of clients are fused during the aggregation
process, plays a crucial role in the performance of the global
model and this is what the proposed method is investigating.

To this end, a novel FL weight aggregation approach is
proposed, in this work, aiming to improve the selection crite-
rion for choosing the most important local network parameters
for the update of the global model. The importance of local
network parameters is assessed based on the statistical distance
from the Gaussian distribution. To this end, the statistical
distance or divergence from the Gaussian distribution is em-
ployed to assess the quality of each clients’ parameters and
choose the ones with the largest impact on the accuracy of the
global model. The motivation behind this choice lies in the
observation that the employment of the L2 training norm as a
regularization term to resolve the issue of exploding gradients
during deep network training leads filter parameters to follow
a Gaussian distribution, resulting in hidden units with little
impact on the network output [22]. Thus, filter parameters



that follow a Gaussian distribution are considered to be of
low quality to the performance of the global model. The main
contributions of this work are:

o A novel FL weight aggregation algorithm for optimally
fusing network parameters on the layer-level for either
convolutional or linear layers based on the importance of
these parameters to the accuracy of the global model.

o The weighted averaging is based on a novel selection
criterion that estimates the statistical distance of network
parameters from the Gaussian distribution.

o Experimental results on three image -classification
datasets are presented, showing the superiority of the pro-
posed method against various state-of-the-art approaches.

II. METHOD

A. Motivation

During each communication round of the federated learning
training, the local parameters of the models on the client
side are merged to form the parameters of the global model
on the server side. A naive way to perform this merging
is through averaging, assuming that all local parameters are
equally important to the output of the global model. However,
when a client has a disproportionately large number of data
samples with respect to the other clients or a client has data
of really bad quality, the averaging approach can lead to a
poor performing global model. In addition, potential client
specializations are lost when clients’ parameters are averaged.
To overcome such issues, a sophisticated selection criterion
is required to assess the quality of the parameters of a client
model and diminish the impact of the low quality ones on the
performance of the global model.

In this work, Gaussianity is proposed as a metric of the
quality of the weight parameters of DNNs. The motivation
behind measuring Gaussianity is based on the observation that
the usage of the L2 norm, as a regularization term to solve the
issue of exploding gradients during deep network training [24],
pushes the DNN parameters to follow the Gaussian distribution
[4], [5], [26]. However, Gaussianity is not the best property
for DNNs since neurons with Gaussian weights tend to blur
the input information. According to [22], the contributions of
each individual hidden layer are all very small when using
Gaussian priors, hence these units do not reflect “hidden
features™ that capture significant characteristics of the data. To
measure Gaussianity, this work proposes the use of different
statistical distances, such as divergences, as well as Higher
Order Statistics (HOS) [21]. These statistical distances are
capable of measuring the distance between a random process
(i.e., network parameters) and a Gaussian distribution.

Therefore, this work proposes a novel federated learning
weight aggregation method, (Figure 1), named Statistical
Weight Aggregation (SWA), that analyzes the Gaussianity of
clients’ layer parameters to enhance the contribution of those
parameters that deviate from the Gaussian distribution and thus
capture significant and discriminative elements of the data.
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Fig. 1. Illustration of the proposed layer-level weight aggregation approach.

B. Layer-level weight aggregation

This work aims to quantify the impact of the network
parameters of clients to the global model and thus their weights
during the FL aggregation phase by assessing their deviation
from the Guassian distribution. This is achieved through the
use of statistical distances that can be either divergences or
Higher Order Statistics, as described in detail below. The
higher the statistical distance of a client’s layer parameters
from the Guassian distribution, the larger the weight that is
assigned to the parameters when they are merged into a global
model.

1) Divergence: A divergence is a type of statistical distance
implemented by a binary function that specifies the separation
from one probability distribution to another on a statistical
manifold. In this work, the family of Rényi divergences [28]
of order a or alpha-divergences are utilized. Renyi divergence
is a critical tool for proving the convergence of Bayesian
estimators and it is implicitly used in many calculations across
information theory. Further uses of Renyi divergence include
hypothesis testing, multiple source adaptation, and picture
rating. A special case of Rényi divergences is the well-known
Kullback-Leibler (KL) divergence [7] that has been widely
employed for comparing distributions in several fields.

The Renyi divergence of order a of a distribution P (i.e.,
distribution of a client’s layer-level weight parameters) from
a distribution @ (i.e., Gaussian distribution) is defined to be:

N
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where N is the total number of samples of the distribution.
In Eq. 1, a is a positive number (0 < a < c0), defining the

order of the divergence. The Rényi entropy increasingly ranks
all nonzero probability events equally as a approaches zero,
regardless of their probabilities. On the contrary, the events
with the highest probability have a higher impact on the Rényi
entropy as a gets closer to infinity.



Variables p and ¢ are the probabilities of the distributions
P and @), respectively. In this work, four different values of
a are considered: 0,0.5,1,2 and according to the value of a,
the Renyi divergence takes the following forms:
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In the special case of a = 0.5, the Renyi divergence
becomes twice the Bhattacharyya distance [23], while in the
special case of a = 1, the Renyi divergence is equal to the
KL divergence [7].

2) Higher Order Statistics : Many statistical tools exist for
information extraction from a random signal. Nevertheless,
several signals cannot be properly examined by second order
statistical approaches when non-linearity in systems is present.
Thus, higher order statistical methods have been developed.
The higher order statistics have been used to describe the
higher-order statistical characteristics of a random process.
HOS use the third or higher power of a sample (e.g., skewness,
kyrtosis), as opposed to more conventional techniques of
lower-order statistics, which use constant, linear, and quadratic
terms (e.g., mean, variance). HOS are defined using moments
and cumulants [27]. Cumulants of a set of values with sample
size [N can be calculated using k-order statistics and provide an
indication of how far a random process is from being Gaussian.
In this context, the 3™ and 4™ order statistics comprise the
unbiased estimators of the cumulant C, . and they can be
computed, using the central moments m; = + Z;VZI Z4(t), as
follows [1]:
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Then, the statistical distance from the Gaussian distribution
can be computed by the product of the two k-order statistics
as follows:

DHOS = k3 * k4 (5)

3) Weight Aggregation Algorithm: The proposed weight
aggregation algorithm is based on the assignment of a weight
to each clients’ layer parameters during aggregation. The
assigned weight quantifies the Gaussianity of the network
parameters at the layer level using either the Renyi divergence
or the HOS values that are referred from now on as Gd. This
process is illustrated in Figure 1 and presented as pseudocode
by Algorithm 1.

More specifically, the network parameters of each layer of
each client are initially flattened to form a vector and then the
Gd of these parameters is computed. Given a layer [, € [0, L)
from a client n,n € [0, N), Gd is equal to:

for Higher Order Statistics
for Renyi divergence

DL(PIIQ) ©
In the case of Renyi divergence, a vector () of the same size
as the layer parameters is automatically generated by drawing
samples from the Gaussian distribution N (0, 1). Gd has higher
values as the statistical distance of the network parameters
increases and thus, it can be directly employed as weight for
the network parameters during the aggregation process.
After the computation of the Gd values for each layer, the
maximum value among the different clients is defined as:

D
Gd.) = { HOS
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The maximum value M is used to normalize the weights
among the different clients of the layer /. Finally, the server
parameters are computed through the weighted averaging of
the clients’ parameters as shown below:
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Algorithm 1 The proposed layer aggregation algorithm

Input: Number of model layers L, number of clients N
Output: Server network parameters Wg[l] of layer [

for [ =0,1,....L—1do
forn=0,1,....N —1 do
Calculate weights Gd,,; using Eq. 6
end for

Calculate server parameters Wg|[l] using Eq. 8
end for

III. EXPERIMENTAL EVALUATION
A. Datasets

The following well-known public datasets are utilized for
the experimental evaluation in the task of image classification:

The CIFAR-10/100 datasets [13] consist of natural images
with resolution 32x32 that belong to 10 semantic classes in
the case of the CIFAR-10 dataset and 100 semantic classes in
the case of the CIFAR-100 dataset. The training and test sets
contain 50K and 10K images, respectively.

The Tiny ImageNet [14] is a subset of the full ImageNet
ILSRVC dataset. It comprises 120000 colored images of 200
classes, downsized to size 64x64. Each class has 500 training,
50 validation and 50 test images.

B. Implementation details

For ablation study, the VGG-16 network is utilized on
CIFAR-10. The CIFAR-10 training set is split in two subsets:
the clients’ data (99% of the training set) and the server’s
validation data (1% of the training set). The clients’ data are
split equally among the clients and 90% of them is used for
the clients’ training, while the rest 10% is used for the clients’



evaluation. Finally, the server model is tested on the CIFAR-
10 test set and the results are presented. All experiments are
executed 3 times with random data splits and average and
standard deviation are reported. A learning rate of 0.1 (unless
otherwise indicated), a batch size of 64 and a momentum value
of 0.9 for the SGD optimizer are utilized.

Reagarding the comparison with the SoTA, the proposed
method is evaluated on three datasets, namely CIFARI0,
CIFAR100 and Tiny ImageNet. The Dirichlet distribution is
employed to create the non-IID data partitions with 5 = 0.5,
10 local epochs and 10 clients. Two networks per dataset are
evaluated. Regarding the CIFARIO dataset, a custom CNN
network is utilized with 2 convolutional, 2 max pooling and
2 fully connected layers (as defined in [16]) and VGG-11,
trained for 100 and 55 rounds respectively. On the other hand,
in CIFAR-100 and in Tiny ImageNet, the ResNet-50 and
VGG-11 network architectures are employed. These networks
are trained for 100 total epochs in CIFAR-100 and 20 and
55 total epochs in Tiny ImageNet for ResNet and VGG-
11, respectively. SGD optimizer and momentum equal to 0.9
utilized in all cases, batch is 256 and Ir is 5x10~* for VGG-11
and 64 and 10~ respectively for the other cases.

For the training and testing of the implemented deep
learning models, the Python 3.7 and PyTorch (version 1.7.0)
environments are employed and CUDA version 10.2. The code
will be made publicly available.

C. Ablation study

The ablation study showcases the effect of specific hyper-
parameters (i.e., type of statistical distance, data split, number
of epochs, number of clients) on the performance of SWA,
compared in most cases against the baseline simple averaging
approach to demonstrate the effectiveness of the proposed
method. The ablation study is performed on the test set of the
CIFAR-10 dataset, using the VGG16 model. The goal of this
ablation study is to tune the aforementioned hyperparameters
for an optimal performance of the proposed method.

1) Impact of different statistical distances: This experiment
evaluates the effect of the different types of the statistical
distances, presented in Section II-B3, on the server model’s
accuracy. Three clients are utilized with 6 communication
rounds, 50 local epochs and equal data splits. The server has
no information of the data each client has, thus all clients are
treated equally. As it can be seen in Table I, the statistical
distance based on the HOS values achieves a higher accuracy
than in the cases where the different cases of Renyi divergence
is employed, showing that it is a more robust criterion for
capturing layer parameters that deviate from the Gaussian
distribution. To this end, the HOS criterion is selected as
the optimal statistical distance metric for the rest of the
experiments.

Statistical distance Accuracy
Dros 88.41 1+ 0.16
Do(P|1Q) 88.12 + 0.29
Do .5(P||Q) 87.58 £ 0.25
D1 (P||Q) 88.11 £0.28
D2 (Pl|1Q) 87.76 £ 0.29
TABLE I

IMPACT OF DIFFERENT STATISTICAL DISTANCES.

2) Impact of different data splits: The goal of this ex-
periment is to evaluate the effect of different data splits on
the model’s accuracy by employing either the proposed SWA
method or the baseline simple averaging technique. Three
clients are used with 6 communication rounds and 50 local
epochs. The results are illustrated in Table II and the splits are
described in a format that shows the percentage of the data
that are fed to each client, while leaving out 10% of the data
for validation. The results demonstrate the superiority of SWA
against the simple averaging technique for both balanced and
imbalanced data splits, indicating that the proposed method
is more robust to various data splits that may occur under
realistic settings.

Splits Simple Averaging SWA
0.3,0.3,0.3 88.30 £0.18 88.41 +0.16
0.4, 0.25, 0.25 88.06 £0.12 88.48 +0.24
0.5,0.2,0.2 87.93 £0.20 89.04 + 0.24
0.6, 0.15, 0.15 88.11 £0.36 88.94 1 0.37
0.7, 0.1, 0.1 87.83 £0.31 87.86 + 0.38
TABLE II

IMPACT OF DIFFERENT DATA SPLITS.

3) Impact of different number of local epochs: This experi-
ment aims to evaluate the impact of different local epochs (i.e.,
training epochs of each client between two communication
rounds) on the accuracy of the server’s model. The experi-
ments are performed with 3 clients and equal data splits. Each
client is trained for 300 epochs in total and the communication
rounds vary depending on the number of local epochs (from 2
to 30), as shown in Fig. 2. From the results, it can be observed
that SWA outperforms simple averaging in all cases. As the
communication rounds are reduced, the accuracy of both
methods drops as the server model is updated less frequently.
In the case of 150 local epochs and 2 communication rounds,
especially, the accuracy of simple averaging collapses contrary
to the proposed SWA that maintains a high accuracy, indicating
a faster convergence. Faster convergence may be important in
a case that the communication between the server and the
clients is difficult or very slow.

4) Impact of different number of clients: This experiment
evaluates the impact of the different number of clients on
the performance of the server model. The number of clients
vary from 3 to 100, the data are split equally among the
clients, while the number of local epochs is set to 10 (30
communication rounds) because as the number of clients
increases, it is more difficult for the model to converge and
more communication rounds are required. Moreover, for the
experiments with more than 10 clients, a smaller learning rate
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of 0.01 is utilized to achieve convergence. The results, shown
in Fig. 3, reveal that SWA outperforms simple averaging
in all tests with different number of clients. It can thus be
concluded that SWA can better adapt to a high number of
clients by maintaining a higher accuracy than the simple
averaging approach.

D. Comparison with SoTA

For the comparison with state-of-the-art methods, two con-
figurations are considered, namely SWA with and without
contrastive loss, depending on whether contrastive loss has
been employed during training. The contrastive loss has been
successfully employed in [16] and in this work it is used along
with the cross-entropy loss for improved accuracy. According
to the ablation results, the HOS criterion is employed to the
following experiments. The results presented in Tables III, IV
and V show the comparative evaluation against other state-of-
the-art federated learning methods on the task of image clas-
sification using CIFAR-10, CIFAR-100 and Tiny ImageNet,
respectively. Regarding contrastive loss, weight factors equal
to 8, 5 and 3 for CIFAR-10, CIFAR-100 and Tiny Imagenet,
respectively, are employed after experimentation.

From the results, it can be inferred that the proposed SWA
with contrastive loss outperforms all other state-of-the-art
methods (i.e., FedAvg, FedProx, MOON, FedMA and GAMF)
in all datasets and networks. A comparison between SWA
with and without contrastive loss shows that contrastive loss
leads to an accuracy improvement of 0.5 — 2% in all datasets.
These results indicate that the proposed SWA method can be
combined with features (i.e, contrastive loss) from methods
that aim to improve the local training of the clients and
achieve enhanced accuracy. Finally, it can be concluded that
the deviation of the network parameters from the Gaussian
distribution can be successfully employed as a robust selection
criterion for the network parameters of the clients’ models.

Method Accuracy
Local training 46.30 £+ 5.10
FedAvg [20] 66.30 £ 0.50
FedProx [17] 66.90 + 0.20
MOON [16] 69.10 £ 0.40
SWA w/o contrastive loss 69.97 + 1.49
SWA w/ contrastive loss | 71.02 4 0.56

TABLE III

COMPARISON WITH SOTA METHODS ON CIFAR10 WITH CUSTOM CNN
MODEL, 10 CLIENTS, 10 LOCAL EPOCHS AND 1000 TOTAL EPOCHS .

Method Accuracy
Local training 22.30+1.00
FedAvg [20] 64.50 £ 0.40
FedProx [17] 64.60 + 0.20
MOON [16] 67.50 + 0.40
SWA w/o contrastive loss 66.20 + 0.99
SWA w/ contrastive loss | 68.53 4 0.65

TABLE IV

COMPARISON WITH SOTA METHODS ON CIFAR100 WITH CUSTOM
RESNET50 MODEL, 10 CLIENTS, 10 LOCAL EPOCHS AND 1000 TOTAL

EPOCHS .
Method Accuracy

Local training 8.60 +0.40

FedAvg [20] 23.00 +0.10

FedProx [17] 23.20 +0.20

MOON [16] 25.10 +0.10
SWA w/o contrastive loss 23.53 £ 0.15
SWA w/ contrastive loss | 25.22 4 0.95

TABLE V

COMPARISON WITH SOTA METHODS ON TINY IMAGENET WITH
RESNET50 MODEL, 10 CLIENTS, 10 LOCAL EPOCHS AND 200 TOTAL

EPOCHS.
Method Accuracy

FedAvg [20] 69.99 £ 0.40

FedMA [29] 70.29 + 0.69

MOON [16] 72.42 £ 0.45

GAMF [19] 72.39 + 0.54

GAMF w/ contrastive loss [19] 73.43 + 0.54

MOON [16] 72.42 +0.45

SWA w/o contrastive loss 79.76 + 0.63
SWA w/ contrastive loss 80.51 + 0.35

TABLE VI

COMPARISON WITH SOTA METHODS ON CIFAR10 wiTH VGG11
MODELS, 10 CLIENTS, 10 LOCAL EPOCHS AND 550 TOTAL EPOCHS.



Method Accuracy
FedAvg [20] 44.42 £0.13
FedMA [29] 44.95 + 0.19
MOON [16] 46.99 £ 0.28
GAMF [19] 45.99 £ 0.41
GAMF w/ contrastive loss [19] 48.24 + 0.39
SWA w/o contrastive loss 50.52 + 0.57
SWA w/ contrastive loss 51.07 &+ 0.55

TABLE VII

COMPARISON WITH SOTA METHODS ON CIFAR100 wiTH VGG11

MODEL, 10 CLIENTS, 10 LOCAL EPOCHS AND 1000 TOTAL EPOCHS .

Method Accuracy

FedAvg [20] 17.41 £ 0.13

FedMA [29] 17.28 £0.20

MOON [16] 19.01 £0.15

GAMF [19] 20.42 +0.13

GAMF w/ contrastive loss [19] 21.51 +0.15
SWA w/o contrastive loss 29.13 + 0.52
SWA w/ contrastive loss 30.78 £+ 0.40

TABLE VIII

COMPARISON WITH SOTA METHODS ON TINY IMAGENET WITH VGG11

MODEL, 10 CLIENTS, 10 LOCAL EPOCHS AND 550 TOTAL EPOCHS.

IV. CONCLUSION

This work proposes a novel FL weight aggregation method,
called SWA, that can achieve a sophisticated weighted av-
eraging of the parameters of clients’ models at the layer
level to form an accurate global model. The proposed method
can be employed to both convolutional and linear layers of
a model and is based on the use of statistical criteria for
the evaluation of the Gaussianity of the model parameters
and the estimation of appropriate weights for the parameter
aggregation phase. Directions for future work include the
adaptation of the method on the filter level, as well as the
use of other statistical tools to assess the impact of the client
parameters to the global model. Moreover, different statistical
distances can also be evaluated on the proposed algorithm.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

Francis Andre. Business mathematics and statistics. Thomson, 2004.
Daniel Becking, Heiner Kirchhoffer, Gerhard Tech, Paul Haase, Karsten
Miiller, Heiko Schwarz, and Wojciech Samek. Adaptive differential
filters for fast and communication-efficient federated learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3367-3376, 2022.

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen.
Federated dynamic sparse training: Computing less, communicating less,
yet learning better. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 6080—-6088, 2022.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra.  Weight uncertainty in neural network. In International
conference on machine learning, pages 1613—1622. PMLR, 2015.
Christos Chatzikonstantinou, Georgios T. Papadopoulos, Kosmas Dim-
itropoulos, and Petros Daras. Neural network compression using higher-
order statistics and auxiliary reconstruction losses. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 3077-3086, 2020.

Anda Cheng, Peisong Wang, Xi Sheryl Zhang, and Jian Cheng. Dif-
ferentially private federated learning with local regularization and spar-
sification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10122—-10131, 2022.

Imre Csiszar. I-divergence geometry of probability distributions and
minimization problems. The annals of probability, pages 146—158, 1975.

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]
[27]

(28]

[29]

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke
Yang, et al. Large scale distributed deep networks. Advances in neural
information processing systems, 25, 2012.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang,
and Qi Zhu. Federated class-incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10164-10173, 2022.

Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Chuhan
Wu, Xing Xie, and Meeyoung Cha. Fedx: Unsupervised federated
learning with cross knowledge distillation. In Computer Vision-ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXX, pages 691-707. Springer, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the ef-
fects of non-identical data distribution for federated visual classification.
arXiv preprint arXiv:1909.06335, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic
controlled averaging for federated learning. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 5132-5143. PMLR, 13-18 Jul 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny imagenet.
https://www.kaggle.com/competitions/tiny-imagenet/overview, 2017.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in
federated learning. Computers & Industrial Engineering, 149:106854,
2020.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated
learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10713-10722, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems, 2:429-450,
2020.

Xiaoxiao Liang, Yiqun Lin, Huazhu Fu, Lei Zhu, and Xiaomeng Li.
Rscfed: random sampling consensus federated semi-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10154-10163, 2022.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen,
and Junchi Yan. Deep neural network fusion via graph matching with
applications to model ensemble and federated learning. In International
Conference on Machine Learning, pages 13857-13869. PMLR, 2022.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics,
pages 1273-1282. PMLR, 2017.

Jerry M Mendel. Tutorial on higher-order statistics (spectra) in signal
processing and system theory: Theoretical results and some applications.
Proceedings of the IEEE, 79(3):278-305, 1991.

Radford M Neal. Bayesian learning for neural networks, volume 118.
Springer Science & Business Media, 2012.

Frank Nielsen and Sylvain Boltz. The burbea-rao and bhattacharyya
centroids. IEEE Transactions on Information Theory, 57(8):5455-5466,
2011.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks. In International conference on
machine learning, pages 1310-1318. PMLR, 2013.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao,
Titouan Parcollet, and Nicholas Donald Lane. Zerofl: Efficient on-
device training for federated learning with local sparsity. In International
Conference on Learning Representations, 2022.

Jason Rennie. On 12-norm regularization and the gaussian prior. 2003.
M Sanaullah. A review of higher order statistics and spectra in
communication systems. Global Journal of Science Frontier Research,
Physics and Space Science, 13(4), 2013.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-
leibler divergence. IEEE Transactions on Information Theory,
60(7):3797-3820, 2014.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos,
and Yasaman Khazaeni. Federated learning with matched averaging. In
International Conference on Learning Representations, 2020.



