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Abstract. In the domain of Federated Learning (FL), the issue of man-
aging variability in model architectures surpasses a mere technical bar-
rier, representing a crucial aspect of the field’s evolution, especially con-
sidering the ever-increasing number of model architectures emerging in
the literature. This focus on architecture variability emerges from the
unique nature of FL, where diverse devices or participants, each with
their own data and computational constraints, collaboratively train a
shared model. The proposed FL system architecture facilitates the de-
ployment of diverse convolutional neural network (CNN) architectures
across distinct clients, while outperforming the state-of-the-art FL method-
ologies. FedHARM3 capitalizes on the strengths of different architec-
tures while limiting their weaknesses by converging each local client on
a shared dataset to achieve superior performance on the test set.
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1 Introduction

Modern machine learning has witnessed an expansion of model architectures,
each tailored to specific types of data and computational tasks. For instance,
ResNets (Residual Networks) [11] have gained popularity for their ability to
enable training of extremely deep networks by using skip connections. On the
other hand, EfficientNets [37] offer a balanced approach, scaling different dimen-
sions of the network in a compound manner to achieve remarkable efficiency
and accuracy. Similarly, MobileNets [12] are designed to provide lightweight, yet
effective, neural networks for mobile and edge devices, focusing on optimized per-
formance in resource-constrained environments. Such architectures have exceled
in a wide spectrum of computer vision tasks including classification [1, 23, 31],
detection [9, 36], retrieval [7, 18].
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In FL, diverse model architectures present both challenges and opportunities.
Each architecture processes data differently, with varying computational com-
plexities and task suitability. For example, ResNets are ideal for high-accuracy
needs, while MobileNets are better for mobile devices due to efficiency. As de-
tailed in previous studies [19], FL involves participants from powerful servers to
resource-constrained edge devices collaborating on a shared model with unique
datasets, leading to heterogeneity in computational and data characteristics.
Data across devices are often non independently and identically distributed
(non-IID), complicating model training and performance. Thus, choosing the
right model architecture is crucial, requiring a tailored strategy to match each
node’s capabilities and data.

In previous studies [26, 33], communication efficiency and privacy preserva-
tion have been identified as core challenges in FL , where the decentralized
architecture adds another layer of complexity. Optimizing model architectures
for diverse environments is crucial for reducing communication overhead and ac-
commodating the privacy and security needs of different nodes. This optimiza-
tion, alongside the development of flexible models that can handle incremental
learning and adapt to new data without forgetting prior information, is essential
for maintaining learning efficiency and effectiveness. Additionally, the scalabil-
ity and robustness of FL systems, capable of adapting to varying architectures
across a broad range of domains and applications, are vital. Addressing these
challenges requires innovative approaches in model aggregation, updating, and
architecture variability management to ensure FL’s practical deployment and
success in fields ranging from healthcare to smart cities, and the exploration of
hybrid models or meta-learning strategies for more versatile and powerful FL
systems.

Considering all the aforementioned aspects, the exploration of model archi-
tecture variability in FL stands as a strategic response to the multitude of chal-
lenges and opportunities inherent in this innovative learning paradigm. It em-
bodies a dedicated effort to enhance the efficiency, scalability, privacy, and real-
world applicability of FL. This attempt builds upon the foundational insights
extracted from preceding studies, pushing the boundaries of what is achievable
in collaborative, decentralized learning environments. Notably, this study is the
first, to the authors’ knowledge, to step on this path. It pioneers in addressing
the complexity and diversity of model architectures within the FL framework,
making it a ground breaker in the field and setting a point of reference for future
research in this area. The proposed FL system is illustrated in Figure 1.

The main contributions in addressing model architecture variability in FL
can be summarized as follows:

a) Model-Agnostic FL Framework: This study presents a novel FL ap-
proach compatible with various model architectures, including ResNet, Effi-
cientNet, and MobileNetV3, showcasing its adaptability to different compu-
tational capabilities and data needs across nodes.

b) Hybrid Learning Approach with Focus on Representation: This
study innovatively blends supervised and self-supervised learning for rep-



FedHARM 3

resentation learning. It optimizes local models with specific data and aligns
them with global patterns through self-supervised learning, moving away
from traditional federated averaging to a representation-centric aggregation
method.

c) Efficient Handling of Model Architecture Variability: The study
tackles combining outputs from different model architectures in FL. By fo-
cusing on specific blocks or layers and using feature extraction, it effectively
aggregates learned representations, ensuring coherence in the federated sys-
tem.

2 Related Work

The landscape of FL has rapidly evolved, as evidenced by the plethora of research
[3, 5, 6, 28, 41, 43, 44] that have tackled its fundamental issues and put forth
inventive ways to improve its effectiveness, confidentiality, and expandability.
The promise of this emerging sector to facilitate collaborative learning without
sacrificing data privacy has garnered a great deal of attention.

Representation learning serves as a cornerstone in the efficacy of FL, under-
pinning the ability to distill and generalize knowledge from distributed data.
This foundational technique facilitates the extraction of informative features,
enhancing the collaborative intelligence of FL models, enabling them to per-
form robustly across all client datasets. The authors of [4] introduced an FL
framework that aims to cultivate a common data representation among clients
while maintaining distinct local heads for each. This approach capitalizes on
the distributed computing resources and performs frequent local updates tar-
geting low-dimensional parameters to achieve linear convergence and produce
accurate representations. FedX [10] learns neutral representations from diverse
local data by utilizing contrastive learning [8] to enable a bilateral knowledge
distillation, allowing the system to function without the need for shared data
features. Due to privacy constraints, FL schemes are required to excel on lim-
ited data on a per-client basis. Concurrently, as knowledge is centralized through
model updates, it is essential for the aggregated model to assimilate and gener-
alize information across the dataset from all clients, while preventing the loss of
client-specific characteristics. The work of Psaltis et al . [30] demonstrates that
contrastive learning can significantly increase the performance of the local clients
even when the distribution is imbalanced and scattered across them. Li et al . [20]
employ contrastive learning at the model level, leveraging the congruence among
model representations to refine the local training processes of individual clients.
FedCA [45] used a shared split of the dataset to align the representations of the
images. The framework is distinguished by its integration of centralized sample
representations from each client to ensure a uniform representation space acces-
sible by all, and a module that synchronizes each client’s representation with
that of a foundational model trained on publicly available data.

Addressing the aggregation of learned representations on a global scale presents
significant challenges. Despite numerous attempts to synchronize heterogeneous
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models across diverse clients, current approaches struggle to achieve seamless ar-
chitecture alignment without modifying model structures or directly aggregating
model weights. This limitation points to the untapped potential for innovative
methods capable of integrating diverse architectures without the need for altering
client models. Although existing research has explored methods like distillation
techniques or various ensemble strategies [22,29,34,40,46], these approaches of-
ten necessitate mapping features into a common latent space to a shared latent
space for knowledge integration and weight aggregation [13, 14, 25, 38, 39]. Such
processes typically involve additional training of either entire networks or specific
network components (e.g ., network heads), leading to increased training dura-
tions and reduced efficiency and scalability, thereby diminishing the practicality
of these solutions.

Fig. 1: Schematic of the proposed FL System Architecture illustrating the feature
extraction and alignment modules on the local dataset of each client that harmonizes
the heterogenous architectures and the fully-supervised training on the local dataset.
The Model-Agnostic Aggregation Mechanism is the process performed on the main
server to create an enriched representation of the local dataset, derived from all the
clients

3 Strategies for Managing Diverse Model Architectures

Problem statement: The effective integration and management of a wide ar-
ray of diverse model architectures across various nodes in a federated network.
This problem arises due to the heterogeneous nature of FL environments, where
nodes, ranging from high-powered servers to resource-constrained edge devices,
each come with their own unique data characteristics and computational capa-
bilities. The proposed methodology for managing diverse model architectures in
an FL systems is designed to be model-agnostic, leveraging the strengths of rep-
resentation learning. This strategy is distinct from the conventional federated av-
eraging, taking advantage of the potency of both supervised and self-supervised
learning paradigms, but lacking the advantage to aggregate the weights of the
models duo to the heterogeneity of the architectures. Traditional approaches,
including FedAvg [27], are insufficient in confronting the challenges posed by the
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intrinsic diversity of machine learning models deployed throughout the network.
Moreover, strategies such as model distillation and the integration of feature
fusion at the upper layers, although aimed at ameliorating these difficulties,
do not succeed in providing a substantive resolution.One of the key aspects of
our methodology is the accommodation of various model architectures across
local clients. The technique is particularly concentrated on CNN architectures,
specifically: (i) ResNet, (ii) EfficientNet, and (iii) MobileNetV3. This flexibility
ensures that each local node can select a model that best fits its computational
capabilities and specific data requirements. Such diversity in model architecture
is crucial for the adaptability and personalization of the FL system.

3.1 Local Supervision and Self-supervision Representation Learning

Within the methodology described in this research, there are two learning para-
digms integrated, that are applied to distinct subsets of the datasets. Every client
in the FL system has access to three distinct sets of data in terms of distribution:
a test set, a private set, and a shared set. To foster a collaborative learning en-
vironment, all clients have access to the shared set, which is an image collection
that is used for training. Conversely, the private set is a unique group of images
for each client that is extracted from the original training dataset following the
subtraction of the images assigned to the shared set. The training scheme ap-
plied to the private set employs a fully supervised learning procedure, enabling
each client to learn and adapt to the distinct attributes and patterns that derive
from the local data. A hybrid learning model is adopted for the shared set, en-
compassing both supervised and self-supervised learning mechanisms. It utilizes
the labels to encourage the learning of specific patterns within the set, while
simultaneously generating a descriptor for each image. The objective is to align
the individual descriptors with a collectively aggregated embedding which is con-
structed by all the clients, thus boosting cohesiveness and efficacy of the learning
process across the federated system. This shared resources plays a pivotal role in
the latter stages of the training process, particularly during the self-supervised
learning phase. It serves as a unifying element, bridging the diverse learning ex-
periences of individual nodes and aligning them with the broader, global dataset
context.

Gradient-based Feature Extraction Module The core of our excitation
technique is grounded in the observation that the most influential features are
highlighted by the gradients during the backpropagation process. Drawing inspi-
ration from the insights provided in [42], where the authors underscore the sig-
nificance of gradients in evaluating feature importance within their personalized
FL system, the proposed methodology advances this understanding. Gradients
within a model delineate the direction of optimization and effectively indicate the
influence of each neural unit. The feature extraction method we propose builds
upon this concept, harnessing the model’s gradients relative to the ground truth
to identify and extract pivotal features from each block’s output. By selecting
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features that possess the largest absolute gradients, the algorithm ensures the
inclusion of those with the most substantial impact on the model’s predictive
outcome, thereby enriching the feature descriptor with the most influential at-
tributes for the task at hand. The formula 1 of the module is depicted below:

gradb
j = Topk

(∣∣∣∣∣ ∂pcj∂F b
j

∣∣∣∣∣
)
, k ∈ {128, 256, 512, 1024}, b ∈ {1, 2, 3, 4} (1)

where b represents the block of the model, k number of features to be extracted, j
the training sample, pcj the predictive output of the c-th category. This approach
begins with initial training at each local node using its own private dataset, a
critical phase for developing accurate data representations. These representa-
tions lay the groundwork for the method’s subsequent phases. Following this
initial training, every node processes the images from a shared subset. For each
image, the algorithm selects the top features exhibiting the largest absolute gra-
dients within each of the blocks of the network’s feature map, as shown in the
Algorithm 1 lines 6-12. It is these prominent features, considered pivotal for
the image’s representation, that are then forwarded to the central server. This
process ensures that the most critical aspects of the data are emphasized and
aggregated globally, enhancing the overall learning and representation capabil-
ity of the system. In Figure 2, Grad-cam [32] was used to visually compare the
gradient maps of each block across the network architectures

A comprehensive evaluation identified the most informative characteristics
for constructing a meaningful feature descriptor, using targeted feature crop-
ping from the feature maps and various adaptive pooling strategies, ultimately
finding that the proposed Gradient-based Feature Extraction Module outper-
formed these techniques in feature selection efficacy.

Fig. 2: Visual representation of the gradient visualizations for three different neural
network architectures applied to the same original image. On the left, the original
image is depicted. Progressing to the right, the subsequent images represent gradient
heatmaps as interpreted by ResNet, EfficientNet, and MobileNetV3, respectively. These
heatmaps highlight areas of the image that contribute most significantly to the models’
predictions, with warmer colors indicating higher gradient values and thus greater
importance in the decision-making process of each network.
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3.2 Model-Agnostic Aggregation Mechanism

The central node in this architecture plays a vital role in aggregating the repre-
sentations from each participating node. This aggregation focuses on the outputs
from specific blocks or layers of the models, going beyond the individual differ-
ences in architectures. The process is designed to be model-agnostic, accommo-
dating the wide variety of models without requiring uniformity. A significant
departure from traditional approaches in our methodology is the avoidance of
weight aggregation algorithms. Instead, we focus on a representation-centric ag-
gregation approach. This shift ensures that the learning process is more coherent,
communication efficient and effective, particularly suitable for environments with
heterogeneous models. The ultimate goal is to align the local representations of
the shared dataset with the global representation. The global representation is
the aggregation of the local descriptors of each image in the shared subset, con-
tributed by all participating clients in the FL system. This alignment enhances
the model’s ability to generalize and adapt to new data, improving its perfor-
mance across the federated network. The hybrid training approach – combining
supervised and self-supervised learning – ensures that local models are fine-tuned
to both their specific data characteristics and the aggregated knowledge from the
shared dataset. In conclusion, this proposed aggregation methodology offers a
flexible and effective approach to managing diverse model architectures in FL.
By focusing on representation learning and adopting a model-agnostic aggre-
gation approach, it ensures efficient and robust learning across the federated
network, paving the way for more adaptable and powerful FL systems.

Iterative Representation Refinement and Dual-Loss Aggregation At
the central server, an average representation for each image is computed by
aggregating the feature information received from all clients. This global repre-
sentation encapsulates the collective insights of all participating nodes, enriching
the understanding of each image in the shared dataset. The training of the net-
work then proceeds with a cosine similarity loss function. In each epoch of this
training phase, two views of the data are considered: the global representation
and the current local representation of the network being trained. The first
epoch plays a pivotal role as it sets the baseline for the representations used in a
knowledge distillation-inspired learning process. The representations for the sub-
sequent epochs are then recalculated based on the top feature indices identified
in the previous epoch. This iterative process is refined further by incorporating
both cosine similarity and cross-entropy loss functions into the global aggregation
step. This dual-loss approach allows the model to benefit from the strengths of
both supervised and self-supervised learning paradigms, leading to more robust
and well-rounded representations. By continuously refining the representations
and the model through this iterative process, the FL system efficiently leverages
the most relevant features of the data, enhancing the model’s performance and
adaptability to diverse datasets. Algorithm 1 provides a detailed illustration of
the proposed aggregation technique in the suggested FL framework. The algo-
rithm’s goal is to reduce inconsistencies between the local and global features,
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promoting uniformity and coherence in the learned representations across the
network. Upon successful alignment of the local models with the global repre-
sentation, the updated models are aggregated at the central server, enhancing
the global model with enriched insights from the network’s distributed learn-
ing experience. This strategy ensures that local models not only perform well
on their data but also contribute effectively to the collective intelligence of the
federated system.

Image Descriptor - Feature Alignment The core innovation of the pro-
posed approach is based on the hypothesis that we can directly map blocks of
features across different model architectures, owing to the similarity in the in-
formation they encode, and then aggregate them accordingly. This strategy sug-
gests a more streamlined and potentially effective method for combining diverse
models by capitalizing on the inherent parallels in their feature representations.
However, in the journey of aggregating learned representations from different
blocks of each node in our FL system, we encountered several significant chal-
lenges, particularly with the alignment metrics between node representations,
especially with the implementation of cosine similarity as a measure of align-
ment. Unexpectedly, the use of cosine similarity not only failed to enhance the
network’s performance but rather led to a decrease in effectiveness. This issue
was further complicated by the observation that for the majority of the lay-
ers, except the last one, the cosine similarity consistently equated to zero. The
equation for cosine similarity is as follows:

cosine similarity(A,B) =
A ·B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(2)

where A and B are two vectors for which you are calculating the cosine simi-
larity. The dot product of A and B is divided by the product of their magnitudes
(or Euclidean norms). The magnitudes are calculated as the square root of the
sum of the squared elements of each vector.

The construction of an image embedding derived from the entirety of a client’s
model, and the utilization of solely the last flattened embedding, did not yield
a notable enhancement in accuracy. This outcome was observed despite each
client’s embedding being a high-dimensional 1920-vector, which was meticulously
generated through the Gradient-based Feature Excitation Algorithm, a variance
attributable to the disparate model architectures and the dimensions of the latent
spaces involved.

The main descriptor’s experimentation began with ResNet architectures —
ResNet18, ResNet34, and ResNet50—due to their prevalence in FL literature and
computational constraints. The descriptor is constructed by aggregating specific
features from each primary block of the network. The technique encompasses the
strategic extraction of features from all the blocks of the ResNet architectures
to frame a thorough 1920-dimensional embedding, utilizing the Gradient-based
Feature Extraction Module. This process initiates with the selection of 128 fea-
tures from the initial main block, followed by the extraction of 256 features
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from the second block, 512 from the third, and culminating with 1024 from the
fourth block. When trying to align heterogeneous network architectures, first
the block-alignment process is performed and the selected blocks will create the
image descriptor

Fig. 3: Diagram of the descriptor construction process from a ResNet architecture,
illustrating the sequential extraction of features from the four distinct blocks of the
model. The feature maps are processed through a Feature Extraction Module, resulting
in a composite image descriptor that encapsulates multi-scale representations of the
input.

In particular, the process of feature elicitation serves as a pivotal step in
harmonizing the local models with a central, aggregated global accumulation
of the descriptors. It starts with an image passing through a neural network,
which is segmented into distinct blocks, each responsible for extracting features
at varying levels of complexity. The early blocks, such as Block1, typically cap-
ture elementary features like edges, while the deeper blocks, such as Block4,
discern more intricate patterns. The outputs of these blocks undergo a selective
process where a specific number of features are chosen based on their activation
levels, which are indicative of their importance. These chosen features are then
combined, with the deeper blocks contributing a larger share of features, reflect-
ing their increased complexity and importance in characterizing the image. This
process is illustrated in Figure 3. The reasoning behind this specific excitation
approach is grounded in empirical findings. Experiments have revealed that sim-
ilarity metrics for features in the initial layers of both trained and untrained
models are remarkably high, indicating homogeneity in the primitive features
extracted by these layers. Consequently, as the network delves deeper, the need
for capturing a broader and more complex range of features grows, prompting
the selection of larger feature maps from the deeper layers—(128, 256, 512, 1024)
respectively—to ensure a comprehensive representation.

In the Algorithm 1 presented before, LCE and LCOS represent the Cross-
Entropy and Cosine Similarity loss functions that are employed in the training
process of the proposed method. bgrad is the gradient map of the block of the
models, PDi

represent the predictions of the i-th dataset of the i-th client’s
model. The variables w and h are the spatial dimensions of the feature maps,
F i
E represent the extracted features from the i-th client’s model, while FEj

is
the aggregated descriptor manufactured in the main server and zlocal is the
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prediction of the model of the xj image and finally, the factor θ denote the
weights of the model.

Algorithm 1 Federated Learning with Grad-based Feature Extraction

Require: Di local datasets, f i(θ) model of the local clients, C common subset, R total
communication rounds, E total epochs, lr learning rate

1: for r ← 1 to R do
2: Local training
3: for i← 1 to N do
4: f i(θ)← train(f i(θ), Di, LCE)
5: end for
6: Grad-based Feature Extraction Module
7: for i← 1 to N do
8: for all b in f i(θ)blocks do
9: bgrad ←

∂PDi
∂fi(θ)b,(wh)

10: F i
E ← ExtractTopK(|bgrad|),K ∈ {128, 256, 512, 1024}

11: end for
12: end for
13: Aggregation on Central server
14: for j ← 1 to C do
15: FEj ← 1

N

∑N
i F i

Ej

16: end for
17: for i← 1 to N do
18: for e← 1 to E do
19: for j ← 1 to C do
20: F i

Ej ← Grad-based Feature Extraction Module(f i(θ), Pj)

21: zjlocal ← f i(θ)(xj)
22: L← αLCE(z

j
local, Pj) + (1− α)LCOS(F

j
iE , F

E
j )

23: θ ← θ − lr · ∇L
24: end for
25: end for
26: end for
27: end for

Harmonizing diverse architecture through block alignment strategies:
Expanding the scope of architectures to include EfficientNet and MobileNetV3,

specifically EfficientNetB0, EfficientNetB1 and MobileNetV3-Small, MobileNetV3-
Large, alongside the ResNet family, a nuanced approach to integration is ne-
cessitated by the variance in the total number of blocks within these mod-
els—EfficientNet and MobileNetV3 comprising seven blocks in contrast to ResNet’s
four. The incorporation of a diverse array of architectures, demanded a sophisti-
cated alignment policy to accommodate the variations in block numbers—seven
in EfficientNet and MobileNetV3 as opposed to four in ResNet. This alignment
was meticulously conducted through an analysis of representational similarity
and angular divergence among the models, utilizing cosine similarity metrics to
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achieve uniformity in representation spaces. The process entailed the synchro-
nization of blocks that demonstrated the least angular divergence, taking into
account the orientation and dimensionality of their feature maps. Despite chal-
lenges in direct comparison due to activation function and dimensionality dif-
ferences, absolute feature grouping and KL-Divergence analysis enabled precise
block alignment across architectures, fostering a unified FL framework. Con-
sequently, the harmonization of block connections across ResNet, EfficientNet,
and MobileNetV3 architectures is achieved, paving the way for a cohesive and
aligned FL system that leverages the strengths of diverse model architectures
while maintaining the integrity of their unique representational capacities. The
primary computational expense stems from the gradient-based feature extrac-
tion module; however, this cost is effectively mitigated by the communication
overhead, which is further analyzed in the supplementary material.

4 Experimentation in Various Architectural Scenarios

The exploration of different model architectures in FL aims to understand how
diverse neural network structures can affect the learning process when dis-
tributed across various nodes. In the series of experiments conducted, the focus
was on integrating three core CNN-based architectures-ResNet, EfficientNet, and
MobileNetV3-randomly initialized, to evaluate their performance in FL settings.
The initial set of experiments deployed various versions of ResNet, specifically
ResNet18, ResNet34, and ResNet50, but memory constraints limited the explo-
ration to these three models, highlighting the practical challenges of deploying
larger and more complex networks in FL.

4.1 Experiment Setup

Datasets The datasets used to validate the Fl system are CIFAR-10, CIFAR-
100 [16] and MNIST [17], with data distributed to clients in both IID and non-
IID formats. Regarding the shared subset, experiments are conducted in a range
5000 - 10000 data instances, to discover the optimal number. It was revealed
that despite the fact that the alignment process performed better the bigger
the share subset was, the remaining data that are divided to the clients proved
insufficient for the models to effectively capture their unique patterns, so the
total number of the shared division of the dataset is set to 5000.

Data Augmentations In the preprocessing phase of the study, a series of
image augmentation techniques are implemented to enhance the diversity of
the training dataset. The specific augmentations applied include horizontal and
vertical flip, random crop, brightness adjustment of +/−20% and Gaussian blur.

Distribution of the Networks to Clients The models are allocated to clients
utilizing a standardized approach, where each variation of the networks is se-
lected according to a uniform distribution method, with a requirement that the
method contains at least one of each different network architectures.
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Hyperparameters The total communication rounds of our experiments are
set to 10, while the epochs of training of each round are set to 25, the batch size
is set to 128, the initial learning rate of the models was 0.01, using One-Cycle
LR [35] with the minimum learning rate being 0.0001 and the optimized of the
networks was the Adam [15]. The total number of variation to the number of
clients is 5, 10, 20.

Compared Methodologies To facilitate a meticulous comparative analysis
of the proposed framework’s performance, we have chosen benchmark methods
grounded in the principles of representation learning. The FL schemes selected
for this purpose include PerFCL [47], FedCon [24], MOON [21], FedSimCLR,
FedCA [45] and FedSimSiam [2]. However, it is important to highlight that
the proposed approach diverges from the existing state-of-the-art methodologies
by incorporating a varied architecture at each federated node. This distinction
is a critical factor that should be considered in any comparative analysis below.

4.2 Evaluation and Results

The initial goal was to evaluate the efficacy of various ResNet models dissemi-
nated among the clients. The resulting performance is the mean accuracy of the
corresponding method across all the clients on the test set of each database.For
the evaluation metric the accuracy is the mean accuracy of the corresponding
method across all the clients on the validation set of each database. FedHARMres

denotes the adaptation of this approach, incorporating ResNet architectures
for client distribution, and it outperformed all competing methodologies on the
CIFAR-10 dataset across every client configuration as shown in Table 1. A slight
decline in performance was observed with an increase in the number of clients,
attributable to the correspondingly reduced data available to each client. The
integration of the alignment module significantly enhanced the framework’s ef-
fectiveness, demonstrating its utility and success by achieving an accuracy of
82.88% in a scenario with 5 clients and 81.51% in a setting with 10 clients.
The added value is further underscored by the fact that, unlike traditional FL
strategies, the conventional solution avoids using weight averaging algorithms
and instead opts for dominant feature utilization, showcasing its flexibility in
extracting knowledge from a variety of model architectures.

Transitioning to the CIFAR-100 dataset, the proposed method exhibited su-
perior performance in the 5-client configuration compared to the benchmark
methods achieving 52.38% accuracy, but did not achieve the same level of suc-
cess in the settings with 10 and 20 clients. This reduction in performance can
be attributed to the insufficient amount of data per client in the local datasets,
which hindered the creation of a robust embedding capable of accurately repre-
senting the data instances across the 100 classes of the dataset.

In the second set of experiments, the focus shifted to integrating EfficientNet
and MobileNetV3 models alongside ResNet models, referred to as FedHARMrem.
These architectures are recognized for their efficiency and performance on mobile
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Table 1: Accuracy (%) comparison of FL Methods on CIFAR-10 and CIFAR-100
datasets in IID settings. The validation was performed on the test set of each database,
and the resulting number is the mean accuracy across the clients.

Method CIFAR-10 CIFAR-100
5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

FedCon [24] - 81.47 - - - -
FedSimCLR 68.1 - - 39.75 - -
FedCA [45] 71.25 - - 43.30 - -
FedSimSiam [2] 76.27 - - 49.79 - -
FedHARMres(ours) 82.88 81.51 78.01 52.38 52.54 38.89
FedHARMrem(ours) 83.87 82.03 79.76 53.9 51.49 40.03

devices, making them an intriguing choice for FL scenarios. Within the context
of the CIFAR-10 dataset, the FedHARMrem variant outperformed all other
methodologies evaluated, including FedHARMres, showcasing superior efficacy
across various client settings. This improved performance is supported by the
fact that architectures such as EfficientNet and MobileNetV3 generally exhibit
better performance compared to ResNet variants. The enhancement in the qual-
ity of representations learned at the local dataset level indicates that the overall
descriptors of the shared subset have facilitated the creation of a more significant
embedding. Consequently, as shown in Table 1, this has led to notable accuracy
rates of 83.87%, 82.03%, and 79.76% in settings with 5, 10, and 20 clients, re-
spectively. For the non-IID setup experiments with α = 0.1, only FedHARMrem

was utilized due to its superior speed and efficiency. This model demonstrated
the best performance in the IID setting, thus it was tested on non-IID data
as well. Similarly, the proposed methodology maintained robust performance,
achieving significant accuracy results on CIFAR-10 and CIFAR-100 with 5, 10,
and 20 clients, respectively, highlighting its adaptability to varied data distribu-
tions. This outcome underscores the effectiveness of integrating advanced neural
network architectures to enhance the robustness and representational capacity
of embeddings in distributed learning environments. The results are illustrated
in table2

Table 2: Accuracy (%) comparison of FL Methods on CIFAR-10 and CIFAR-100
datasets in non-IID setup. The validation was performed on the test set of each
database, and the resulting number is the mean accuracy across the clients.

Method CIFAR-10 CIFAR-100
5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

FedCon [24] - 81.96 - - - -
PerFCL [47] - 75.5 75.1 - 61.2 58.6
MOON [21] - 69.1 73.6 - 60 57.5
FedSimCLR 64.06 - - 38.70 - -
FedCA [45] 68.01 - - 42.34 - -
FedHARMrem(ours) 82.91 81.97 76.84 43.78 38.98 37.42
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Table 3: Accuracy (%) Results of the Proposed Method on the MNIST Dataset in
IID and non-IID setup, against the FedCon system

Method IID Non-IID
5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

FedCon [24] - 98.08 - - 98.22 -
FedHARMres 98.79 98.42 97.93 97.76 97.21 96.02
FedHARMrem 98.94 98.65 98.54 98.61 97.98 96.92

Due to the noted lack of comparable outcomes for the MNIST database, an
assessment was carried out, as shown in Table 3, in order to compare the frame-
work’s performance with FedCon’s in a 10-client setting. In this analysis, the
FedHARMrem variation demonstrated superior performance, achieving an ac-
curacy of 98.65% and 97.98% in IID and non-IID settings, respectively. Further-
more, in the IID setup, configurations involving 5 and 20 clients, FedHARMres

variation recorded accuracies of 98.79% and 97.93%, respectively. In contrast,
FedHARMrem exhibited even greater heterogeneity in its performance, achiev-
ing remarkable accuracies of 98.94% in the 5-client setup and 98.54% in the 20-
client configuration. In non-IID setting, FedHARMres attained 97.76 and 96.02
for 5 and 20 clients, while FedHARMrem reached 98.61 and 96.92. This detailed
comparison underscores the robustness and adaptability of the FedHARM vari-
ations across different benchmark datasets.

5 Conclusion and Future Work

The study presents a comprehensive exploration of model architecture variabil-
ity within the FL framework, introducing innovative strategies to incorporate
diverse CNNs, specifically ResNet, EfficientNet, and MobileNet. It highlights
the challenges and proposes solutions for efficient model aggregation and commu-
nication, emphasizing representation learning and model-agnostic frameworks.
The proposed FedHARM approach, especially FedHARMrem, significantly
outperforms existing methods in CIFAR−10, CIFAR−100 and MNIST IID
datasets evaluations, demonstrating the effectiveness of representation-centric
and model agnostic aggregation across different architectures. This research
paves the way for more adaptable, efficient, and privacy-preserving FL systems,
capable of leveraging the strengths of different architectures to improve learning
outcomes across decentralized networks. The study sets the stage for extensive
future research, with numerous potential experiments to further enhance FL,
involving an in-depth analysis into data heterogeneity among clients, and in-
tegrating a wider array of network architectures. Nevertheless, in practical FL
scenarios, sampling shared data with a distribution similar to local data is chal-
lenging due to privacy protections and it necessitates several security checks to
safeguard data integrity on local nodes.
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