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Abstract—This paper addresses the challenge of reducing an-
notation costs in distributed learning environments, particularly
in systems with limited data and computational resources, such
as those found in edge devices. We propose Federated Reinforced
Active Learning, a framework that integrates Federated Learning
with Reinforced Active Learning to optimize data labeling under
strict cost constraints. The method is designed for small-scale
networks where data is sparse, and minimal training epochs
are available. By utilizing reinforcement learning within active
learning, the system selects the most informative data samples,
allowing for efficient training while significantly reducing the
need for extensive annotations. This approach is particularly
suited for environments where minimizing both annotation and
computational costs is critical, such as in applications where
cost efficiency and resource limitations are top priorities. The
proposed method is evaluated on the CIFAR-10 and CIFAR-
100 datasets using ResNet18, across 5 and 10 clients. Results
demonstrate that the method significantly reduces annotation
costs and improves learning outcomes, making it an ideal solution
for cost-sensitive distributed systems.

Index Terms—Active learning, Reinforcement Learning, Fed-
erated Learning, Distributed Learning, Annotation Budget.

I. INTRODUCTION

In recent years, artificial intelligence (AI) has become pre-
dominant in many fields. Algorithms powered by deep neural
networks have achieved remarkable success across numerous
domains, and the demand for more complex frameworks
capable of solving and generalizing over a wide range of
cases continues to grow. This need for creating powerful AI
systems is directly correlated with the requirement for more
annotated data, especially for deep networks that must learn
complex relationships. However, it has been observed that
human annotators are unable to meet the data demands of
these types of systems. Consequently, Active Learning (AL)
has become central to machine learning (ML), and researchers
are continually exploring new methods to minimize the labor
involved in data annotation. At the same time, the growing
number of edge devices, such as smartphones and IoT sensors,
has created a need for methods that can not only process
but also annotate data at the edge, where it is generated.
This is crucial for managing the large amounts of data these
systems produce, without depending on centralized infrastruc-
ture, which may not work well in environments with limited
resources.

AL addresses the challenge of labeling large datasets by
selecting the most informative samples for annotation, thus

reducing the total labeling effort. While AL effectively reduces
annotation costs, the need for further optimization becomes ap-
parent in resource-constrained environments, where reducing
both data annotations and computational effort is critical.

Building on AL, Reinforced Active Learning (RAL) incor-
porates Reinforcement Learning (RL) to optimize the selection
of informative samples dynamically. RAL adapts the annota-
tion process by using RL to identify which data points are
most uncertain, ensuring that only the most critical samples
are labeled. This leads to further reductions in annotation costs
by preventing redundant labeling and focusing on the most
impactful data points.

On the other hand, Federated Learning (FL) offers a dis-
tributed approach to model training, where multiple clients
collaborate to build a global model without sharing their
raw data, thus preserving privacy. FL has emerged as a
promising framework for distributed learning in privacy-
sensitive environments, such as edge devices or IoT networks.
Integrating RAL into an FL framework introduces several
unique challenges. First, determining the optimal batch for
labeling on each client, especially when data distributions
and model uncertainty vary across clients, remains an open
problem. Second, efficiently aggregating models trained with
varying batches in a federated environment is complex, as
the local adaptations might lead to inconsistencies in the
global model. Third, communication efficiency and privacy
must be balanced, ensuring that frequent model updates do
not overwhelm the network or expose sensitive information.

Problem Statement: To address the limitations of both AL
and FL, we introduce Federated Reinforced Active Learning
(FedRAL), a method specifically designed for distributed
annotation. In FedRAL, each client runs a RAL algorithm
independently, using RL to select the most valuable batches for
annotation based on model uncertainty. This allows each client
to focus on the most informative data, reducing unnecessary
annotations. Specifically, the proposed method aims to:

• Minimize Annotation Costs: In systems with tight cost
constraints, it is crucial to reduce the number of labeled
samples required for model training without sacrificing
performance.

• Preserve Privacy: FL allows clients to collaboratively
train models while keeping their data local, ensuring that
sensitive information is not shared.



• Adapt to Resource-Constrained Environments: Many
applications, such as those involving edge devices, have
limited processing power, memory, and bandwidth. Train-
ing models in these environments requires a strategy that
reduces both the number of annotations and the number
of training epochs.

FedRAL integrates these elements to create an efficient
system for FL in distributed environments, where cost, privacy,
and resource constraints are top priorities. The effectiveness of
this approach is demonstrated through experiments on image
classification tasks, showing that it achieves remarkable perfor-
mance with minimal annotations and training epochs, making
it particularly suitable for systems with stringent resource and
cost limitations.

II. RELATED WORK

A. Active Learning

AL is an ML technique that reduces labeling costs by se-
lecting only the most informative samples for annotation. This
approach is particularly beneficial when labeled data is limited
or expensive to obtain. In uncertainty-based AL [19]–[21], the
model queries uncertain samples for labeling, allowing it to
focus on data points that are likely to improve its performance.

Hybrid methods [22], [29], [66] combine various strategies
to achieve improved results by utilizing the strengths of dif-
ferent approaches. Interpolation-based AL selects samples that
are located near labeled ones, enhancing the model’s ability
to generalize from its existing labeled dataset. Furthermore,
batch methods [23] concentrate on efficiently labeling groups
of data, which can significantly reduce the total annotation
cost.

Despite the involvement of human annotators, optimization
techniques [24] aim to lower costs while maintaining high
performance, demonstrating the potential of AL to make the
labeling process more efficient and cost-effective.

B. Reinforced Active Learning

RL enhances AL by selecting the most informative samples
for labeling, making it a powerful tool in various applications.
This technique finds utility in areas such as natural language
processing, image classification, and meta-learning [1], [5].

Deep Reinforcement Learning (DRL) plays a significant
role in image selection processes, stream-based AL, and refin-
ing models specifically for tasks like person re-identification
[6], [8], [9], [11]. Recent advances in this field have expanded
its applications to critical areas such as medical image analysis
and multi-agent systems, demonstrating its versatility and
effectiveness [12], [14], [16].

Moreover, RL-based AL is particularly beneficial in ad-
dressing challenges such as cost reduction and class imbalance,
which are common in real-world datasets. This approach is
being actively explored in domains like molecular design and
efficient classification, highlighting its potential for innovation
and improvement in various scientific and industrial fields [17],
[18].

C. Federated Learning

FL is an emerging paradigm for decentralized training that
enables the creation of a unified model generalized across
numerous clients, each containing heterogeneous types of data.
By allowing individual clients—often operating on different
devices—to train a shared model locally on datasets exclusive
to them, FL addresses the limitations associated with cen-
tralized data collection. A key advantage of FL is its ability
to maintain data privacy, as raw data remains on the clients
and only model updates, such as weights or gradients, are
communicated to a central server. Aggregating these updates
using algorithms like Federated Averaging (FedAVG) [25]
results in a global model that encapsulates the collective
knowledge derived from all participating clients without com-
promising individual data privacy. Furthermore, integrating
various neural network architectures into FL frameworks has
enhanced the potential of federated training, enabling more
complex and effective models to be trained in a decentralized
manner. In particular, the application of representation learning
techniques within FL systems, especially when combined with
contrastive learning, has demonstrated promising results by
utilizing the strengths of both methodologies to improve model
performance, especially in scenarios where clients possess
significantly different data distributions. A framework in [48]
achieves this by creating unified representations while keeping
local models. The work of [49] shows that contrastive learning
boosts local client performance, even with imbalanced and
scattered data. FedX [50] uses contrastive learning to handle
diverse data without sharing features, improving performance
even with limited data. FedCA [51] aligns client representa-
tions with a public model to ensure consistency.

D. Federated Reinforcement Learning

Federated Reinforcement Learning (FRL) continues to be
a promising approach, integrating the strengths of FL and
RL to address key challenges such as privacy, scalability, and
resource efficiency [62]–[65]. FRL enables collaborative learn-
ing across distributed devices while keeping data localized,
thus preserving user privacy and improving efficiency across
applications like network optimization, edge computing, and
security [20], [52], [70]. Methods such as weighted averaging
[25] and advanced algorithms like PPO [26] and SARSA [71]
have been successfully applied to heterogeneous and dynamic
environments [22], [24].

Recent works have explored FRL across various domains.
Personalization [52], [53], resource efficiency [54], [55], and
heterogeneity [56], [57] have been key focuses, with solutions
optimizing tasks such as offloading and handling diverse client
data. Multi-agent systems [58], robotics [59], [61], and UAVs
[60] have also benefited from FRL approaches.

E. Federated Active Learning

Federated Active Learning (FAL) has emerged as an im-
portant approach to address the challenges of data annotation
in FL systems [76], [77], [80]. [78] propose FEDALV, which
combines AL with federated domain generalization, enabling



image classification on unseen target domains with minimal
data annotation from clients. [81] introduce LoGo, a sampling
strategy that integrates global and local models to handle class
diversity and data imbalance across clients, outperforming
existing AL strategies. [79] apply FAL to medical image
analysis, reducing annotation needs while maintaining high
performance in skin-lesion classification. Another method by
[75] integrates AL into FL to improve annotation efficiency,
demonstrating superior performance compared to random sam-
pling in image classification.

Building upon these foundational efforts, FedRAL further
improves FAL by integrating RL. This innovation optimizes
the learning process, enhancing privacy and data efficiency,
and enabling FAL to be more robust in dynamic and hetero-
geneous environments.

III. PROPOSED METHOD

In distributed environments, where data is spread across
various clients, the proposed approach provides an efficient
method for distributed annotations by employing two key
mechanisms:

• AL via RAL: RAL dynamically selects the most informa-
tive and uncertain data samples for annotation, allowing
each client to focus on labeling only the most valuable
data. This significantly reduces the number of samples
that need to be annotated, thereby minimizing the overall
annotation cost.

• FL: FedRAL uses FL to aggregate locally trained models
into a global model, ensuring that the benefits of anno-
tated data from one client are shared across all clients.
This prevents redundant annotation, as other clients can
utilize the insights from the global model, further reduc-
ing the annotation efforts.

Fig. 1 provides an overview of the FL process combined
with RAL for batch selection across three example clients.
Each client operates independently on its local dataset, utiliz-
ing its own classifier and the DQN agent to actively select
informative batches of data for training.

FedRAL delivers a solution designed for systems where
annotation costs are a priority. By using RAL to intelligently
select batches of data and utilizing FL to distribute the
annotation workload across clients, our method optimizes
budget selection in real-world applications. This approach is
particularly useful in environments where each client operates
under strict budget constraints, such as in medical diagnostics
or industrial inspections, where annotation costs and compu-
tational resources are closely managed.

A. Batch Selection with Reinforcement Learning

At the client side, we employ a RAL method to enhance the
annotation process by concentrating on the most informative
batches. The framework modifies the batch itself by trying
different batches based on model uncertainty and performance,
ensuring efficient resource use while maintaining accuracy. An
RL agent drives this approach, treating the annotation task as
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Fig. 1. Overview of the FedRAL process. Three clients each possess
individual datasets, classifiers, and DQN agents. The DQN agent determines
the optimal batch samples to annotate in each AL run. After each training
round, the classifier weights, reflecting the local learning, are sent to the
central server for aggregation. The aggregated classifier is then redistributed
to the clients to guide the next FL as well as RAL round.

a sequential decision-making problem. At each step, the agent
observes the current state, and decides on the optimal batch.

1) State Representation: The state at each iteration is
represented by the margin scores of the current unlabeled
samples. The margin score m(xi) for a sample xi is defined
as the difference between the highest and the second-highest
predicted class probabilities:

m(xi) = P (y∗|xi)− P (y∗∗|xi) (1)

where P (y∗|xi) is the probability of the most likely class
and P (y∗∗|xi) is the probability of the second most likely
class. The RL agent uses these margin scores to assess the
uncertainty of the samples.

2) Action and Reward: At each iteration t, the agent selects
an action at, which corresponds to a batch bt. The agent
aims to select batches that maximize the improvement in
model performance, while minimizing the annotation costs.
The reward function rt is defined as:

rt = Pt+1 − Pt (2)

where Pt is the precision achieved at iteration t.
3) Warm-Start Episodes: To initialize the RL agent, warm-

start episodes are conducted in which the agent tests different
batches of samples, both smaller and larger, to observe their
impact on model performance. These episodes assist the agent
in identifying an appropriate starting point for batch selection.
A warm-start episode concludes when the agent experiences
two consecutive declines in rewards, ensuring that it does not
waste annotation resources.

4) Post-Warm-Start / Batch Selection: After the warm-
start episodes, the agent moves to the main AL process,
where it selects batches based on its past experiences. In each
annotation round, the agent assesses the current state (margin
scores of unlabeled data) and chooses a batch bt expected to
improve precision with minimal cost.



5) End of Learning: Termination Criteria: The AL process
continues until a predefined convergence criterion is met. The
stopping conditions include:

• Target Precision: The agent continues selecting batches
and annotating samples until the model reaches a tar-
get precision level, established during the warm-start
episodes.

• Annotation Budget: The process ends when the agent
has exhausted the predefined annotation budget, ensuring
that the AL process remains within resource constraints.

B. Federated Learning Process with Active Learning

The FedRAL framework uses FL to allow several clients
(such as mobile devices or decentralized organizations) to col-
laboratively train an ML model without needing to share their
private, local datasets. Each client applies the RAL strategy
to choose which data points should be labeled. At each FL
round, clients independently train their own local models using
their data. The model being aggregated across the clients is the
classification model (referred to as the global classifier), which
is responsible for making predictions, generating performance
metrics like precision scores, and determining the current state
for the RL agent. This state information is crucial for guiding
the agent’s decision-making process, allowing it to optimize
batch selection effectively based on model performance.

1) Detailed Federated Learning Steps for Each Client:
The proposed FL architecture consists of a central server
and multiple clients, each holding local data. The server
distributes the global model to the clients, aggregates their
local model updates, and redistributes the updated global
model for continued training.

Once all clients complete their local training, the server
aggregates their model updates using the FedAvg algorithm.
For each layer of the model, the parameters are averaged
across clients, weighted by the number of samples at each
client, as follows:

θglobal =
1

N

N∑
n=1

|Dn|
|D|

θn (3)

where θn represents the parameters of client n, and |Dn| is
the size of the dataset held by client n.

In the global setup, the dataset is distributed among N
clients, and each client receives a unique portion of the dataset.
The FL process unfolds in iterative rounds, as shown in
Algorithm 1. Each round involves a series of key steps, both
on the server and the clients’ side.

This iterative process continues for several rounds until
the global model converges. The architecture ensures privacy
preservation by keeping the raw data decentralized, with only
model updates being shared between the clients and the central
server.

2) Federated Learning with Reinforced Active Learning
Integration: Each client autonomously applies RAL to intel-
ligently select and label the most informative data points. The
critical feature of this approach is that each client employs

Algorithm 1 Federated Learning Process
1: Initialize global classification model c0 and set number of

clients K
2: for each federated round t = 1, 2, . . . , T do
3: Model Distribution: The central server distributes the

global classifier ct−1 to all clients.
4: for each client k = 1, 2, . . . ,K in parallel do
5: Load local dataset Dk for client k.
6: Initialize local model ctk = ct−1.
7: Perform AL to select batch btk using RL.
8: Train local model ctk on selected batch of data from

Dk.
9: Send updated model weights ctk to the central server.

10: end for
11: Model Aggregation: The central server aggregates the

updated model weights from all clients using FedAvg:

cglobal =
1

K

K∑
k=1

|Dk|
|D|

ctk

12: Global Update: The server redistributes the aggregated
global model cglobal back to the clients for the next round
of training.

13: end for

its own Deep Q-Network (DQN) [38] agent for AL, meaning
that each client develops a unique RL policy for data selec-
tion, while only the classifier model weights are shared and
aggregated by the central server. The DQN weights, which
guide the AL decisions, remain local and independent across
clients. However, at each federated learning round, the global
aggregated model influences the policy update by redefining
the reinforcement learning state and its associated metric.

In Algorithm 2, the entire process is broken down into
several key components and phases, all of which work together
to ensure efficient training and data selection across the
distributed network of clients.

IV. EXPERIMENTS

In this section, the performance of the proposed FedRAL
framework is evaluated on two commonly used benchmarks:
CIFAR-10 [72] and CIFAR-100 [72]. The results are presented
in terms of the annotation budget, accuracy, and precision.
Both mean and maximum values are reported for each exper-
iment, with configurations of 5 and 10 clients.

A. Experimental Setup

Datasets: We use the CIFAR-10 and CIFAR-100 datasets.
Each dataset consists of 60,000 32x32 RGB images, with
50,000 used for training and 10,000 for testing. CIFAR-10
has 10 classes, while CIFAR-100 has 100 classes. For each
dataset, the evaluation data comprise 20% of the total training
data.

Data Partitioning: The experiments are conducted using
the following partitioning scheme:



Algorithm 2 Federated Learning with Reinforced Active
Learning

1: Initialize global classifier model c0 at the central server.
2: Set number of clients K and distribute unique data partitions

D1, D2, . . . , DK to each client.
3: for each federated round t = 1, 2, . . . , T do
4: Model Distribution: The central server distributes the global

classifier model ct−1 to all clients.
5: for each client k = 1, 2, . . . ,K in parallel do
6: Dataset Partitioning: Client k loads its local dataset Dk.
7: Warm-Start Phase: Each client begins by training the

initial classifier model on a small, labeled subset of its local
data. This phase ensures that the model has a foundation
to make informed predictions during the subsequent AL
phases.

8: Agent Phase with DQN: After the warm-start phase, each
client uses its own DQN agent to guide the batch selection
process. The DQN agent interacts with a simulated envi-
ronment E , which reflects the current state of the classifier
model and data distribution. The state provided to the DQN
reflects the model uncertainty.

9: Batch Selection: In each round, the DQN agent selects
a batch of unlabeled data from the local dataset for an-
notation. The agent’s goal is to maximize the classifier’s
performance (measured by precision). The DQN receives
rewards based on how much precision is improved relative
to the selected batch, optimizing the agent’s decision-
making over time.

10: Local Training: Using the selected and labeled batch,
client k trains its local classifier model ctk. The classifier
is updated based on the new annotations, improving the
model’s predictions on the unlabeled data.

11: Weight Update: After training, the updated classifier
model weights ctk are sent back to the central server. It is
important to highlight that only the classifier model weights
are communicated—the DQN weights remain local and are
never shared or aggregated. This ensures that each client
maintains its own policy for data selection.

12: end for
13: Model Aggregation: The central server aggregates the clas-

sifier weights from all clients using the FedAvg algorithm,
which combines the local updates into a global classifier
model:

ct =
1

K

K∑
k=1

ctk

14: Global Model Update: The aggregated global classifier
model ct is redistributed to all clients, serving as the starting
point for the next round of local training and RAL.

15: end for

• 10% of the training data are used as state data for the
DQN agent.

• 10% of the training data are used as warm-start data.
• 60% of the training data are used for DQN training.
• 20% of the training data are used as evaluation data.

Classifier: We use a ResNet-18 [74] model pre-trained on
ImageNet [73] as the classifier for both CIFAR-10 and CIFAR-
100 datasets.

DQN: We implement RL using a non-linear Q-function
approximation based on DQN [38]. Key techniques include
a target network with a slow update rate of 0.01 [38], a

replay buffer of size 50,000 [38], and Double DQN to reduce
overestimation bias [38]. Prioritized Experience Replay [38] is
used, with a prioritization exponent of 3 to balance exploration
and prioritization.

BatchAgent Parameters: The BatchAgent, which is used
for the RAL method in each client, is trained for 25 epochs,
with 5 episodes per epoch and 100 updates per episode.

B. Results on CIFAR-10

Table I presents the performance of the proposed FedRAL
framework on the CIFAR-10 dataset with configurations of
5 and 10 clients. The results highlight the efficiency of
the method in balancing annotation budget, accuracy, and
precision across multiple clients in an FL environment.

TABLE I
RESULTS FOR CIFAR-10 WITH 5 AND 10 CLIENTS USING THE FEDRAL
FRAMEWORK. THE TABLE REPORTS THE MEAN AND MAXIMUM VALUES

FOR THE ANNOTATION BUDGET (AS A PERCENTAGE OF THE TOTAL
EVALUATION DATA), THE ACCURACY, AND THE WEIGHTED AVERAGE

PRECISION.

5 clients 10 clients
mean max mean max

Budget 3.45% 6.39% 2.65% 3.99%
Accuracy 49.10% 50.07% 55.98% 56.96%
Precision 50.57% 51.69% 56.82% 57.80%

The FedRAL framework effectively enhances annotation
budget efficiency, accuracy, and precision. Notably, by allow-
ing each client to select informative batches through the DQN
agent, the model attains improved performance with signifi-
cantly fewer labeled samples, i.e. reaching approximately 50%
accuracy with just 3.5% of the available training data.

Accuracy serves as a crucial metric for evaluating the global
model’s performance. An increase in the number of clients
contributes to better accuracy, primarily due to the diverse
data contributions from multiple clients. This diversity helps
the aggregated model generalize more effectively, capturing
variations within the dataset and resulting in a more robust
overall performance.

Similarly, precision, which measures the correctness of posi-
tive predictions, also improves as the DQN agent’s batch selec-
tion strategy prioritizes high-quality samples. This capability
enhances the model’s ability to make accurate predictions
during training.

As the client count rises, we see consistent gains in both
accuracy and precision, alongside a more efficient use of the
annotation budget. It is evident that by utilizing intelligent
batch selection, FedRAL enhances model performance while
reducing the labeling burden on each client.

C. Results on CIFAR-100

Table II presents the performance of the proposed FedRAL
framework on the CIFAR-100 dataset. Due to the increased
complexity of CIFAR-100 (100 classes instead of 10), we
observe lower accuracy and precision compared to CIFAR-
10. However, the FedRAL framework continues to show



significant performance improvements with additional clients,
demonstrating its effectiveness even in challenging data envi-
ronments.

TABLE II
RESULTS FOR CIFAR-100 WITH 5 AND 10 CLIENTS USING THE FEDRAL
FRAMEWORK. THE TABLE REPORTS THE MEAN AND MAXIMUM VALUES

FOR THE ANNOTATION BUDGET (AS A PERCENTAGE OF THE TOTAL
EVALUATION DATA), THE ACCURACY, AND THE WEIGHTED AVERAGE

PRECISION.

5 clients 10 clients
mean max mean max

Budget 10.16% 13.75% 13.33% 18.40%
Accuracy 29.27% 30.00% 34.41% 35.44%
Precision 30.48% 30.66% 35.95% 36.74%

The CIFAR-100 dataset, which contains 100 classes,
presents a more challenging environment for model training
compared to CIFAR-10. The FedRAL framework demon-
strates its effectiveness in this context through enhanced
annotation budget efficiency, accuracy, and precision.

The batch selection process of the FedRAL framework
ensures that even with a higher annotation budget, the batches
chosen are informative, leading to significant improvements
in model performance. As the number of clients increases,
the data diversity enhances, allowing the global model to
generalize better across a more complex dataset.

Precision, reflecting the accuracy of positive predictions,
also shows notable improvements (30% for only 10% of the
available data). The DQN agent’s AL strategy aids in selecting
batches that refine the classifier’s decision boundaries, en-
abling the model to maximize the effectiveness of each training
round. The ability to prioritize high-quality samples directly
contributes to better overall performance.

While the results on CIFAR-100 are generally lower than
those on CIFAR-10 due to the dataset’s complexity, Fe-
dRAL still achieves meaningful performance enhancements.
The framework effectively manages datasets with numerous
classes, demonstrating high precision and accuracy even with
increased annotation budgets. FedRAL achieves high accu-
racy and precision while keeping the annotation budget low.
Although CIFAR-100 requires a higher budget due to its
complexity, the DQN-based batch selection strategy ensures
that only the most informative samples are chosen for training.
In addition, by increasing the number of clients significantly
enhances overall model performance. By spreading data and
learning across more clients, FedRAL captures a broader range
of features, which is crucial in FL settings where data may be
non-iid.

D. Comparison with Federated Active Learning (F-AL)
The proposed FedRAL framework is compared with F-AL

[75] to evaluate its effectiveness in minimizing annotation
costs and improving performance, especially in resource-
constrained settings where efficiency is crucial.

1) Key Differences Between FedRAL and F-AL: The fol-
lowing points highlight the key differences and unique contri-
butions of FedRAL compared to F-AL:

• Efficiency in Training Epochs: By focusing on the most
informative batches through RAL, FedRAL cuts down the
number of AL runs needed.

• Prioritization of Cost Constraints: FedRAL is tailored
for environments where annotation costs are critical,
optimizing data selection to keep resource expenditures
below set thresholds.

2) Comparison of Annotation Budgets for CIFAR-10 and
CIFAR-100: We set a target accuracy that reflects a real-world
scenario of a device with limited computational resources. We
then evaluate the performance of FedRAL and F-AL in terms
of the total annotation budget required to achieve this accuracy
on the CIFAR-10 and CIFAR-100 datasets.

Table III shows that FedRAL requires an annotation budget
of only 3.45% to achieve the same accuracy (∼50%) as F-AL,
which needs approximately 5-6% of the data to be labeled for
the CIFAR-10 dataset.

TABLE III
APPROXIMATE ANNOTATION BUDGETS LABELED FOR FEDRAL AND F-AL

TO ACHIEVE THE TARGET ACCURACY (50%)

Method Annotation Budget
FedRAL (5 clients) 3.45%

F-AL (5 clients) ∼5-6%

Similarly, in Table IV, FedRAL requires an annotation
budget of 10.16% to reach an accuracy of around 30% for the
CIFAR-100 dataset. In comparison, F-AL needs a much larger
annotation budget of ∼30% to achieve a similar accuracy level.

TABLE IV
APPROXIMATE ANNOTATION BUDGETS LABELED FOR FEDRAL AND F-AL

TO ACHIEVE THE TARGET ACCURACY (30%)

Method Annotation Budget
FedRAL (5 clients) 10.16%

F-AL (5 clients) ∼30%

These results illustrate the clear advantage of FedRAL in
terms of annotation efficiency. By using RL to intelligently
select the most informative batches, FedRAL reduces the
number of labeled instances required to achieve high accuracy.
In contrast, F-AL, while effective, requires significantly higher
annotation budgets to reach the same level of performance.
This makes FedRAL a more suitable option for environments
where minimizing annotation costs is crucial, such as resource-
constrained systems or scenarios with limited labeling capac-
ity.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce FedRAL, a framework that inte-
grates FL with RAL to optimize batch selection in distributed
machine learning. By utilizing RL, FedRAL identifies the
most informative data batches based on model uncertainty,
significantly reducing labeling costs while maintaining privacy.
The results on CIFAR-10 and CIFAR-100 demonstrate that



FedRAL improves both accuracy and precision, all while min-
imizing the need for labeled data. This highlights FedRAL’s
efficiency, making it an ideal solution for systems with strict
resource and cost constraints.

For future work, we plan to enhance FedRAL’s flexibility
by enabling each client to adopt completely different policies,
regarding custom rewards and termination conditions tailored
to their specific data. We will also extend FedRAL to manage
more complex, non-iid data distributions. Additionally, we
aim to improve scalability by investigating more efficient
RL algorithms and reducing communication overhead. These
advancements will make FedRAL more robust for diverse real-
world applications.
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