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Abstract—In this paper, a gaze-based Relevance Feedback
(RF) approach to region-based image retrieval is presented.
Fundamental idea of the proposed method comprises the iterative
estimation of the real-world objects (or their constituent parts)
that are of interest to the user and the subsequent exploitation
of this information for refining the image retrieval results.
Primary novelties of this work are: a) the introduction of a
new set of gaze features for realizing user’s relevance assessment
prediction at region-level, and b) the design of a time-efficient
and effective object-based RF framework for image retrieval.
Regarding the interpretation of the gaze signal, a novel set
of features is introduced by formalizing the problem under
a mathematical perspective, contrary to the exclusive use of
explicitly defined features that are in principle derived from
the psychology domain. Apart from the temporal attributes, the
proposed features also represent the spatial characteristics of
the gaze signal, which have not been extensively studied in the
literature so far. On the other hand, the developed object-based
RF mechanism aims at overcoming the main limitation of region-
based RF approaches, i.e. the frequently inaccurate estimation
of the regions of interest in the retrieved images. Moreover, the
incorporation of a single-camera image processing-based gaze
tracker makes the overall system cost efficient and portable. As
it is shown by the experimental evaluation, the proposed method
outperforms representative global- and region-based explicit RF
approaches, using a challenging general-purpose image dataset.

Index Terms—Relevance feedback, gaze-tracking, gaze analy-
sis, image retrieval.

I. INTRODUCTION

The development and extensive proliferation of advanced
image capturing devices (e.g. smart-phones, portable multime-
dia devices, etc.), as well as the great plurality of the available
means for sharing and distributing the generated content
(especially over the Internet and through the social networks),
have resulted in the formation of literally vast image databases.
As a consequence, the semantic analysis of the image content
has emerged as a crucial and challenging issue [1]. To this end,
extensive research efforts have been invested for developing
systems that will enable the understanding of the actual image
content. The dominant approach consists of automatically
extracting a set of discriminative visual features directly from
the images and subsequently estimating their semantic content
by applying some formal mathematical models. However,
the performance of such methods in realistic environments
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remains insufficient and prevents the respective systems from
being used in real-world applications [2].

One of the most efficient and widely adopted methodologies
for facilitating semantic image analysis relies on the funda-
mental principle of incorporating the human user in the anal-
ysis process. In particular, the user is consecutively providing
to the system feedback information that is used for refining
the retrieved results and the overall procedure unfolds until the
user regards the returned results as satisfactory. This category
of methods is usually entitled Relevance Feedback (RF) [3].
RF is used for: a) providing the system with the appropriate
amount of information that is missing for handling a particular
semantic image manipulation task, and b) for identifying and
modeling the specific information needs raised by a particular
user. RF approaches can be divided, among the use of other
possible criteria, into explicit and implicit methods, based
on the kind of information that is provided to the system.
Explicit methods require from the user to provide explicit
statements regarding the relevance of the returned results. On
the other hand, implicit RF approaches utilize information that
is obtained by the user in an unobscured/non-invasive way (e.g.
gaze-tracking, Electroencephalography (EEG), heart beat rate,
etc.) and aim at predicting the relevance of the returned results.

In the context of image retrieval, explicit RF methods
initially considered global-level feedback information. In [4],
an asymmetric bagging and random subspace Support Vector
Machine (SVM) efficiently handles the problems caused by
the usually small number of positively labeled feedback sam-
ples. In [5], the user’s labeling effort is reduced following a
structural information-based sample selection strategy. Addi-
tionally, several query point movement methods that aim at
reducing the number of the required iterations and improving
the overall retrieval performance are presented in [6]. A direct
kernel Biased Discriminant Analysis (BDA)-based approach to
RF is introduced for overcoming limitations of the traditional
BDA method in [7]. Moreover, Tian et. al [8] efficiently en-
code the user’s labeling information, using a so called ‘sparse
transfer learning’ dimension reduction tool. More recently, the
analysis of explicit RF methods has shifted to a finer level
of detail and region-based approaches have been proposed.
In particular, region-based RF approaches, which however
still receive feedback information at global-level, estimate the
local-level objects that are considered to be relevant to the
query and subsequently using these estimates they refine the
retrieved results. The latter fact, i.e. the inaccurate relevant
region identification, constitutes the main drawback of this
category of methods. Jiang et. al [9] propose an online
feature selection approach for improving the image retrieval
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performance. Additionally, an image retrieval framework that
is based on a graph-theoretic region correspondence estimation
is presented in [10]. A SVM-based approach makes use of an
adaptive convolution kernel for realizing object-based indexing
and retrieval of images in [11]. It must be noted that some
region-based RF methods that allow the manual selection of
the relevant image regions have also been presented, e.g.
[12][13]. Nevertheless, such methods require extensive effort
from the user for providing feedback in every iteration.

Over the past few years, implicit RF has received particular
attention in the image retrieval community. The main advan-
tages of these approaches are [14]: a) the user’s feedback
is captured in a non-intrusive time-efficient way, and b)
the implicit response is more expressive than the explicitly
provided feedback. On the contrary, the main drawback of
these methods is the presence of large amounts of noise in
the feedback data. Typical types of implicit feedback data
that have been used for image RF are click-through [15],
EEG signal [16] and gaze-tracking [17], to name a few.
More recently, the exploitation of the information that is
available in the social media, which can be considered as
a particular type of implicit RF data, has gained particular
attention. Sang et. al [18] propose a personalized image search
framework, taking into account image tags. In [19], image
ranking is realized using both social and visual data for
improving the relevance between the returned images and
the users’ intentions. Among the different types of implicit
feedback data, gaze-tracking (or eye-tracking) is of particular
importance to image retrieval applications, since it can provide
valuable information with respect to which parts of the image
the user has observed as well as cues regarding the relevance
of the latter to the query at hand. The great majority of gaze-
tracking approaches related to image retrieval have focused
on predicting the user’s relevance assessment at the image
level, which certainly is not a trivial task, and have little been
considered for the development of a complete RF system. In
[20], implicit feedback about the users’ attention is measured
using an eye-tracking device for inferring the relevance of
images. Faro et. al [21] propose an implicit RF method for re-
ranking the retrieved images according to users’ eye gaze data.
Additionally, the work of [22] explores possible solutions for
image annotation and retrieval, by implicitly monitoring the
user’s attention via eye-tracking. In [23], the idea of implicitly
incorporating eye movement features in an image ranking task
is investigated. Klami [24] infers possible target regions in the
examined images from gaze data and estimates the relevance
of those regions using a simple classifier. Key characteristic of
all the above methods is that they rely on the use of explicitly
defined gaze features, which are derived from the psychology
domain and highlight particular attributes of the gaze signal,
for predicting the user’s relevance assessment.

In this paper, a gaze-based relevance feedback approach to
region-based image retrieval is presented. The fundamental
novelty of the proposed approach is the use of the gaze
signal for addressing the main challenge in region-based
image RF, i.e. the accurate and time-efficient identification
of the objects of interest. For that purpose, a novel gaze
signal interpretation method is introduced, which iteratively

estimates the real-world objects (or their constituent parts)
that satisfy the user’s information needs and subsequently uses
this information for refining the image retrieval results. On the
contrary, region-based image RF approaches of the literature
incorporate computationally expensive processes (e.g. inexact
graph matching [10], region clustering [25], fuzzy codebook
creation [9], etc.) that often lead to inaccurate detection of the
regions of interest; hence, also resulting in decreased image
retrieval performance. Fundamental contributions of this work
constitute: a) the introduction of a novel set of gaze features for
performing the prediction of the user’s relevance assessment
at the image region level, and b) the design of a time-
efficient and effective object-based RF framework for image
retrieval. Regarding the proposed features, they are computed
following a mathematical formalization. This constitutes a
sharp contradistinction to the entire relevant literature, which
is only limited to the use of explicitly defined gaze features
that are in principle derived from the psychology domain and
highlight only a small set of specific attributes of the gaze
signal. In particular, for efficiently describing the temporal
characteristics of the gaze signal, a frequency domain analysis
is proposed that results into a significantly more detailed and
complex representation, compared to typical approaches of the
literature that employ simple features, like the number of fix-
ations, the visit length, the number of visits, etc. Additionally,
for effectively representing the spatial-related characteristics
of the gaze signal, a translation, rotation and scale invariant
approach is proposed that models the distribution of the user’s
attention on the different areas within a given image region, as
opposed to the significantly simpler features of the literature
(e.g. the difference between the largest and the smallest x(y)-
coordinate, the elongation of the x- and y- coordinate spreads,
etc.). Moreover, a thorough feature evaluation procedure is
applied, which aims at achieving an optimal balance between
the needs for selecting the most discriminative features and
also increasing the time efficiency of the proposed approach.
Regarding the design of the proposed object-based RF frame-
work, this also involves the development of: i) a single-camera
image processing-based gaze-tracker for capturing the user’s
implicit response, and ii) an appropriate dynamic interface for
efficiently and accurately capturing gaze-related information
at the image region-level. Particular attention is given to
maintain low computational complexity, which is significantly
facilitated by the proposed gaze signal interpretation procedure
that enables the extraction of valuable and detailed feedback
information, i.e. a set of local image regions each accompanied
with a relevance degree, from the raw gaze data. As it will be
shown by the experimental evaluation, the proposed gaze fea-
tures compare favorably with similar state-of-art ones, while
the overall RF framework outperforms representative global-
and region-based explicit RF approaches of the literature.

The remainder of the paper is organized as follows: Section
II describes the designed system for gaze-based RF. Section
III outlines the developed gaze-tracking framework. The gaze-
based relevance assessment prediction procedure is detailed in
Section IV. Section V describes the developed RF mechanism.
Extensive experimental results regarding the evaluation of the
proposed gaze features and the designed RF framework, using
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a challenging dataset of 9933 Flickr images, are given in
Section VI, and conclusions are drawn in Section VII.

II. SYSTEM OVERVIEW
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Fig. 1. General architecture of the proposed region-based RF approach for
image retrieval.

The first step in the developed RF framework, whose
general architecture is illustrated in Fig. 1, concerns the pre-
processing of the images used. In particular, every image is
spatially segmented, in order to identify the real-world objects
that it contains. Subsequently, region-level visual features are
extracted that will be used for assessing the visual similarity
between the respective objects.

Key part of the overall architecture constitutes the implicit
user feedback capturing process. For that purpose, an appropri-
ate gaze-tracking framework has been designed. This involves
the development of a single-camera image processing-based
gaze-tracking sensor and a dynamic interface for efficiently
capturing gaze-related information at region-level. Following
the estimation of the gaze point trajectory, two sets of features,
namely a temporal- and a spatial-related one, are extracted
only for those image regions that the user has observed. Then,
a feature selection procedure is applied for maintaining the
most discriminative features.

As can be seen in Fig. 1, the developed RF mechanism has
two distinct modes, namely a training and an evaluation one.
During the training mode, the gaze behaviour of the user(s)
is modeled. For that purpose, different sets of images, each
accompanied with a predefined query, are formed. Then, the
user(s) is(are) asked to examine every set of images, using the
developed gaze-tracking framework and taking into account
the respective query. This results in the generation of a set of
gaze features for the regions that have been seen by the user(s).
Subsequently, the user(s) is(are) asked to manually annotate
the latter image regions as relevant or irrelevant. The computed
region-level gaze features, along with their associated manual
annotations, are then used for training the user relevance
assessment predictor. On the other hand, the RF evaluation
mode is initialized with an image relevance estimation step
that provides a ranking of the images with respect to the
specific query used during the evaluation. Then, similarly to

the training mode, the implicit user feedback is captured for
the K top-ranked images. The difference is that the developed
predictor is now used for estimating the user’s relevance
assessment, i.e. a relevance degree for every observed region.
All regions that have been seen by the user during the whole
RF session, along with their associated degrees of relevance,
are collected and form a composite image, which is used
during the computation of the image relevance ranking.

III. GAZE-TRACKING FRAMEWORK

A. Gaze-tracker

Sophisticated gaze-tracking systems with increased accu-
racy and time efficiency, which typically use infrared illumi-
nation, are commercially available, e.g. Tobii1, SMI2, Eye-
Tech3 and Mirametrix4, to name the most representative ones.
However, a prohibitive factor for the extensive use of such
specialized equipment constitutes their significantly high cost.
For satisfying the requirements for low-cost and portability, an
image processing-based approach that makes use of a single
camera is followed for performing gaze-tracking in this work.

For developing the proposed gaze-tracking framework, the
method of [26] is followed, which relies on the use of the
Candide-3 face model [27]. More specifically, the user needs
to adjust the face model to his/her head in an off-line step. For
every subsequent frame, the head pose is estimated according
to the POSIT algorithm [28], using the face model vertices
corresponding to the ones of the off-line step. The latter
is carried out by calculating the Pyramidal Lucas-Kanade
optical flow [29] on two data streams. The first stream is the
camera frame capturing one, where optical flow for frame t is
calculated using also the previous frame t − 1. The second
stream is formed by the frame captured at time t and a
keyframe. The latter is computed by estimating the head pose
at t − 1, where all face model vertices are known since they
correspond to the rigid vertices of the Candide-3 model, and
considering a textured instance of the face model at this pose.
POSIT then extracts the face model’s rotation and translation
for the current frame t. This head pose is used to obtain
the face model’s landmark positions. Out of the available
landmarks in the Candide-3 model, a set of points around the
user’s eyes were selected; hence, creating regions of interest
surrounding the area of the eyes. An adaptive thresholding
technique is subsequently applied to these regions of interest,
similarly to the well-known Otsu histogram shape-based image
thresholding algorithm [30], to segment the pupils from the
background (e.g. sclera). In particular, for every eye region
the image is transformed to the gray scale colour space and
eroded. Then, increasing threshold values are consecutively
applied until the darker pupil region is clearly segmented from
the more lightly toned areas of the eye. More specifically,
continuously increasing illumination values, ranging from 0 to
255, are used as thresholds in each step. For every threshold

1http://www.tobii.com/
2http://www.smivision.com/
3http://www.eyetechds.com/
4http://mirametrix.com/
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(a) (b)

(c) (d) (e)

(f) (g) (h)
Fig. 2. Pupil center localization process: (a) Adjustment of the Candide-3
face model. (b) Definition of the region of interest. (c) Conversion to gray
scale. (d) Erosion of gray scale image. (e) Segmentation of pupil region. (f)
Estimation of pupil region contour. (g) Computation of contour’s medium. (h)
Definition of the pupil center.

value, the largest formed connected area is considered to cor-
respond to the pupil. The respective pupil center is located by
identifying points on the pupil region’s contour and calculating
the medium point P (χ, ψ), where the coordinates (χ, ψ) refer
to the image plain captured by the camera. The above process
is considered to converge (and hence terminated) if for 10
successive illumination threshold values, the position of the
medium point does not exceed a maximum displacement of
3 pixels in vertical or horizontal direction; the medium point
of these 10 successive thresholding steps is considered the
final estimated pupil point P (χ, ψ). In the very unlikely event
that the aforementioned procedure does not converge, the
first estimated pupil region that is bigger than a predefined
value (which is experimentally defined equal to 15 pixels) is
assumed to correspond to the final pupil area and hence the
pupil point P (χ, ψ) is estimated as the medium point of its
contour, as described above. The overall pupil center tracking
process is illustrated in Fig. 2.

For identifying the user’s gaze point on the screen, a
calibration process is performed off-line. This aims at stor-
ing information regarding the pupil center P (χ, ψ) and one
of the eye corners E(χ, ψ) for each eye. The calibration
process comprises the successive display of eight points di-
ametrically placed on the screen, as depicted in Fig. 3. For
estimating the user’s gaze point, the methodology described
in [31] is adopted. In particular, for each eye an eye cor-
ner to pupil center vector Ui(χi, ψi), i ∈ [1, 8], is stored
for each of the eight calibration points that correspond to
known points ∆i(xi, yi) on the monitor, where the coordi-
nates (x, y) refer to the image plain depicted on the screen.
The method of [31] originally requires the coordinates of
only two calibration points, namely the values of variables
(χright, χleft, ψtop, ψbottom), which correspond to the respec-
tive known values (xright, xleft, ytop, ybottom) defined in Fig.
3, for performing gaze-tracking. On the contrary, the proposed
approach exploits information from eight calibration points for
estimating these values, according to the following equations:
χleft = χ1+χ4+χ6

3 , χright = χ2+χ5+χ8

3 , ψtop = ψ1+ψ3+ψ5

3

and ψbottom = ψ2+ψ4+ψ7

3 . In this way, insertion of noise dur-
ing the calibration phase is significantly reduced. According

to [31], every eye corner to pupil center vector U(χ, ψ) is
linearly mapped to a gaze point on the screen ∆(x, y) using the
following equations: x = xleft +

χ−χleft

χright−χleft
(xright − xleft)

and y = ytop+
ψ−ψtop

ψbottom−ψtop
(ybottom−ytop). Having estimated

the coordinates of the gaze point ∆(x, y) from the separate
processing of each eye, the final gaze point position on
the screen is computed by calculating the average of the
coordinates of these two points.

Fig. 3. Gaze-tracking framework setup and calibration procedure.

B. Developed interface

The increased needs for combining effective image brows-
ing capabilities and sufficient accuracy in capturing region-
level gaze-related information have led to the design of a
dynamic interface. In particular, the images are presented to
the user in tens; this was selected as a good trade-off between
the need for accurate browsing using the gaze sensor (i.e.
sufficient size of the images for their details to be adequately
visible) and an adequate number of images that will not delay
the overall RF procedure. The transition between successive
tens of images is performed with the press of a keyboard
button. Additionally, the interface has two functional modes:
a) the ‘browsing’ and b) the ‘zoom-in-image’ modes, which
are depicted in Fig. 4. As can be seen, in the ‘browsing’ mode
the images are arranged in two rows of five images each,
where the centers of all images are aligned with respect to
each row and column. The resolution of the interface image
is 1280x768 (horizontal x vertical dimension). The maximum
dimension of a depicted image is set to 200 pixels, while the
horizontal and the vertical margins between the images are
set equal to 50 and 100 pixels, respectively. It must be noted
that if an image’s bigger dimension is greater than 200, then
the image is scaled so that its bigger dimension to be equal
to the limit value of 200 pixels, using linear interpolation.
On the other hand, the ‘zoom-in-image’ mode is introduced
for handling the problem of capturing accurate gaze-related
data at region-level. This mode is entered if the user’s gaze
point stays on the area of a particular image for a minimum
time interval of 800 msec, while in ‘browsing’ mode. Once
the ‘zoom-in-image’ mode is entered, the image that the user
focuses on is enlarged to its original size or (if the bigger
image dimension exceeds the limit value of 668 pixels) is
linearly interpolated so that its bigger dimension to be equal
to 668 pixels. Additionally, the enlarged version of the image
is placed in the center of the interface and the background is
faded, as it is illustrated in Fig. 4(b). It must be highlighted that
gaze-related information for any image region is only captured
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(a) (b)
Fig. 4. Functional modes of the developed interface: (a) ‘browsing’ and (b) ‘zoom-in-image’. The white circle denotes the current position of the gaze point.

when the respective image is in ‘zoom-in-image’ mode. The
‘zoom-in-image’ mode is exited and the interface returns to
the ‘browsing’ mode, if the user focuses outside the limits
of the zoomed image for a minimum period of 1200 msec.
In order to avoid any unintended successive enterings of the
‘zoom-in-image’ mode, the ‘zoom-in-image’ mode is set to be
always succeeded by a browsing mode and vice versa.

IV. GAZE-BASED RELEVANCE ASSESSMENT PREDICTION

A. Image pre-processing

Prior to any user implicit feedback interpretation procedure,
every image is segmented to regions and suitable low-level
descriptors are extracted for every resulting segment. In this
work, the segmentation algorithm of [32] is used, which was
experimentally shown to provide satisfactory results in a wide
variety of general-purpose image datasets [33]. Output of this
segmentation algorithm is a segmentation mask, where the
created spatial regions sn, n ∈ [1, N ], are likely to repre-
sent meaningful real-world objects. Every generated image
segment sn is subsequently represented with the use of a
visual feature vector vn. For that purpose, the OpponentSIFT
descriptor [34] is extracted at a set of keypoints of a pre-
determined image grid. Then, adopting the ‘Bag-of-Words’
(BoW) methodology [35], each region is represented by a
histogram of 1000 visual words. The latter histogram, which
is L1 normalized, constitutes the region feature vector vn. In
the current implementation, the above pre-processing step is
performed for all images prior to the application of any gaze
interpretation procedure, i.e. it is an off-line process. On the
contrary, the user’s relevance assessment prediction and the
application of the relevance feedback mechanism, which are
described in the following sections, are performed on-line.

B. Extraction of region-level gaze features

In this section, the proposed features for performing user’s
relevance assessment prediction at region-level are described.
Their definition is based on the fundamental concept of fixa-
tion. A fixation is considered to occur when the eyes remain
relatively still for a minimum time interval [36], typically
a few hundred msec, and takes place when the individual
attempts to identify the details of an object of interest. All
other continuous and more extensive eye movements are called

saccades [37]. In this work, the proposed gaze features are
defined considering only the fixations, since they contain more
valuable information and less noise than saccades. Among the
different definitions of fixation [38], the Dispersion-Threshold
Identification (I-DT) method [39] constitutes the most widely
used one and is also adopted in this work. According to the
latter definition, a fixation is considered to occur if the gaze
point remains in a circular area of radius R pixels for a
minimum of Θ msec (typically between 100 and 200 msec).
For the employed gaze-tracker (Section III-A), the following
values, which are also commonly used, were selected based
on experimentation: R = 30 pixels and Θ = 200 msec. In
the sequel, a fixation will be denoted as Fk(xk, yk, ts, te),
k ∈ [1,K], where point (xk, yk) will correspond to the
center of the aforementioned circular area and ts, te to
the start, end time of the fixation, respectively. It must be
noted that before the fixation identification process the gaze
trajectory is low-passed for noise removal. This is performed
by applying a simple mean filter of length 5, separately to
the horizontal and vertical gaze coordinate signals, as follows:

x̃(t) =

∑2

ζ=−2
x(t+ζ)

5 and ỹ(t) =

∑2

ζ=−2
y(t+ζ)

5 , where x̃(t),
ỹ(t) and x(t), y(t) are the low-passed and original horizontal,
vertical coordinates of the gaze signal at time t.

Literature approaches dealing with the definition of gaze
features have so far concentrated on guidelines provided solely
by the psychological domain, where the proposed features only
highlight a small set of specific attributes of the gaze signal,
while the spatial dimension of the gaze point trajectory is also
naively investigated. A thorough review of the most recent and
distinguished gaze features is given in Table I.

For efficiently describing the temporal characteristics of the
gaze signal, an analysis in the frequency domain is proposed.
In particular, a time sequence, namely a fixation sequence, is
constructed for denoting when the focus of the user’s gaze lies
in every image region smn , where Im, m ∈ [1,M ], denotes an
image of the employed dataset. Region smn is considered to
be seen by the user if image Im is zoomed and a fixation
Fk(xk, yk, ts, te) occurs in the area that corresponds to smn .
The aforementioned fixation sequence for region smn is binary
and is estimated according to the following equation:

FSmn (t) =
{

1, if ∃ k : Fk(xk, yk, ts, te) ∈ Sm
n (t), ts ≤ t ≤ te

0, otherwise (1)

where Smn (t) is the area of the interface captured by region
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TABLE I
GAZE FEATURES PROPOSED IN THE LITERATURE. FEATURES MARKED WITH AN ASTERISK (*) WERE NOT USED DURING THE EVALUATION.

Approach Gaze features

[22]

Times an image was visited, Times an image was skipped between fixations, Total time the user spent on image, Average visit duration on image,
Maximum visit duration on image, Duration of first visit on image, Rank of images with respect to features 3-6, Proportion of values of features

3-6 to the total time for each image, Pixel number between consecutive images, Duration visit of the image at the end of the transition, The entrance
gaze angle to an image, Distance from previously visited image divided by visit duration of current image, Distance from next visited image divided by

visit time of current image, Distance of previous and next visited images over visit time of current image, Visit time of the image at start over visit
time of the image at end of transition, Feature equal to 1 for the local maximum in the formed time vector and 0 for the rest, Feature equal to 1

for the local minimum in the formed time vector and 0 for the rest

[23]

Number of raw data measurements, Number of measurements outside fixations, Percentage of measurements inside/outside fixations, Difference between
largest and smallest x-coordinate, Difference between largest and smallest y-coordinate, Elongation of x- and y- coordinate spreads, Average distance

between two consecutive measurements, Number of sub-images covered by measurements, Coverage normalized by number of measurements,
x-coordinate of first measurement, y-coordinate of first measurement, x-coordinate of last measurement, y-coordinate of last measurement, Maximum

pupil diameter, Number of breaks longer than 60 ms2, Number of breaks longer than 600 ms2, Number of fixations, Mean length of fixations,
Total length of fixations, Percentage of time spent in fixations, Number of re-visits to the image, Maximum angle between two consecutive saccades,

x-coordinate of first fixation, y-coordinate of first fixation, x-coordinate of last fixation, y-coordinate of last fixation, Difference between largest
and smallest x-coordinate of fixations, Difference between largest and smallest y-coordinate of fixations, Elongation of x- and y- coordinate spreads

of fixations, Length of the first fixation, Number of fixations during first visit, Distance to the fixation before the first∗, Duration of the
fixation before the first∗

[17]

Image shown on onset, Time to first image visit, Mean length of fixations, Standard deviation of fixation occurrence times, Total length of fixations,
Maximum continuous image viewing time, Mean length of continuous image viewing sessions, Maximum continuous image viewing time, Proportion of

overall image viewing time over total viewing time, Proportion of overall image viewing time over total viewing time in the same ring∗, Mean
length of saccade before fixation, Proportion of times when previous fixation over the same image, Proportion of times when previous fixation

over empty space, Proportion of times when previous fixation over the same ring∗, Number of images viewed on the ring before the first fixation
on the image∗, Number of image revisits, Average distance from previously viewed image on the same ring∗

[24] Number of fixations, Total fixation time, Length of the first fixation, Number of region visits, Time of first fixation since onset, Time of last
fixation since onset, Index of first fixation, Index of last fixation, Standard deviation of fixation indices, Whether first fixation occurred in region

[40] Fixation duration, Fixation count, Fixation length, Number of revisits

[20] Total fixation length, Number of fixations, Average fixation length, Number of transitions from an image to another, Number of images with at least
one fixation, Number of fixations within each image

smn if image Im is zoomed at time t (Smn (t) = ∅ if image
Im is not zoomed at time t). Having computed the FSmn (t)
sequence for all image regions smn seen by the user, a corre-
sponding normalized fixation sequence F̂S

m

n (w), w ∈ [1,W ],
of predetermined length is estimated using linear interpolation.
This normalization step is performed for maintaining that
the gaze features estimated from fixation sequences derived
from different sessions, which are likely not to be of equal
duration, to be directly comparable. Then, the Discrete Cosine
Transform (DCT) is applied to F̂S

m

n (w), as follows:

fcmn (q) =
W∑
w=1

F̂S
m

n (w) cos
π

W
[(w − 1) +

1

2
(q − 1)], (2)

where fcmn (q) are the estimated DCT coefficients and q ∈
[1,W ]. The reason for using the DCT transform is twofold:
a) its simple form requires relatively reduced calculations, and
b) it is a frequency domain transform that receives as input
a real sequence and its output is also a real set of values. It
must be noted that other common frequency analysis methods
(e.g. Fourier transform) were also evaluated; however, they did
not lead to increased performance compared to DCT. Out of
the W fcmn (q) coefficients, only the first L are considered,
since the remaining ones: a) were experimentally shown to
correspond mainly to noise, and b) their removal will alleviate
the subsequent processing steps. These L selected coefficients
constitute the temporal gaze features for region smn .

0 500 1000 1500 2000 2500

0

0.5

1

w

 

 

Normalized fixation sequence
Reconstructed fixation sequence

Fig. 5. Example estimation of the normalized fixation sequence and the
respective reconstructed one.

An example of estimating the normalized fixation sequence
F̂S

m

n (w) and the reconstructed one, F̃S
m

n (w), using only the

first L fcmn (q) coefficients is illustrated in Fig. 5. As can be ob-
served, the fcmn (q) coefficients encompass significantly more
detailed and complex information regarding the characteristics
of the gaze signal than typical approaches of the literature.
The latter rely on the use of simple features (Table I), like the
number of fixations, the visit length, the number of visits, the
average visit duration, the time of the first fixation, etc.

For describing the spatial-related characteristics of the gaze
signal, an approach that satisfies the needs for translation,
rotation and scale invariance is proposed in this work. Key
idea for the subsequent analysis constitutes the introduced gaze
energy field. This field is estimated for every image region
smn seen by the user. In particular, it is considered that every
fixation Fk(xk, yk, ts, te) carries a certain amount of energy,
which is proportional to its duration and spreads within the
fixation area. More specifically, a fixation Fk(xk, yk, ts, te)
that occurs on region smn (as defined in (1)) is modelled as a
normalized 2D Gaussian distribution of the following form:

Gk(x, y) = Bke
− 1

2 (
ϱ
24 )

2

[1− u(ϱ−R)], (3)

where Bk = te − ts is the duration of the fixation mea-
sured in sec, u(·) is the unit step function and ϱ =√

(x− xk)2 + (y − yk)2. The above definition considers that
the gaze energy distribution Gk(x, y) has a peek value at the
center point (xk, yk) of the fixation area equal to the fixation
duration Bk in sec and receives non-zero values in a circular
area of radius equal to R = 30 pixels (i.e. the same radius
length used in the definition of the fixation). Additionally,
the standard deviation of the distribution was selected so
that the minimum non-zero value of the distribution, which
is observed at the margins of the aforementioned circular
area, to be approximately half of the respective maximum
value of the distribution that is measured at the central point
(xk, yk). The latter selection was made based on experimenta-
tion and was shown to lead to increased performance. Having
defined the energy distribution that corresponds to fixation
Fk(xk, yk, ts, te), the gaze energy field for region smn seen
by the user is defined, taking into account only the fixations
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(a) (b) (c)
Fig. 6. Extraction of spatial-related gaze features: (a) original image, (b)
segmentation mask, and (c) spatial-related gaze feature extraction procedure
for the region corresponding to the depicted building.

that occur in the region, according to the following equation:

EFmn (x, y) =
∑
k

Gk(x, y)
∩

Smn (t)

∀ k : Fk(xk, yk, ts, te) ∈ Smn (t), ts ≤ t ≤ te (4)

The estimated energy field provides detailed information, re-
garding the distribution of the user’s attention on the different
areas within a given image region.

For extracting a spatial-related description of the gaze signal
for region smn , the center of gravity CGmn (xg, yg) of the gaze
energy field EFmn (x, y) is initially computed. Then, a set
of L concentric ring-shaped areas are estimated, using point
CGmn (xg, yg) as center. These ring-shaped areas, denoted as
RAmn,l(x, y), l ∈ [1, L], are defined as follows:

RAmn,l(x, y) = {(x, y) : (l − 1) · β ≤ δ < l · β}, (5)

where δ =
√
(x− xg)2 + (y − yg)2, β = Dmax/L and Dmax

denotes the maximum Euclidean distance of a point belonging
to region smn from the computed center CGmn (xg, yg). Subse-
quently, the energy included in each of the formed RAmn,l(x, y)
areas is calculated, according to the following equation:

aemn,l =
∑
(x,y)

EFmn (x, y) : (x, y) ∈ RAmn,l(x, y)
∩

Smn (6)

where aemn,l, l ∈ [1, L], is the computed energy value for
the ring-shaped area RAmn,l(x, y) and Smn denotes the area
captured by region smn when image Im is zoomed. These
L calculated values constitute the proposed spatial features.
It must be noted that L values were selected for describing
the spatial characteristics of the gaze signal, in order for
the temporal and the spatial gaze features to receive equal
importance in the subsequent analysis.

An example of extracting the spatial gaze features is given in
Fig. 6. In this example, a user was asked to search for buildings
in a set of presented images during a gaze-tracking session.
In the figure, an indicative image is illustrated (Fig. 6(a))
along with the corresponding segmentation mask (Fig. 6(b)).
In Fig. 6(c), the bounding box of the region that corresponds
to the depicted building is presented, along with the estimated
gaze energy field EFmn (x, y), the computed center of gravity
CGmn (xg, yg) (highlighted with X) and the corresponding
ring-shaped areas RAmn,l(x, y) defined according to (5).

The estimated spatial features aemn,l and the temporal-related
fcmn (q) coefficients computed for region smn are concatenated
and form a region feature vector, denoted by gf(smn ). This
vector describes the way that the user has seen region smn .

C. Feature selection

The estimated gaze vector gf(smn ) is of high dimension-
ality, while it also contains significant amounts of redundant
information. In order to improve the prediction performance
and time efficiency, a feature selection procedure is performed,
aiming at achieving an optimal balance between the needs for
selecting the most discriminative features and reducing the
dimensionality of the gaze vector. In this work, the following
feature selection techniques are evaluated:

• Principal Component Analysis (PCA): It is a standard
technique that considers the linear dependencies among
the features [41].

• Correlation-based Feature Selection (CFS): It is based
on the fundamental hypothesis that good feature subsets
contain features highly correlated with the class, yet
uncorrelated with each other [42].

• Chi-Square attribute Selection (CSS): Similarly to CFS,
CSS [43] also selects an optimal subset of the features,
using the chi-square statistic.

• Information Gain (IG): IG quantifies the effectiveness
of a feature by measuring the expected reduction in the
entropy caused by partitioning the samples with respect
to the examined feature [44].

• Gain Ratio (GR): It extends the IG technique by introduc-
ing an additional term that takes into account how each
feature splits the samples [44].

Output of the feature selection procedure, regardless of the
particular technique used, is a ‘reduced’ feature vector. This
feature vector is denoted by g̃f(smn ) and its dimensionality
is equal to Z, where Z < 2L. g̃f(smn ) is the final gaze
vector estimated for region smn . It must be noted that addi-
tional feature selection techniques were also evaluated (namely
Consistency-based, Relief Attribute Selection, SVM-based,
Adaboost and Mutual Information-based); however, they led
to inferior performance compared to the ones described above.

D. User relevance assessment prediction

The task of predicting the user’s relevance assessment, i.e.
identifying if the image regions that the user has observed
are of interest to him/her or not based on the captured gaze
data, is formalized in this work as a binary classification
problem. In particular, the observed regions are considered
to belong to two distinct classes, namely the relevant and the
irrelevant one, with respect to the posed query. For tackling
this challenging task, SVMs are selected due to their reported
generalization ability [45]. Under the proposed approach, a
SVM is introduced for classifying each gaze vector g̃f(smn )
as relevant or not. More specifically, the SVM receives as
input the vector g̃f(smn ) and estimates a degree of relevance,
denoted rd(smn ) ∈ [−1, 1], for region smn , where rd(smn ) = 1
represents a relevant sample and rd(smn ) = −1 an irrelevant
one. A sigmoid function is employed [46] for estimating the
value of rd(smn ), according to the following equation:

rd(smn ) =
2

1 + eη·ξnm
− 1 , (7)
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(a) (b)

Fig. 7. Examples of composite image formation for the posed query term ‘street’: (a) CI(0) and (b) CI(1).

where ξnm is the distance of the particular vector g̃f(smn ) from
the corresponding SVM’s separating hyperplane and η is a
slope parameter set experimentally. Distance ξnm is positive in
case of a positively classified sample and negative otherwise.

V. RELEVANCE FEEDBACK MECHANISM

In this section, the proposed region-based RF mechanism for
updating the image retrieval results, by taking into account the
user’s gaze signal, is presented. Key part with great impact on
the final performance constitutes the user’s relevance assess-
ment prediction procedure, as detailed in Section IV. Particular
attention has been paid during the design of the proposed
RF mechanism to maintain low computational complexity,
characteristic that is essential for using the overall system in
large-scale applications.

Under the proposed approach, an extension of the tradi-
tional ‘Query-expansion’ method is introduced. In particular,
fundamental idea of the overall approach constitutes the so
called composite image. This image is gradually constructed
by continuously adding the image regions smn observed by the
user along with their estimated degree of relevance rd(smn ). In-
tuitively, the composite image can be considered as a drawing
canvas, where the user continuously adds pieces of visual in-
formation that satisfy his/her information needs and eventually
builds a complex high-level semantic concept that represents
his/her perception of the posed query. The RF mechanism is
formalized as follows: The composite image at iteration τ ,
denoted as CI(τ), comprises all image regions smn that have
been seen by the user from the beginning of the session, along
with their corresponding degree of relevance rd(smn ), and is
represented according to the following equation:

CI(τ) = {(smγ
nγ
, rd(smγ

nγ
)), γ ∈ [1,Γ]} , (8)

where index γ is introduced for denoting the number of regions
that are present in the composite image. CI(τ) is updated at
the end of iteration τ , as described in Section II and illustrated
in Fig. 1. It must be noted that during the initialization of the
proposed RF approach the composite image is considered to be
empty, while in the very unlikely event of a particular region
being observed by the user in more than one iterations then
only the highest value of rd(smγ

nγ ) is included in CI(τ). For
estimating the updated image retrieval results (i.e. an updated
image ranking) at iteration τ+1, the following image relevance

metric is used:

IRτ+1(Im, CI(τ)) =
∑
n

rd(s
mϕ
nϕ ) · µ · area(smn )

µ = [1−D(v
mϕ
nϕ ,v

m
n )], ϕ = argmin

γ
[D(vmγ

nγ
,vmn )] (9)

where D(v
mϕ
nϕ ,v

m
n ) ∈ [0, 1] denotes the normalized Eu-

clidean distance between the feature vectors v
mϕ
nϕ and vmn

that correspond to regions s
mϕ
nϕ and smn , respectively, and

area(smn ) ∈ [0, 1] denotes the relative area of region smn in
image Im. From the above definition, it can be seen that every
region smn in the examined image Im is associated with a
unique region smϕ

nϕ of the composite image CI(τ) based solely
on visual similarity. The importance of the latter assignment,
which in principle controls the RF process, is weighted by the
rd(s

mϕ
nϕ ) degree, which is estimated according to (7).

Indicative examples of composite image formation are given
in Fig. 7. The composite images at the end of the first and
the second iteration (i.e. CI(0) and CI(1), respectively) are
depicted from an image retrieval session, where the posed
query to the user was the term ‘street’. The regions smγ

nγ in
Figs. 7(a) and 7(b) are sorted in descending order with respect
to their associated rd(s

mγ
nγ ) degree, starting from the upper-

left corner of each figure and moving from left-to-right and in
a line-by-line mode. As can be seen, the proposed approach
achieves to distinguish the relevant from the irrelevant objects.
Inevitably, some false negative samples are also present, like
the last building object in both CI(0) and CI(1) that is
identified as irrelevant with a low degree though.

VI. EXPERIMENTAL RESULTS

In this section, experimental results from the application
of the proposed gaze-based RF approach to region-based
image retrieval are presented. In particular, extensive exper-
iments have been conducted for: a) performing an empirical
evaluation of the employed gaze-tracker, b) evaluating the
efficiency of the proposed gaze features and comparing them
with features presented in the literature, c) examining the
image retrieval performance of the overall gaze-based image
RF approach and its comparison with representative state-of-
art explicit image RF methods, and d) comparatively evalu-
ating the time efficiency of the proposed image RF method.
Additionally, a discussion regarding the factors that affect the
performance of gaze interpretation algorithms is also given.
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The user was initially given a particular query term and
asked to examine a ranked set of images. In this work, a
random initial ranking of the images was considered. The
tracking of the user’s gaze was performed using the framework
described in Section III. Subsequently, the prediction of the
user’s relevance assessment was realized using temporal and
spatial region-level gaze features, as detailed in Section IV.
Then, an updated ranking of the images, with respect to
their relevance to the given query, was estimated, using the
relevance feedback mechanism outlined in Section V. The
aforementioned iterative procedure was performed a predeter-
mined number of times. The value of parameter W in (2), i.e.
the length of the normalized fixation sequence F̂S

m

n (w), was
set equal to 2500, since the length of any fixation sequence
FSmn (t) was not observed to exceed this value during the
experiments conducted. Additionally, parameter η in (7) was
set equal to 0.7, based on experimentation. Relatively small
deviations around this value led to negligible variations in
the overall image retrieval performance. The SVM predictor
in Section IV-D was implemented using a polynomial kernel
function.

For evaluating the efficiency of the proposed approach,
a challenging general-purpose image dataset was assem-
bled. For that purpose a set of 10 high-level seman-
tic concepts was initially defined, namely set C =
{car, building, person, road, sea, beach, street, living−
room, forest, desert}. Using the concepts in C as key-
words, a corresponding set of 9933 images were retrieved from
the Flickr5 online photo management and sharing application,
maintaining that approximately 1000 images were collected
for every keyword. The dataset, as well as the source code
for computing the proposed region-level gaze features, can be
downloaded from http://vcl.iti.gr/evaluation-datasets/.

A. Empirical gaze-tracker accuracy evaluation

The efficiency of the gaze-tracker has a significant impact on
the performance of the overall RF approach. As a consequence,
the accuracy of the employed tracker is examined in this
section. Table II briefly outlines some of the approaches
that have been introduced for measuring the performance
of image processing-based gaze-trackers. For producing di-
rectly comparable evaluation results, the performance of the
developed gaze-tracker was evaluated using the experimental
protocols described in the works of [47][31][48][49][50][51].
The comparative evaluation results given in Table II show
that the developed gaze-tracker outperforms most state-of-art
approaches.

Most of the works reported in Table II rely on the use
of static markers in fixed positions for evaluating the gaze-
tracking performance. In this way, the behavior of the gaze-
tracker is not adequately examined. For that purpose, a signif-
icantly more challenging and thoroughly defined experiment
is proposed with the following two key characteristics: a) it
can be easily reproduced, and b) it takes into account both the
spatial accuracy and the temporal coherence of the tracker.
More specifically, a red circle was depicted on the screen

5http://www.flickr.com/

TABLE II
EXPERIMENTS FOR MEASURING THE ACCURACY OF IMAGE

PROCESSING-BASED GAZE-TRACKERS
Error of

Reported employed
Approach Type of tracker Experiment error tracker

[47] Remote Nine markers 0.23-0.9◦ 0.37◦

[31] Remote Zigzag 1.4◦ 0.85◦

[48] Remote Markers on wall 3.2◦ −
[49] Stereo, remote Four points 4.6◦ 0.34◦

Stereo
[50] head-mounted Nine markers 1.0-1.38◦ 0.37◦

Stereo
[51] head-mounted Twelve markers 0.88◦ 0.55◦

Employed Circular
tracker Remote trajectory − 0.83◦

performing a circular trajectory and the user was asked to
follow the center of this circle with his/her gaze. The tracker’s
accuracy was defined as the mean gaze angle deviation (in
degrees) that corresponds to the distance of the estimated
gaze point from the center of the circle, where the gaze point
trajectory is considered a continuous signal that is low-passed
as described in Section IV-B. Five individuals participated in
the experiments, each performing the aforementioned task five
times. Regarding the specifications of the defined experiment,
the monitor plane was vertically aligned, while the perpendicu-
lar vector originating from the monitor’s center was maintained
to approximately target the nose of the user and to also be
perpendicular to the user’s face plane during the calibration
step. Additionally, the camera was placed on top of the monitor
and at the center of the respective monitor’s side, with the
nose of the user to be set to correspond approximately to the
center pixel of the captured video sequence. The distance of
the user’s head from the screen was maintained approximately
at 65cm, while the radius of the depicted red circle was set
to 0.7cm. The radius and the period of the circular trajectory
were set to 13.5cm and 30sec, respectively. The average value
of the measured accuracy for the employed gaze-tracker was
approximately equal to 0.83◦. The employed gaze-tracker also
achieved a sampling frequency of approximately 25Hz, using
a PC with Intel i7 processor at 3.5 GHz and a total of
16GB RAM. It must be noted that the resolution of the video
captured by the camera for performing gaze tracking was
selected to be 800x448. Commercially available gaze-trackers
(like Tobii, SMI, EyeTech, Mirametrix, etc.) report accuracy
around 0.4−0.5◦, at a sampling rate of 30−300Hz. However,
the employed gaze-tracker constitutes a low-cost alternative
(it only requires a single camera) and it is also portable (e.g.
most laptops are equipped with a camera above their screen),
while the ‘zoom-in-image’ mode of the designed interface
(Section III-B) accounts for the difference in the gaze-tracking
accuracy.

At this point, it must be highlighted that the focus of this
work does not include the proposal of a new gaze-tracker,
whose performance needs to be accurately measured and to
be superior compared to other state-of-art methods. On the
contrary, aim of this work is the proposal of a novel framework
for interpreting the gaze signal and subsequently utilizing this
information for realizing RF in the context of image retrieval,
irrespectively of the particular gaze-tracker that is used. To
this end, the empirical gaze-tracking evaluation study reported
above is conducted only for roughly demonstrating that the
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developed gaze-tracker achieves state-of-art performance and
that similar image retrieval results, as it will be discussed in
Section VI-C, can be obtained with any state-of-art image
processing-based tracker. Further image retrieval performance
improvements could potentially be obtained if an infrared
illumination-based gaze-tracker is used (Section III-A), i.e. if
the relevant resources are available and the possible portability
issues are not of particular concern.

B. Relevance assessment prediction results

In this section, extensive experimental results regarding
the evaluation of the proposed gaze features are reported.
For performing the evaluation, 15 subjects participated in
the experiments. Each subject underwent 10 gaze-tracking
sessions, where in every session he/she was presented a set
of 10 images that were randomly chosen from the assembled
image dataset. In each session, the user was provided as a
query term one of the semantic concepts of set C. It must be
highlighted that out of the 10 randomly selected images in each
session, 8 were chosen so as to be relevant to the given query
and 2 to be irrelevant. Then, the user was asked to observe
the images, taking into account the posed query. At the end of
each session, the user was presented the objects that he/she has
seen and was asked to manually annotate them as relevant or
irrelevant to the query, based on his/her understanding of the
query term. In this way, a gaze-tracking dataset with associated
ground truth annotations was formulated, consisting of a set
of 3027 samples in total, out of which 2277 were annotated
as relevant and 750 as irrelevant.

In Table III, experimental results from the application of the
different feature selection techniques are given. Classification
accuracy and relevant (irrelevant) classification rate were used
as performance measures, where the former represents the
percentage of all samples that were correctly classified and
the latter denotes the percentage of the relevant (irrelevant)
samples that were correctly identified. All experiments were
performed following the 5-fold cross validation approach
[52]. From the presented results, it is shown that the PCA
technique exhibits the best overall classification performance.
This suggests that considering the linear dependencies among
the features and choosing those that present the greatest
variance is the most efficient methodology for selecting the
most discriminative gaze features. The results reported in Table
III are estimated for parameter L (i.e. half of the length of
gf(smn )) equal to 175 and Z (i.e. length of g̃f(smn )) equal
to 30, 248, 100, 80 and 60 for PCA, CFS, CSS, GR and
IG, respectively. The detailed results, in terms of classification
accuracy, for different combinations of values for parameters
Z and L obtained using the PCA technique are illustrated
in Fig. 8. From the presented results, it can be seen that the
maximum performance is observed for Z = 30 for most values
of parameter L, while significantly lower or higher values of
Z lead to decrease in performance. Additionally, it is shown
that when selecting 30 features from a pool of 350 available
temporal- and spatial-related ones, i.e. when L = 175, leads to
the best overall performance. Similar behavior, i.e. achieving a
maximum classification performance for L = 175 and around

TABLE III
COMPARISON OF FEATURE SELECTION TECHNIQUES

PCA CFS CSS GR IG
Clas. accuracy 69.71% 64.19% 63.33% 65.37% 64.50%

Relevant clas. rate 65.66% 52.69% 48.33% 49.78% 49.29%
Irrelevant clas. rate 75.75% 80.45% 84.50% 87.76% 86.54%

TABLE IV
COMPARISON OF PROPOSED GAZE FEATURES (USING THE PCA

TECHNIQUE FOR FEATURE SELECTION)
Combination
of features Temporal features Spatial features

Clas. accuracy 69.71% 67.04% 66.28%
Relevant clas. rate 65.66% 80.47% 53.98%
Irrelevant clas. rate 75.75% 48.38% 83.94%

a particular value of Z, was also observed for the other feature
selection techniques.
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Fig. 8. Prediction of user’s relevance assessment using the PCA technique.

The different types of the proposed gaze features are com-
paratively evaluated in Table IV, where the PCA technique
was used for feature selection with L = 175 and Z = 15.
From the presented results, it can be seen that the temporal
gaze features lead to increased classification performance,
while the combination of the temporal and the spatial features
outperforms the performance accomplished when each type of
features is used alone. The latter observation demonstrates the
usefulness of incorporating the spatial characteristics of the
gaze signal, when attempting to predict the user’s relevance
assessment based on gaze data.

The proposed gaze features are also comparatively evaluated
with the features presented in the works of [22], [23], [17],
[24], [40], [20] and described in Table I, using the proposed
user’s relevance assessment predictor (Section IV-D). It must
be noted that the definitions of the image-level features
described in Table I are appropriately modified so that the
features eventually extracted to refer to image regions (e.g.
the feature ‘times an image was visited’ was modified to the
‘times a region was visited’). Features, for which a counterpart
at the region-level could not be defined, are marked with an
asterisk (*) in Table I and were not used in the evaluation.
The obtained experimental results are given in Table V. From
the presented results, it can be seen that the proposed features
significantly outperform all other features of the literature. This
demonstrates that the mathematical formulation of the gaze
data analysis problem is advantageous compared to the explicit
definition of a set of features (as the works of [22], [23],
[17], [24], [40] and [20] do). In order to investigate whether
the performance difference between the proposed approach
and the methods of [22], [23], [17], [24], [40] and [20] is
sufficiently large to be also statistically significant, the ‘paired
t-test’ [53] statistical significance test is used. In particular,
the following null hypothesis, i.e. the hypothesis that is to be
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TABLE V
COMPARATIVE EVALUATION WITH GAZE FEATURES OF THE LITERATURE

Classification Relevant Irrelevant
Method accuracy clas. rate clas. rate

Proposed 69.71% 65.66% 75.75%
[22] 61.60% 47.45% 82.30%
[23] 60.10% 47.74% 78.59%
[17] 59.04% 44.57% 80.38%
[24] 58.02% 43.49% 79.45%
[40] 56.07% 50.53% 63.46%
[20] 55.24% 43.29% 72.99%

rejected if the respective test is passed, is defined: “there is no
significant difference in the obtained user relevance assessment
prediction performance (classification accuracy) between the
proposed approach and another similar method of the literature
in a gaze-tracking session”. For performing the statistical
significance test, 150 sessions (i.e. an individual session is
considered for each of the 10 supported semantic concepts and
each of the 15 performing subjects) are taken into account,
resulting in 149 degrees of freedom (df) in the defined t-
test. The test revealed that the performance difference between
the proposed approach and all the aforementioned state-of-
art methods is statistically significant. More specifically, the
lowest t-value calculated according to the aforementioned pair-
wise method comparisons is (t− value = 54.7801, df = 149,
P < 0.01), which corresponds to the performance comparison
with the method of [22], i.e. the best performing state-of-art
method.

C. Image retrieval results

In this section, image retrieval results from the application
of the proposed gaze-based RF approach are presented. For
computing the results, the same 15 individuals and the image
dataset described in Section VI-B were involved. In particular,
10 image retrieval sessions were performed by each individual,
where one of the concepts of C was given again as query term
to the user in each session. Every user was initially presented
a set of randomly ranked images and asked to observe them,
taking into account the query term. Subsequently, the user
underwent 5 successive gaze-tracking iterations, where at the
beginning of every iteration a new ranking of the images
was presented to the user based on the collected gaze data
of the previous iteration. In this work, top-20 image retrieval
experiments were performed, i.e. the 20 most relevant images
were presented to the user in each iteration. The latter choice
was considered to be representative of the actual behavior of
an average user, who is usually interested in only examining
the first very few images that are retrieved based on a query
that he/she has posed [54].

Performance is measured using the precision metric, i.e.
the percentage of the retrieved images that are relevant to
the query. Additionally, the average performance of the pro-
posed approach for each feedback iteration is estimated by
calculating the mean precision value taking into account all
supported concepts and all users involved, as is typically
the case in the literature [55][56][57][58]. Apart from the
precision, metrics that take into account the rank of the images
in the retrieved results have also been proposed for measuring
the image retrieval performance, like Average Precision (AP),
Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG). The reason that these metrics are

not used in this work is twofold: a) Examining the ranking
of the images in the adopted top-20 experimental setting
could potentially lead to inaccurate performance estimation.
b) Secondly, and most importantly, the use of AV, MAP or
NDCG would inevitably require the user to be aware of the
ranking of the images in the retrieved results, in order to ensure
a fair performance measurement with this particular metric.
However, the nature of the considered feedback information
(gaze signal) requires the user to be unaware of the image
ranking, i.e. maintaining that the user’s implicit response is
captured in a non-intrusive/unbiased way. For that purpose,
the images are only presented in tens by the developed
interface (Section III-B) and no other information is provided
to the user. Including any kind of information regarding the
ranking of the retrieved images would very likely violate the
fundamental principle of implicit RF methods, i.e. that the
user’s implicit response should be captured in a non-invasive
way.

The average performance of the proposed approach is de-
picted in Fig. 9(a), while the detailed retrieval results for every
individual concept are given in Fig. 9(b). From the presented
results, it can be seen that the proposed approach achieves an
increase in the mean precision value from 12.47% (random
initialization at iteration 0) to 80.43% after five gaze-tracking
iterations, i.e. at iteration 5. Additionally, there are concepts
whose detection is particularly favored by the proposed ap-
proach, i.e. concepts forest, desert and sea. These concepts
are composed of real-world objects (or their constituent parts)
with characteristic visual appearance. However, there are also
concepts that do not exhibit that increased improvement in
their retrieval performance, such as the concepts car, living-
room and road. For these concepts the significant variance of
their constituent objects, in terms of low-level visual features,
hinders further performance improvement. The above results
justify the fact that the region-based analysis of the gaze signal
can lead to increased image retrieval performance.

The proposed approach is also comparatively evaluated with
two representative explicit RF methods of the literature for
image retrieval, namely the Local Neighboring Movement
(LNM) method presented in [6] and the approach of [10].
In particular, the LNM method constitutes a variant of the
traditional global-level Query Point Movement approach [59],
where previously checked images are not re-examined in
subsequent iterations. On the other hand, the method of
[10] is representative of the so called region-level image RF
category and it estimates a correspondence between the image
regions, following an inexact graph matching methodology
for estimating the degree of similarity between the respective
images. It must be noted that both implemented methods used
the same features with the proposed approach, i.e. SIFT-based
BoWs at global- and local-level, instead of the simpler ones
originally proposed in the works of [6] and [10], respectively.
Additionally, for the method of [10], which requires an ini-
tialization of the ‘query image’, the first image annotated by
the user as relevant was used as the initial query image.

The average retrieval results from the application of the
LNM approach [6] and the method of [10] are depicted in
Fig. 9(a), while the respective per concept results are shown
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Fig. 9. Image retrieval results: (a) average performance of all methods, (b) per concept performance of the proposed approach, (c) per concept performance
of LNM [6] method, and (d) per concept performance of method of [10].

in Figs. 9(c) and 9(d). From the presented results, it can be
seen that the proposed approach outperforms both state-of-art
methods, exhibiting 7.68% higher precision performance than
the LNM approach [6] and 34.01% compared to the method
of [10]. These observations suggest that: a) receiving feedback
information at region-level can overcome the limitations of
global-level RF methodologies, and b) exploiting implicit (i.e.
gaze-tracking) RF information can lead to improved image
retrieval performance, compared to explicit RF approaches.

Examining the results in more details, it must be highlighted
that the LNM method and the approach of [10] are favored due
to the fact that the users were asked to provide feedback infor-
mation regarding the relevance of all retrieved images. In this
way, the aforementioned methods received greater amounts
of feedback information, compared to the proposed approach.
For instance, when the retrieved results were sufficiently good
(i.e. precision > 70%), it was noted that the users typically
observed only some of the relevant images. However, despite
the aforementioned fact, the proposed approach outperforms
the best performing LNM method, given that a minimum
number of gaze-tracking iterations, which according to the
conducted experiments were shown to be equal to 3 (Fig. 9(a)),
have taken place. The latter implies that learning from region-
level feedback information may be slower during the first
few RF iterations compared to the case of using global-level
feedback, but region-level information can lead to improved
retrieval performance. On the other hand, the method of [10]
achieves inferior performance compared to the proposed ap-
proach, due to the frequently inaccurate region-correspondence
estimation, as it is also mentioned in the original text of this
work. The latter suggests that directly selecting the image
regions and estimating their degree of relevance, even with
the use of an imperfect predictor (i.e. the interpreter of the
gaze signal), can lead to significantly increased performance,
compared to explicit RF methods that receive as input global-
level feedback and attempt to estimate a region correspondence

between the examined images. Similarly to the case in Section
VI-B, the ‘paired t-test’ [53] statistical significance test is
also used in this section, in order to investigate whether the
performance difference between the proposed RF approach
and the methods of [6] and [10] is sufficiently large to be
also statistically significant. The null hypothesis is now defined
as follows: “there is no significant difference in the obtained
image retrieval performance (retrieval precision) between the
proposed approach and another similar method of the literature
in a relevance feedback session”. The test, which has 149
degrees of freedom (as in Section VI-B), showed that the
performance difference between the proposed approach and
the aforementioned state-of-art methods is again statistically
significant. More specifically, the lowest calculated t-value is
(t−value = 5.0687, df = 149, P < 0.01) and corresponds to
the performance comparison with the method of [6], i.e. the
best performing one.

D. Time efficiency evaluation

Time efficiency in image RF applications concerns two fac-
tors: a) time required for user response capturing and b) time
needed for estimating an updated set of results. The estimated
average time for each of the aforementioned procedures, as
well as their summation, for the proposed approach and the
methods of [6] and [10] are given in Fig. 10. It must be noted
that time performance is measured for every feedback itera-
tion, while considering the experimental framework described
in Section VI-C for image retrieval performance evaluation.
Additionally, the reported times were obtained using a PC
with the same specifications described in Section VI-A. From
the presented results, it can be seen that the time required
for Response Capturing (RC) is almost half for the proposed
gaze-based approach, compared to the respective times needed
for the methods of [6] and [10]. This is due to the explicit
response, which involves human judgment/manual annotation
processes, required by both methods. On the contrary, the
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proposed approach only requires the tracking of the user’s
gaze. Regarding the Feedback Interpretation (FI) step, the
global-RF method of [6] is the best performing one, while
the region-based RF method of [10] is by far the slowest. The
latter is mainly due to the time consuming procedures (i.e.
inexact graph matching) that the method of [10] adopts for
localizing the regions of interest in the observed images. The
proposed region-based RF method significantly outperforms
the approach of [10], mainly due to the more time-efficient
gaze-based methodology for predicting the regions of interest.
Examining the overall time required for both RC and FI
procedures, it can be seen that the time performance of the
proposed approach is competitive to that of the global-RF
method of [6], while it significantly outperforms the one of
the method of [10]. The latter suggests that the proposed RF
approach combines increased time efficiency and improved
retrieval performance (Section VI-C). Additionally, the im-
plicit way that user feedback is captured renders the proposed
system user-friendly and easy to use, which is a desirable
characteristic especially for large-scale applications. It must be
highlighted that the aforementioned time performances were
measured without applying any particular optimizations to
any of the above methods. In case that significantly larger
datasets than the utilized one are to be used, significant time
performance improvements can be obtained by employing
GPU implementations, incorporating indexing structures, per-
forming code optimizations, applying incremental clustering
of the estimated regions of interest for constraining the time
performance of the proposed approach, etc.
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Fig. 10. Time performance evaluation considering the Response Capturing
(RC) and Feedback Interpretation (FI) procedures. The reported times in the
vertical axis are in logarithmic scale.

E. Discussion on relevance assessment prediction

The performance of gaze interpretation algorithms is af-
fected by a wide series of factors. The most commonly met
ones can be roughly categorized in the following classes: a)
visual appearance-related (e.g. salient objects in the images,
positioning of the images on the screen, image depth, images’
aspect ratio, etc.), b) environmental (e.g. acoustic noise, illumi-
nation changes, interruptions during the gaze-tracking session,
etc.) and c) psychological (e.g. users’ personality, mood of
the users during the session, etc.). The significant difficulty
in efficiently modeling the above factors reveals the great
complexity of the gaze interpretation problem and also high-
lights that significant performance improvements can still be
accomplished (the proposed approach achieves approximately
69.71% in user relevance assessment prediction accuracy, as

described in Section VI-B). In this work, a two-stage approach
is followed for efficiently tackling the factors of the first class,
namely at a) the gaze signal capturing/processing stage and b)
the response modeling level. In particular, visual appearance-
related factors typically cause sudden movements of the gaze,
i.e. saccades (Section IV-B). However, the proposed gaze
features, which are used for predicting the user’s relevance as-
sessment, are computed taking into account only the observed
fixations (Section IV-B). Additionally, the zoom-in/zoom-out
functionalities of the developed interface further facilitate in
eliminating undesirable gaze distortions, as detailed in Section
III-B. In case that gaze deteriorations consist of fixations
that occurred during the ‘zoom-in-image’ mode, the employed
discriminative learning classifier (Section IV-D) aims among
others at discriminating them from the respective user behavior
types that correspond to image regions that are truly of
interest. It must be reminded that the employed classifier
receives as input manual annotations of the captured user
gaze responses during the training stage. In order to reduce
the detrimental effects caused by the environmental factors,
particularly increased attention was given so that the users
to remain un-obscured during the conducted gaze-tracking
sessions. Moreover, the deviations caused by the third category
of factors, i.e. the psychological related ones, are mainly
encountered by the significantly increased expressiveness of
the proposed gaze features (Section IV-B). However, since
this aspect of the problem (i.e. the psychological state of
the user during the gaze-tracking session) is identified as the
biggest challenge in the interpretation of the gaze signal, it is
considered as future work with a great potential to increase
the user relevance assessment prediction performance, as it
will be discussed in the sequel.

VII. CONCLUSIONS

In this paper, a novel gaze-based RF approach to region-
based image retrieval was presented. Aim of the overall
approach was to iteratively estimate the real-world objects
(or their constituent parts) that are of interest to the user
and subsequently use this information for refining the image
retrieval results. A novel set of region-level gaze features,
which represent both the temporal and spatial characteristics of
the gaze signal, was presented for performing user’s relevance
assessment prediction. Extensive experiments demonstrated
their efficiency, compared to other features presented in the
literature. Additionally, an object-based RF mechanism was
developed, which handles the main limitation of region-based
RF approaches, i.e. the inaccurate estimation of the regions of
interest in the retrieved images, in a satisfactory way. The
experimental evaluation proved that the proposed approach
outperforms representative global- and region-based explicit
RF approaches of the literature, using a challenging general-
purpose image dataset. Moreover, the incorporation of a
single-camera image processing-based gaze tracker makes the
overall system cost efficient and portable. From the reported
experimental results, it is shown that there still exists a strong
potential for further improving the prediction of the user’s
relevance assessment based on gaze data. Towards this goal,
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future work includes the investigation and modeling of the
factors that affect the way that users see (e.g. personality,
mood, etc.) and their integration to the developed framework.
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