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Abstract: Modern surveillance systems consist of multiple, geographically dispersed cameras, increasing the technical
and scalability challenges for person re-identification. In this context, the use of geographical information to
boost the effectiveness of a state-of-the-art re-identification algorithm has been implemented and evaluated, by
leveraging the prediction of an event evolution. It is argued that the estimation of possible target trajectories
can limit the footage search space and allow focused application of the re-identification algorithm. This is
reflected in performance, effectiveness and scalability. The parametrization of the interesting footage reduction
mechanism allows using different profiles and a flexible trade-off between performance and robustness. Our
work is verified and evaluated in a well known benchmark dataset for re-identification and a real-world dataset
created in the framework of the EU-project ADVISE.

1 INTRODUCTION

Law enforcement agencies and private entities
have increasingly relied on Close Circuit Television
(CCTV) surveillance to enhance security in public
spaces and their premises, respectively. Cities have
extensive CCTV surveillance in private and public
space, with some countries deploying open street
CCTV for the purposes of crime prevention in their
major cities. The awareness of the geographical dis-
tribution of the surveillance cameras, arises the need
and opportunity to manage and exploit this type of in-
formation through a Geographic Information Systems
(GIS) framework.

Surveillance cameras can have different char-
acteristics and installation parameters, resulting in
significant changes in the appearance of the peo-
ple/objects tracked. Therefore, a re-identification
(ReID) methodology is required to associate the target
along multiple cameras and to observe the evolution
of its trajectory. Re-identification is challenging since
the appearance of a person can change significantly
depending on the viewpoint, the illumination condi-
tions, the camera type, or even random events like oc-
clusions. Other parameters making re-identification
more difficult include low quality of the videos, and
that due to either fashion trends or dressing codes peo-

ple tend to wear similar clothes. Due to these chal-
lenges, re-identification methods have low matching
rates in real world scenarios, where a high number of
possible matches is increasing the complexity of the
problem.

The rationale of employing GIS information is the
reduction of the examined footage to a small set of
video camera- and time-wise excerpts, which, with
high probability, include the potential re-appearances
of the target. Such a reduction has to be based on
the distribution of the cameras and the physical con-
straints of the target transition from one point of inter-
est to another; in our case between the fields of view
(FoVs) of cameras. Such constraints are translated
into temporal information to limit the search space for
object re-identification. While in the case of a limited
number of cameras, this rationale may be trivial, in re-
alistic deployments of a medium number of cameras,
a robust, dynamic, methodology with a certain degree
of automation, is needed.

2 RELATED WORK

In literature, various approaches have been pre-
sented to address the re-identification problem. A



Figure 1: Framework pipeline.

wide variety of information cues have been proposed
to describe the appearance of a person, including
color, texture and their saliency information. It has
been shown that color is the most important cue for re-
identification. Various color spaces have been tested
for invariance among different cameras (Kviatkovsky
et al., 2013). The spatial layout of colors on the
clothes has been also employed to enhance the pro-
cess. Texture is also used to support re-identification
using local descriptors, either on sparse or dense sam-
pling points (Zhao et al., 2013). An evaluation of lo-
cal features for ReID is found in (Buml and Stiefelha-
gen, 2011). Saliency maps have been also proposed as
information cues in the re-identification process (Xu
and Zheng, 2013).

Despite the wide range of techniques employed,
re-identification performance is far from ideal. Pre-
processing steps have been proposed to reduce the
weight of background segments from the model (Hu
et al., 2013; Farenzena et al., 2010). Color calibration
has been also employed to enhance inter-camera re-
identification. Transfer functions have been proposed
(Avraham et al., 2012) to model the color variation be-
tween two non-overlapping cameras. However, these
models have to be calculated for each camera pair and
they are sensitive to illumination changes within a sin-
gle camera. Furthermore, body part segmentation is
proposed to divide the appearance model into seman-
tically meaningful parts (Bak et al., 2010).

So far, only the appearance of each person has
been utilized for matching. In this paper, we argue
that it is possible to improve the performance of peo-
ple/object re-identification in surveillance scenarios
by employing information from the location and the
viewpoint of the cameras. In literature, the relative
positioning of the cameras has been employed to en-
hance the ReID procedure (Martinel and Micheloni,
2012) in a bidirectional approach but no absolute ge-
ographical information has been used.

GIS has been typically used for managing,
analysing and decision making, combining both spa-

tial and non-spatial data. Upon underlying maps, lay-
ers are created containing arbitrary information. Se-
curity has been a field, where video surveillance has
been augmented by GIS functionality (Milosavljevic
et al., 2010). While GIS usage is focused in cam-
era/incident visualization and statistics, we investi-
gate innovative usage of the geo-information, dynam-
ically prefiguring routes in order to limit the footage
employed in event re-acquisition scenarios. Predict-
ing event evolution, in a micro-scale, leveraging upon
geo-information is pursued, to our knowledge, for the
first time. In terms of implementation, web-based GIS
are gaining momentum; such system typically follow
multi-tier approaches and consist of three major lay-
ers: (a) the presentation layer, (b) the application layer
accommodating the geo-spatial middleware and (c)
the persistency layer storing the information.

In the rest of the paper, the proposed ReID
methodology is presented in Section 3, while in Sec-
tion 4 experiments are performed to show the impor-
tance of trimming the employed search space and a
use case is presented. Discussion on the results and
conclusions are provided in Section 5.

3 METHODOLOGY

A video surveillance infrastructure consisting of
multiple cameras, with known locations and extrinsic
parameters and a security-related incident (e.g. bag
theft) are considered. In order to identify the actors
of the event, it is needed to reacquire the people in
neighbouring cameras after or prior to the event time.
Besides the challenge of re-identifying a person or
object in a new camera due to changes in its appear-
ance, there is also the computational burden of per-
forming the re-identification procedure in a footage
of extended duration, which also hinders the effi-
ciency of automatic re-identification, as this is shown
in the experimental results. This section describes the
methodology followed in two phases: the initializa-



tion, where the required framework and the query in-
cident are defined, and the iterative one, where the
actual re-acquisition takes place. A high-level view
of the framework pipeline is depicted in Figure 1.

The initialization phase is related to the intro-
duction of the geo-information and event-related in-
formation, while the recurrent phase aims at iden-
tifying interesting footage excerpts, where the re-
identification algorithm is applied. An iteration mech-
anism facilitates the identification of the route based
on the interim re-identification results. The two
phases are described subsequently.

3.1 Initialization phase

The surveillance infrastructure consists of multiple
cameras across different geographical locations. In
the initialization phase, the framework collects all
the necessary information for its operation, includ-
ing camera setup details, possible routing options and
metadata concerning the triggering incident.

3.1.1 Camera Setup

The geographical information of the cameras’ posi-
tion is available as we consider static cameras. The
spatial and non-spatial information (metadata), han-
dled by the system, pertains to the cameras included
in the surveillance infrastructure. The camera geo-
location is the exact location where the camera is
installed, while the Field of View (FoV) is the part
of the observable world where target detection can
take place. Fields of view of different cameras can
be overlapping, without that being necessary, as the
geographical topology is arbitrary and typically de-
pends on the selections of the surveillance infrastruc-
ture owner. Both the location and the fields of view
of the cameras are regarded as static (time invariant).
Camera metadata also include the elevation from the
ground and the direction of the camera. The FoV de-
pends on the maximum viewing distance and the an-
gle that viewing is possible.

In our system, developed in the framework of EU-
project ADVISE, camera registration is handled in a
manual or programmatic (based on co-ordinates) way
and their attributes can be edited using a GUI. The
underlying GIS functionality is based upon Open-
StreetMap, which is the openly licensed map of the
world, the GeoServer, which is the open source server
for sharing geospatial data, the PostgreSQL with the
PostGIS extensions for persistency and Openlayers
for the client side presentation functionality. Using
the system, the user can perform typical GIS-related
tasks such as calculating areas and distances among
cameras. In Figure 2, example FoV of the available

cameras are depicted while the user can fully control
the visualization of the cameras, activating / deactivat-
ing them in an individual or batch manner. These fea-
tures can facilitate the work of the investigator, while
he is working in a typical, non-automatic way.

(a)

(b)
Figure 2: Visualization of the camera fields of view.

3.1.2 Route Calculation

The combination of the aforementioned features and
the awareness of the topology surveillance assets can
be employed to facilitate object re-identification in an
automatic manner. While the absolute distance be-
tween each pair of cameras, in a straight line, provides
a first indication for the effective distance between
the cameras, the awareness of the underlying rout-
ing (streets and buildings) network can provide much
more useful information. In this view we create all
routes among the surveillance infrastructure cameras
and calculate absolute distances between the origina-
tion and destination points. Each route is tagged on
its access possibilities (pedestrian, bicycle / motorcy-
cle, car). For each route, the information is provided
in table 1.

3.1.3 Query Event Identification

Having defined the framework to track the evolution
of an event (i.e. the route or trajectory of the per-
son or object being followed), the context, namely a
security-related event that took place in the geograph-
ical area, has to be defined. Metadata containing the
actors of the event and their trajectories, including



Route ID The ID of the route.
Origination point The starting point of the predicted route.
Destination point The destination point of the predicted route.
Distance The distance of the route in meters
Accessibility Accessibility options for each route: (a) on foot, (b) with bicycle or motor-

cycle, (c) by car and their combinations.
Direction The direction of the route from the origination to the destination cameras.
Direction variability The number of changes in the direction in the course of the route. This

number is related to the variability of the direction.

Table 1: Information extracted for each possible route.

speed and direction, are required. The event detec-
tion is undertaken by a tracker capable of detecting
and tracking objects of interest (pedestrians and ve-
hicles) and analyse their motion patterns to estimate
their speed and motion direction. While this informa-
tion is input to the system described, its extraction is
out of the scope of this work.

3.2 Recurrent Phase

Given that the geographical coordinates of the ini-
tial point (i.e. the point where the target has been
identified for the last time), the direction of the mo-
tion and the motion profile of the target (as an esti-
mation of the speed) are available, a set of hypothe-
ses for the trajectory of the target is created. Subse-
quently, the spatial and temporal consistency of those
hypotheses is recurrently tested to reduce the search
space. The re-identification process is applied only
on the footage verified for spatio-temporal consis-
tency, significantly reducing the examined footage ex-
cerpts. It also involves a feedback mechanism al-
lowing route (trajectory) identification based on the
interim re-identification results in a causal and non-
causal fashion.

3.2.1 Spatial Alignment

The spatial alignment targets at the reduction of the
cameras that provide potentially interesting footage.
We create a set of perimetric (bounding) boxes hav-
ing their centers on the current point of interest. The
perimetric boxes are rectangular and depending on the
camera network topology, they can include a number
of neighbouring cameras. Another approach, regard-
ing the shape of the bounding box, is to consider a
parallelogram (unequal side lengths) emphasizing on
the length of side that coincides with the initial direc-
tion of the target (acknowledging the possibility that
the object changes direction).

The length of the sides of successive boxes can
follow specific relationships, such as length and

perimeter doubling and surface quadrupling. Assum-
ing a uniform distribution of cameras, the number of
included cameras follow, in ratio, the surface of the
box. An increase by one of the ratio (1st, 2nd etc.)
of the perimetric box quadruples the number of the
cameras. In order to define the length side of each
perimetric box, we calculate the length of the max-
imum perimetric box (which includes the full set of
the deployed cameras) and then the size is divided by
2, N times, where N is the number of the perimetric
boxes. For each camera included in the perimetric box
the direction and the route from other cameras are al-
ready calculated in the initialization phase. In case the
origination point of interest does not coincide with the
point of a camera, the routes towards the considered
cameras are calculated.

3.2.2 Temporal Alignment

Depending on the movement profile of the target and
the route distance between two cameras, included in
the perimetric box, the transition time is calculated.
The movement profile of the target includes moving
on foot (running), on a bicycle or motorcycle and a
car. The transition time is indicative and it depends
on the conditions such as the traffic and the (poten-
tially wilful) variability of the speed of the target dur-
ing his departure. This has to be reflected on the
footage excerpts propositions for each camera. The
time frame of the excerpts are centred around the Es-
timated Time of Arrival (ETA) towards the Field of
View of the destination camera, with a certain margin
of the time needed for the transition. This margin can
be optimistic, deviation of 10%, typical deviation of
25% and conservative 50%. This way for each of the
surrounding cameras, excerpts of the video footage
are proposed as the more probable for containing the
suspect.

3.2.3 Object Modelling

In the previous step, a set of video segments has been
identified employing the GIS framework, where the



target may reappear, considering its motion character-
istics and profile. Subsequently, matching candidates
are found in those segments and their appearance is
modelled.

Figure 3: Analysis of the appearance modelling: the first
row shows the raw frameshots, the second row shows the
saliency maps, the third row shows the segmentation results
and the last row shows the grid where green/red rectangles
depict the foreground/background patches respectively.

For each candidate, a non-occluded frameshot is
taken at the middle of its trajectory and it is defined
by a tight bounding box where the person of inter-
est is enclosed (Figure 3, 3rd row). It is divided
into a dense grid of overlapping patches. Patch size
and grid step were experimentally evaluated and the
results (Zhao et al., 2013) confirmed that a size of
10×10 with a step of 5 pixels (producing 50% over-
lap between adjacent patches) is the optimal solution
for far-field surveillance camera footage of human fig-
ures. In order to keep only the significant patches, i.e.
patches that belong to the person of interest and not
the background, an automatic foreground/background
segmentation, described in (Lovatsis et al., 2013), is
applied on the frameshot and patches with more than
50% of foreground elements are labelled as signifi-
cant, while the others as irrelevant. As seen in Fig-
ure 3 (4th row) foreground patches are depicted with
green color while the background ones with red.

For each foreground patch, a set of descriptors is
extracted: 3 histograms of 32 bins on different colour
spaces to robustly capture colour information (RGB,
HSV, YUV), colorSIFT and, finally, colorSIFT on the
saliency map. Saliency map is calculated in real-time
without supervision and successfully reveals salient
parts of an image (Montabone and Soto, 2010). As
seen in Figure 3 (2nd row), saliency maps reveal in-
formation about the edges of the object, as well as the
complexity of the clothing’s texture. The length of all
histograms together is 3×3×32 = 288, and the two

colorSIFT descriptors length is 2×3×128= 768. All
descriptors are L2 normalized. The final descriptor z
has a length of 288+768 = 1056.

3.2.4 Object matching

The next step in the framework is matching between
the target and the candidates, using the models cre-
ated in the previous step. The list of spatio-temporally
constrained candidates is extracted from the footage
excerpts provided by the GIS framework.

The similarity function is based on comparing all
the patches of the target with the patches of each can-
didate. To combine the efficiency of local descriptors
with proper patch alignment, the search area of each
patch to be matched is limited to its neighbourhood
with a horizontal constraint rule. Each frameshot I
from camera C1 is divided into a grid of MxN patches,
where each patch m,n is represented by a descriptor
zI

m,n. The subset of patches belonging to the same row
m is represented as:

RI(m) = {zI
m,n|n = 1,2, ..,N}. (1)

The search space S for RI(m) in frameshot J from
camera C2 with the same size of MxN patches is the
respective subset of patches RJ(m). The horizontal
rule can be relaxed in order to provide flexibility for
pose variations and different camera viewpoints by
widening the area vertically by a small factor r :

S(RI(m),J) = {RJ(m− r), ...,RJ(m+ r)} (2)

The relaxation factor should be large enough to pro-
vide flexibility but not too large, to avoid erroneous
matches between different body parts. In our exper-
iments, a factor of r = 1 was chosen. Also, patches
that enclose more than 50% of background data are
discarded from S in order to avoid matching objects
to background structures.

When comparing two frameshots, all foreground
labelled patches from a frameshot I are compared
against all adjacent foreground labelled patches from
frameshot J. As a result, each patch m,n returns the
nearest neighbour distance d from S. In order to am-
plify small distances and discard very large ones, a
Gaussian function converts distances to similarities:

s(d) = e
−d2

2σ2 (3)

where = 0.2 is the bandwidth chosen for our exper-
iments. The accumulation of maximized similarities
has proven to be more efficient than aggregating min-
imized distances (Ma, 2012) and was validated in our
experiments as well. The final similarity score be-
tween frameshots I and J is the mean similarity of all
matched patches.
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Figure 4: Comparison of the ReID CMC results on the VIPeR dataset for (a) 316 pairs between SDALF (Farenzena et al.,
2010) and the selected methodology and (b) different number of pairs with the selected methodology. Comparison of the
ReID CMC results on the ADM dataset with and without spatio-temporal constrains, using 3 different temporal prediction
margins between (c) cameras 4 and 6 and (d) cameras 5 with 6.

3.2.5 Search iteration

As discussed the exploitation of the geographical in-
formation, in terms of spatial and temporal alignment
takes place in an iterative manner, based upon the
results of the re-identification. In principle we con-
sider two types of results: (a) the person/object has
not been re-identified and (b) it has been, indeed, re-
identified. In the former, two types of parametric
changes define each iteration: (a1) the increase of the
dimensions of the bounding box with square increase
of the number of the included cameras (in case of uni-
form distribution) and proposed footage excerpts; and
(a2) the increase of the time margins (from 10% to
50% or even larger). The upper limit is to consider
the full set of cameras and footage.

In the latter case (the person / object has been
identified), we consider two (not conflicting) sub-
cases: (b1) the person has been re-identified within
the footage of a certain camera, without being identi-
fied in the footage of intermediate (in the sense of the
route followed) cameras. This paves the way for re-
identification in the intermediate cameras, gradually
increasing the time margins. (b) the person has been

re-identified in the footage of the full chain of cameras
across the identified route and this set of cameras con-
stitutes only a subset of the full set; i.e. the route can
extended using currently unexploited footage. The it-
erative steps are repeated, setting as the point of inter-
est the last point where the person has been identified
and selecting spatial and temporal boxes.

4 EXPERIMENTAL RESULTS

In order to evaluate the proposed system, a se-
ries of tests is applied. First, the selected appearance-
based ReID method is evaluated, following the litera-
ture protocol for standard ReID evaluation (Farenzena
et al., 2010). Then, it is shown that the number of can-
didates plays a great role in the overall efficiency of
the appearance-based method and that GIS can effi-
ciently reduce the search space during matching.

Due to the lack of publicly available datasets,
containing events happening in multiple cameras and
geo-tagging, the validation of our experimental vali-
dation of our approach is performed in two stages. In
the first stage, the impact in ReID performance and



efficiency of a reduced number of candidates is eval-
uated in the publicly available VIPeR dataset (Gray
et al., 2007), which is intended for viewpoint invari-
ant person recognition evaluation purposes.

In the second stage, the proposed methodology is
tested in a real-world use case, using a dataset created
in the framework of the EU-project ADVISE, which
contains multiple cameras and geo-tagging. This
dataset has been used to evaluate the impact of the
GIS module to the ReID results. Test results are mea-
sured and showed in standard Cumulated Matching
Characteristic curves (CMC). The CMC curves repre-
sent the recognition rate in the n top ranked matches.

4.1 VIPeR dataset.

The VIPeR dataset1 is comprised of 632 image pairs
between two cameras under various pose and light-
ing conditions and it is considered as a very challeng-
ing one for ReID evaluation. Each pair represents a
unique individual captured once in every camera. All
frameshots are normalized to a size of 128×48 pix-
els. In literature, half of the pairs are used for train-
ing or as a reference set and the other half for testing.
We follow the same protocol in order to be compared
with other state of the art approaches like (Faren-
zena et al., 2010) and apply the proposed appearance
based method using half of the pairs. As seen in Fig-
ure 4(a), our method achieves state of the art results
that surpasses (Farenzena et al., 2010). The method
of (Farenzena et al., 2010) was ported in C++ and
the preprocessing step was replaced by the proposed
automatic segmentation method resulting in a small
drop in the overall efficiency compared to the reported
results.

It is clear from the results, that these methods are
not efficient under these circumstances and could only
be useful to assist a user during a manual search,
which is not our case. However, for semi-crowded
surveillance footage where a few dozens of individu-
als are recorded during a reasonable amount of time,
the applied test that includes hundreds of individuals
is not valid. Using smaller subsets of the original pairs
list, we repeat the evaluation test for smaller numbers
of pairs this time. Each experiment was repeated 10
times on random VIPeR subsets to ensure the robust-
ness of the results. As seen in Figure 4(b), the over-
all performance is significantly increased for smaller
number of pairs.

1The VIPeR dataset can be downloaded at:
http://vision.soe.ucsc.edu/node/178

(a)

(b)
Figure 5: The ADM dataset camera (a) topology and (b)
frames from ”Bag theft”.

4.2 ADM dataset.

As mentioned, a dataset created in the framework of
the EU-project ADVISE is also employed. The cam-
era network is composed of 3 static cameras across a
street with passing passengers and vehicles. Two of
the cameras have overlapping fields of view and the
third camera has non-overlapping field of view with
the other two. The topology and sample frames of
the cameras can be seen in Figure 5. For privacy rea-
sons,the dataset has been recorded only with actors
and their faces have been blurred in the images pro-
vided for this work. A total of 31 different actors were
assigned a list of actions during recordings. Track-
ing results were obtained using (Lovatsis et al., 2013).
Targets are represented by a non-occluded frameshot
taken at the middle of their lifetime, accompanied
with tracking metadata for direction, speed and time.

We apply the proposed framework to re-identify
persons between the non-overlapping cameras. Ini-
tially, all targets are tested between two cameras with-
out spatio-temporal constraints, like in the VIPeR test
case. The combinations result to a total of 31x31 =
961 comparisons. Then, the position of the targets
(i.e. the camera ID) and their tracking metadata are
fed to the GIS module and a prediction (evaluation of
trajectory) is returned (place and time). Consequently,
spatio-temporal constraints are imposed for each tar-
get and the candidate matches are drastically reduced.



As a result, the number of comparisons is drastically
decreased, namely 124 for 50%, 84 for 25% and 53
for 10% margin.

Figure 6: Matching results for two persons. The first col-
umn is the query followed by ranked results based on ap-
pearance similarity. Due to spatio-temporal constraints,
candidates were excluded from the valid results (darkened
frameshots).

As seen in Figures 4 (c) and (d), the signifi-
cance of spatio-temporal constraints is revealed since
the efficiency of the ReID method increases drasti-
cally. Also, the smaller the temporal margin is, the
higher the matching rate becomes. In both experi-
ments, the first rank for the smallest temporal mar-
gin achieves around 90% recognition rate, making the
ReID method applicable for unsupervised solutions.

The GIS module can be seen as a filter that ex-
cludes matching candidates in case of spatio-temporal
inconsistencies with the query. Filtered results can be
seen in Figure 6.

5 CONCLUSIONS

In this paper, the support of a GIS framework
to enhance reacquisition of people/object tracking
in real world surveillance scenarios was examined.
Given that the trajectory of a target in a single camera
and the absolute location and coverage of all the cam-
eras are known, GIS can facilitate the inter-camera
tracking of the target by creating a set of hypotheses
concerning the evolution of its trajectory, taking into
account the motion capabilities of the target and the
implications of the terrain.

The rationale has been to reduce the footage that
should be searched for the re-identification of the tar-
get. This reduction has a positive effect both on the
computational burden of the re-identification func-
tionality and its performance. By checking only the
excerpts defined by the spatio-temporally consistent
hypotheses the search space is greatly reduced. The
speed of the system is increased, while the lower
number of possible candidates for matching increases
re-identification performance. This was experimen-
tally confirmed both in a popular dataset for re-

identification benchmarking and a use case scenario
performed in the framework of the FP7 EU project
ADVISE. While the primary objective is to reduce
the examined footage, there is always the danger to
miss the spatio-temporal window that the target ap-
pears. In order to safeguard the hypotheses, insert-
ing an increased margin in the proposed excerpts, at
the expense of performance should be considered; the
margins can be parametrized based upon the profile
of the target.
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