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ABSTRACT In this work we introduce a biologically inspired long-range skip connection for the UNet
architecture that relies on the perceptual illusion of hybrid images, being images that simultaneously encode
two images. The fusion of early encoder features with deeper decoder ones allows UNet models to produce
finer-grained dense predictions. While proven in segmentation tasks, the network’s benefits are down-
weighted for dense regression tasks as these long-range skip connections additionally result in texture
transfer artifacts. Specifically for depth estimation, this hurts smoothness and introduces false positive
edges which are detrimental to the task due to the depth maps’ piece-wise smooth nature. The proposed
HybridSkip connections show improved performance in balancing the trade-off between edge preservation,
and the minimization of texture transfer artifacts that hurt smoothness. This is achieved by the proper and
balanced exchange of information that HybridSkip connections offer between the high and low frequency,
encoder and decoder features, respectively. The code and models will be made available in the project page.

INDEX TERMS Computer vision, Dense depth estimation, UNet, Skip connections, Scale-space, Hybrid
images, Spherical vision, Monocular inference

I. INTRODUCTION

Skip connections, specifically, the bypassing of convolutional
layer blocks within a convolutional neural network (CNN)
architecture, are a core building block of modern data-driven
models [59]. Residual blocks [15], [16] use short-range skip
connections with identity mappings and residual functions to
improve information propagation in both forward and back-
ward passes. They are the basic building block of ResNets,
one of the most popular and better performing CNN back-
ends.

At the same time, UNet [47] is another autoencoder CNN
architecture that relies on long-range skip connections, for-
warding early encoder features to their corresponding resolu-
tion features on the decoder’s side. Different from residual
skip connections, UNet concatenates the encoder and de-
coder features, allowing the network to implicitly learn their
fusion through the decoder’s convolutional layers. However,
it is a challenging problem as there exists a semantic gap

between the encoder features and the corresponding decoder
ones, which stems from the higher level concepts and se-
mantic information that is progressively encoded into CNNs.
Despite this challenge, UNet remains a dominant architec-
ture, especially for semantic segmentation, surpassing fully
convolution networks (FCN) [32], mainly because it offers
higher boundary preservation performance.

Consequently, various works have focused on overcoming
this encoder-decoder semantic gap in UNet’s long-range
skip connections. Straightforward approaches add learnable
operations to lessen the gap with MultiResUNet [21] relying
on residual blocks. More involved approaches utilize gating-
based spatial attention [38] to attend to the encoder features
in a localized manner, or semantic embedding branches
and global convolutions [63]. The search for an appropriate
encoder-decoder skip connection led to the use of neural
architecture search (NAS) [56] to identify the squeeze-and-
excite operation [18] as the more prominent candidate map-
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ping function.
Notably, all these works have applied their proposed skip

connection in semantic segmentation, the downstream task
that UNet was initially applied at. Yet recently, UNet-like
architectures are increasingly being used in depth estimation
as well [6], [12]–[14], [33], [44], [65], as the long-range skip
connections offer higher boundary preservation performance.
However, the latter is a dense regression task, in contrast to
the former, which is a dense classification task. For depth
estimation, the model’s parameters encode a continuous
function approximation, whereas for semantic segmentation
the model focuses on learning a high-dimensional decision
surface. The core difference lies in the nature of depth maps,
which are piecewise smooth functions [20], meaning that
compared to semantic segmentation, the smoothness property
needs to also hold for the predicted output, whereas for
segmentation, the preservation of the boundary is the only
secondary trait of importance. Consequently, for a regression
task like depth estimation, skip connections usually result in
texture transfer artifacts which hurt smoothness, and intro-
duce false positive boundaries.

In this work, we design a biologically-inspired skip con-
nection based on the way humans process visual input [5],
[29], specifically the decomposition into different spatial fre-
quencies that happens early on in the visual pathway. Higher
spatial frequencies become imperceptible with farther view-
points, with the reverse holding for closer viewpoints. The
human visual system assimilates higher spatial frequencies
into lower ones as viewing distance increases, a mechanism
that has been exploited by prior work to generate illusions
[39]. We exploit this mechanism as well, to facilitate the
exchange of information between the encoder and decoder
features, taking into account their higher and lower frequency
nature respectively resulting from the autoencoder’s induc-
tive bias.

More specifically, we contribute the following:
• We design a lightweight and plug-n-play hybrid feature

skip connection for the UNet architecture. It performs
a blending-based information exchange between the
higher and lower level feature maps partaking in a long-
range skip connection, prior to their fusion.

• We experimentally demonstrate the efficacy of vari-
ous skip connections in a dense regression task, while
taking into account their performance differentials on
secondary traits as well; namely boundary preservation
and smoothness.

• We demonstrate that our proposed skip connection
strikes a better balance at boosting direct depth, bound-
ary and smoothness performance, compared to other
state-of-the-art skip connections.

II. RELATED WORK
The UNet CNN architecture [47] was initially introduced
for semantic segmentation and was the first architecture to
include long-range skip connections, forwarding information
from the encoder to the decoder via feature fusion. The

FIGURE 1: Long-range skip connections are instrumental to
the popular UNet architecture but are also challenged by the
semantic gap between the encoder E and decoder D features.
While they allow UNets to capture high resolution details,
this is not always beneficial to dense regression tasks that
need to overcome texture transfer and also preserve smooth-
ness. We introduce a biologically inspired skip connection
that balances the effect of the high frequency encoder fea-
tures and the dominant structural information carried by the
decoder ones. From left to right, each bottom rows visualizes
encoder and decoder features maps before and after the
hybrid skip connection from a trained dense depth regression
model.

skip connection improves detail preservation by propagat-
ing the early encoder features near the prediction features,
boosting semantic segmentation accuracy by allowing for
thinner structure segmentation, rendering UNet the standard
architecture for this task. More information about the UNet
architecture and the importance of the skip connection can
be found in various surveys about U-shaped network archi-
tectures [31], [42].

Due to its efficacy, it has received a lot of attention and
multiple variants have surfaced, with some notable examples
being UNet++ [66], U2Net [43], UNet 3+ [19], VNet [36],
YNet [34], WNet [57] and nnUnet [23]. Further, it has been
gaining traction for tasks other than semantic segmentation
such as image reconstruction, with examples being inpainting
[30], view-synthesis [2], [46] and relighting [62], as well as
depth estimation [12]–[14], [65]. Adding to the latter, in the
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FIGURE 2: The hybrid images [39] human vision based illusion that encode a dual image. From left to right, for the top row
of each example pair: i) first and ii) second image, iii) low pass filtered first image, iv) high pass filtered second image, and v)
the hybrid image which changes with viewing distance (from second to first, by zooming in and out the document respectively).
The bottom row of each example pair shows the blending of the low and high pass images using an interpolated blending factor
from 0.1 to 0.9 that mathematically simulates the physical viewing distance change. At the bottom of each image the green bar
indicates the interpolation factor value.
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recent Mobile AI 2021 Challenge [22] on single image depth
estimation, 7 out of 10 submissions used UNet architectures.
Also, the detail preserving nature of early encoder features
allowed its application as the discriminator architecture in
high quality synthesis tasks [49].

Nonetheless, its strength also presents as one of its main
weaknesses. While skip connections propagate details near
the prediction layers, facilitating more detailed dense signal
reconstructions, they are not necessarily optimal in their
pure identity mapping form. The reason for this is that the
raw fusion of early encoder and late decoder information is
hindered by their semantic gap. CNNs typically extract high
spatial-frequency details (e.g. edges, texture, lines) in the
early stages, while at the deeper layers the network produces
category-specific features representations [3], [15].

Among the techniques designed to address this semantic
gap, ExFuse [63] used a complex skip connection, replacing
the identity mapping with a cascade comprising a semantic
embedding branch and a global convolution module. Results
in both an FCN and a UNet demonstrated its efficacy in im-
proving semantic segmentation performance. Approaching
the same problem from another perspective, Attention UNet
[38] introduced a novel attention gate as the skip connection.
Each skip connection softly attends to the incoming encoder
features using a gating signal. Initially, additive attention
between the projections of the gating signal and encoder
features is used to generate an attention grid after aggregating
and projecting the result. This is then resampled and used to
reduce or preserve the importance of the encoder features in
a localised manner. Results in medical segmentation show-
cased an improvement over vanilla UNet. The concept was
similarly applied to the UNet++ architecture, resulting in
Attention UNet++ [28], which adapts the gating signal to the
nesting levels and shorter skip connections.

More recently, in MultiResUnet [21] the identity mapping
skip connection was replaced by a series of residual blocks
that aim at alleviating the semantic gap between the encoder
and decoder features. Taking into account that earlier encoder
features suffer from a bigger semantic gap, more blocks
were used in the earlier features than the ones closer to
the bottleneck. Apart from an improvement in dense and
boundary segmentation, the residual skip connections also
exhibited robustness to noise. In a similar fashion, MAPUNet
[58], inspired by UNet++ [66], and UNet 3+ [19], exploited
multi-scale feature fusion and supervision for monocular
depth estimation. Moreover, a UNet++ variant with residual
blocks and dense gated convolution based attention [60]
was used for monocular depth estimation using sparse depth
measurements [64]. Finally, NasUNet [56] employed neural
architecture search to look for an efficient and effective UNet
architecture, a finding shared by [48] as well. Their search
resulted in identifying the Squeeze-and-Excite operation [18]
as the most dominant replacement for the standard (identity)
skip connection. Apart from the identity mapping, the search
performed included traditional and dilated [7] convolutions,
as well as separable depthwise convolutions [50]. Evaluation

in different medical segmentation datasets showed perfor-
mance increases at a fraction of the parameters and reduced
memory cost.

Evidently, all aforementioned works focused on segmenta-
tion tasks, while all works using UNet’s skip connections in
reconstruction or regression tasks rely on the vanilla UNet.
Dense regression tasks impose more stringent requirements
compared to segmentation tasks, as the predicted signals need
to exhibit richer properties. A notable example are depth
images that need to preserve edges and their magnitude,
while also varying smoothly in areas where no significant
discontinuities manifest [20]. Compared to previous works,
we focus on UNet networks used for regression and holisti-
cally assess the efficacy of these advanced skip connections
[21], [38], [56], [63] to improve performance and preserve
properties like boundaries and smoothness. Further, we pro-
pose a biological vision inspired skip connection based on
scale space theory, that better preserves the output signal’s
secondary properties simultaneously.

III. APPROACH
Our work focuses solely on the long-range skip connections
found in the UNet architecture, and specifically the fusion
of features coming from different depths of the model. En-
coder features are learned earlier (shallower) and on higher
resolutions, while decoder features are learned later (deeper)
and on lower resolutions than the correspondingly encoder
ones that they will be fused with. Our inspiration stems
from the Hybrid Images [39]. We briefly introduce them
in Section III-A, following with our proposed Hybrid Skip
connection in Section III-B.

A. HYBRID IMAGES

Hybrid images H are dual images that jointly encode two
different images, A and B, but only one is largely per-
ceived. Their interpretation changes with viewing distance,
creating a smooth optical illusion which has been used to
study patients [27], face identification [35], create two-layer
QR codes [61], or even used for recreational art. They are
generated by the blending of two different spatial resolution
images:

H = 0.5 fl(A) + 0.5 fh(B), (1)

where fl and fh are a low-pass and high-pass filter respec-
tively. Essentially, image A is highly blurred, making it
visible from farther distances, while image B is composed by
edges, which are only visible from close up. Figure 2 shows
the resulting illusion and intermediate representations.

B. HYBRID SKIP CONNECTION

The UNet architecture’s success relies on the long-range
skip connection [42], [59] that fuses early encoder features
E ∈ RF×H×W with late decoder features D ∈ RF×H×W .
The typical UNet fusion scheme is a learnable fusion using
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a convolutional layer receiving as input the concatenation of
the encoder and decoder features:

F = Hi([s(E);D]), (2)

where H(·) denotes the convolution function of the ith
layer, and without loss of generality s(·) denotes the encoder
features’ skip function, which for the typical UNet is the
identity mapping. It is this multi-scale propagation of earlier
encoder features to the late decoder layers that allows UNet
architectures to capture finer details. Yet, there are challenges
associated with this fusion scheme, namely the semantic gap
between E and D as well as the different spatial frequencies
of these two feature maps.

Earlier CNN blocks capture lower level features like lines
and edges, while later CNN blocks capture higher level
features and concepts, a fact that constitutes their – straight-
forward – fusion an inefficient approach. Further, earlier
encoder features are captured in higher resolutions and con-
tain higher spatial frequencies, while later decoder features
contain lower spatial frequencies and are typically upsampled
at the skip connection fusion step. Bilinear interpolation of a
lower resolution feature map results in low spatial frequen-
cies [9].

Hybrid images, as represented by Eq. (1), blend together
two images of different spatial frequencies, toggling the
perception of one or the other via how the human visual sys-
tem’s perception changes with viewing distance. The latter
mechanism can be generalized to alpha blending:

Ha(A,B) = α fa(A) + (1− α) fb(B), (3)

where fa and fb are two filters converting A and B into dif-
ferent frequency images. The blending coefficient α controls
the viewing distance, and therefore, converts the dual image
to a distinctly perceived representation. Figure 2 shows the
transition from one image to the other as α is interpolated in
[0.1, 0.9].

Considering the skip connection fusing the semantically
and spectrally different feature maps E and D, we rely on the
following hybrid feature functions:

Hd
δ(E ,D) = δD + (1− δ) fl(E) (4)

He
ϵ(E ,D) = ϵ E + (1− ϵ) fh(D), (5)

where δ, ϵ ∈ RF are two alpha blending vectors. These
are combined to form the hybrid skip connection’s fusion
function:

Fhybrid = Hi([He
ϵ(E ,D);Hd

ϵ(E ,D)]). (6)

Compared to most other non-identity skip connections [21],
[38], [56], [63], the hybrid skip connection presented in
Eq. (4), (5) and (6) facilitates a bidirectional information
exchange between the encoder E and decoder D features,
whereas the aforementioned skip connections only focus on
bridging the semantic gap between E and D by increasing the
semantic information carried by the encoder features E .

Analyzing HybridSkip. There are multiple ways that
Fhybrid can be analyzed. From an attention perspective it can
be considered as a mix of heterogeneous feature boosting
[53] using a soft attention [24] on the respective features.
The decoder features attend to the encoder ones, and vice
versa, boosting specific features depending on the blending
factors. While traditional channel attention simply scale en-
tire feature maps (e.g. the squeeze-and-excite skip connection
in [56]) and grid based attention only focuses on spatial
feature selection (i.e. [38]), our hybrid approach is distinctly
different, albeit it combines these two concepts. The channel
attended encoder(decoder) features boosting the respective
channel attended decoder(encoder) are directly related to the
spatial information as already learned by the features.

From a spectral processing point of view, it can be con-
sidered as a selective alignment or focusing of the spatial
frequencies of the blended feature maps. Considering that
the early encoder features E contain higher frequencies than
the upsampled late decoder features D, the second term in
Eq. (4) and (5) is essentially a band-pass filtered feature map
as low/high frequency inputs are passed through a high/low
frequency filter. Therefore, both terms blend inputs from a
frequency spectrum lying in the middle of the two opposite
end, spatial frequency wise, original feature maps.

Considering the semantic gap, it is apparent that the hybrid
skip connection closes the gap in a symmetric fashion by
using both inputs to derive the features to be fused. In contrast
to most approaches, it does not seek to close the gap by align-
ing the encoder features to the decoder ones (e.g. as in [21],
[63]), but by appropriately blending them. As ϵ decreases, the
structural edges derived from the decoder features become
more dominant in the fused encoder features, accentuating
these edges compared to those encoded in E . Similarly, as
δ decreases, the smoothed detailed edges encoded in the
encoder features progressively add texture to the decoder
features. With appropriate blending factors, both directions
tend to reduce texture transfer and preserve the edges that
matter, leading to a balancing effect between the smoothness
and boundary preservation properties of the resulting fused
feature maps, and eventually the predicted signal. Notably,
the process is distinct for each feature map, meaning that with
δ and ϵ being learnable parameters of the model, it encodes
a dual representation of these features and learns which one
is more appropriate during training.

IV. RESULTS
Experimental Setup. For our analysis we use a dense re-
gression task, namely depth estimation, which requires the
balancing of both boundary preservation and smoothness
of the predicted depth maps, apart from its direct depth
estimation performance. To fully exploit rich depth maps that
include both smooth regions, as well as lots of foreground to
background depth discontinuities, we use an omnidirectional
image benchmark [1]. It includes spherical panoramas that
capture entire indoor scenes, containing a lot of flat sur-
faces (ceiling, floors, tables, etc.), as well as a plurality of
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K = 3 K = 5 K = 7 K = 9

FIGURE 3: Direct depth (id - pale blue), boundary (ib - tomato) and smoothness (is - pale green) performance indicators across
different kernel sizes and blending factors. The indicator colored horizontal lines denote the average across all blending factors
for each kernel size group K, while the black dashed line indicates the average of all three performance indicators. Each bar
plots uses a distinct scale which has been normalized to lie in the same range for clarity. Evidently, with increasing kernel
sizes we observe increased average performance, especially for the direct depth and smoothness indicators, while the boundary
indicators only slightly benefit from lower kernel sizes. Nonetheless, when considering all indicators jointly, increasing kernel
sizes achieve a balanced and gradual performance increase.

F = 512 F = 256 F = 128 F = 64 F = 32

FIGURE 4: The learned encoder ϵF and decoder δF blending factors of the K = 9 model across the 5 hybrid skip connections
of features F . From left to right the model’s skip connection transition from the bottleneck to the output layers. It is observed
that as we progress from the bottleneck (F = 512) towards the prediction layer (F = 32) a blending factor switch manifests
across the HybridSkip connections used in each scale. The HybridSkip connections closer to the bottleneck focus on the
structure given by the encoder (identity and low-pass) features, which nonetheless are closer to the bottleneck, while the skip
connections closer to the output focus on the decoder features and their high-pass information.

foreground objects given their omnidirectional field of view,
resulting in a rich piece-wise smooth depth map. Similar to
most works on spherical depth estimation [6], [10], [12], [41],
[67], we evaluate depths up to 10m and use standard metrics
for depth estimation, as well as boundary preservation [17],
[26] and surface orientation [55].

Implementation Details. Our implementation is based on
moai [37] which uses PyTorch 1.8 [40], PyTorch Lightning
1.0.7 [11] and Kornia 0.4.1 [45]. For all experiments we
use the same UNet architecture and supervision scheme used
in Pano3D [1], fixing the learning rate (0.0002), optimizer
(default parameterized Adam [25]), batch size (4) and ran-
dom number generator seed. Thus, only the skip connection
varies from experiment to experiment. We use the Pano3D
low resolution (512×256) Matterport3D (M3D) train and test
splits for all experiments and apply no data augmentation,
training for 60 epochs. For the low pass and high pass filters
fl and fh, we use a discrete isotropic Gaussian and a discrete
isotropic Laplacian filter respectively.

A. ANALYSING THE HYBRID SKIP CONNECTION

In this section we seek to understand the proper design of the
hybrid skip connection. Our analysis focuses on one hand
on the kernel size K of the low and high pass filters fl and
fh respectively, and on the other hand on the choice of the
encoder and decoder blending factors ϵ and δ respectively.
Regarding the latter, one approach would be to use constant
blending factors, explicitly controlling the information ex-
change between the two feature maps E and D.

This way, the encoder and decoder blending factors would
be ϵ = 1 ∗ ϵ and δ = 1 ∗ δ, with 1 denoting a vector
of ones with length F corresponding to the feature maps of
each skip connection. Another approach would be to consider
the blending factors as parameters of the model, and jointly
optimize them with the convolutional UNet parameters. This
would allow the model to adapt the blending factors to each
separate feature instead. In this case, the blending factors are
given by ϵ = σ(ϵ̂) and δ = σ(δ̂), with the hat symbols
denoting the model’s parameters, and σ being the sigmoid
function constraining the blending factors to lie in the [0, 1]
range. When using learnable blending factors, the parameters
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Conv Residual [21] ExFuse [63]

Attention [38] SqEx [18], [56] Hybrid (Ours)

FIGURE 5: The architectures of the different skip connections used in the experiments, namely the straightforward convolution
layer stack (Conv), the residual unit stack (Residual), the grid attention skip connection (Attention), the Squeeze-and-Excite
(SqEx) and ExFuse skip connections, as well as our proposed Hybrid one. The operations included are convolution (C),
activation (A), downsampling (↓), upsampling (↑), sigmoid (σ), seperable convolutions (c), global average pooling (

w�),
elementwise tensor addition (⊕) and multiplication (⊗), concatenation (;), as well as low (fl) and high pass (fh) filtering.
E and D denote the input encoder and decoder features of each skip connection, while g is the gate input used in [38].

ϵ̂ and δ̂ are initialized using a zero mean and unit variance
normal distribution N (0, 1).

To perform an aggregated analysis among many metrics of
different performance traits, namely direct depth, boundary
preservation and smoothness, we use the following indica-
tors derived from the metrics used in [1], which aggregate
accuracy and error metrics:

id = ((1.0− δ1.25)×RMSE)−1

ib = ((1.0− F 1.0
1 +F 0.25

1 +F 0.5
1 /3)× dbeacc)−1

is = ((1.0− α11.25o+α22.5o+α30o/3)×RMSEo)−1,

where F t
1 are the F1 scores of the precision and recall

boundary metrics at each threshold level t. The bar plots
in Figure 3 present the results across different kernel sizes
and blending factors. For the former we experiment with
K = {3, 5, 7, 9} and for the latter, apart from the learnable
blending factors, we also use the following explicit blendings
{0.25, (0.25, 0.75), 0.5, (0.75, 0.25), 0.75}, with the tuples
referring to (ϵ, δ) combinations. Two trends are observed,
first, that an increasing kernel size provides consistent per-
formance gains, and second, that the learnable blending
factors are also a consistently good performer across different
kernel sizes. Consequently, we use the K = 9 kernel size
with learnable blending factors as our baseline hybrid skip
connection UNet model.

From an interpretation perspective, analysing the learnable
blending factors offers an insight on how the hybrid skip
connections behave. We illustrate the distribution of the
blending factor coefficients of the K = 9 model across its

5 skip connections in Figure 4. We observe an interesting
and reasonable trend where the deeper layers focus on the
structure offered by the incoming encoder features and their
low-pass outputs (the encoder features in this case are not
early encoder features), while as we progress towards the
layers closer to the output, the blending factors indicate that
the focus shifts on the predicted signal and its dominant
edges, suppressing encoder features resulting into texture
transfer.

B. COMPARISON WITH OTHER SKIP CONNECTIONS
We additionally compare the performance of the proposed
hybrid skip connection to other approaches used for long
range skip connections. More specifically, we present results
for a straightforward convolutional (Conv) skip connection
stacking k 3× 3 convolution layers, and the stacked residual
unit skip connection [21] (Residual), where ki units are
stacked, with i ∈ {1, ..., 5} indicating the ith encoder-
decoder layers. Apart from the stacked approaches, we also
compare against the attention UNet [38] skip connection
(Attention), and the NAS identified [56] Squeeze-and-Excite
[18] (SqEx) skip connection. Finally, we adapt the ExFuse
[63] skip connection for the UNet architecture, using the
decoder features as the high-level feature map fed into the
semantic embedding branch, and following it up with a
9× 9 global convolution. Notably, compared to all other skip
connections concatenating the encoder and decoder feature
maps, ExFuse performs a residual skip connection by adding
them. Illustrations describing each skip connection used in
our experiments can be found in Figure 5.
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TABLE 1: Direct depth metrics performance across all compared skip connections. Best three performers are denoted with bold
faced light green (1st), light blue (2nd) and light purple (3rd) following the respective ranking order.

UNet Model
Direct Depth

Error ↓ Accuracy ↑
RMSE RMSLE AbsRel SqRel δ1.25 δ1.252 δ1.253 δ1.05 δ1.1

Vanilla [47] 0.4055 0.1158 0.1083 0.0649 89.43% 97.34% 99.09% 36.67% 62.12%
Conv 0.3974 0.0670 0.1095 0.0663 89.43% 97.46% 99.09% 38.53% 61.79%
Attention [38] 0.3974 0.0664 0.1074 0.0636 89.67% 97.61% 99.19% 35.90% 61.69%
SqEx [18], [56] 0.3993 0.0672 0.1097 0.0672 89.57% 97.51% 99.09% 36.11% 61.65%
ExFuse [63] 0.3913 0.0865 0.1043 0.0688 90.42% 97.60% 99.07% 40.34% 64.77%
Residual [21] 0.3965 0.1068 0.1093 0.0679 89.61% 97.46% 99.13% 37.58% 62.22%
Hybrid (Ours) 0.3937 0.0639 0.1010 0.0596 90.76% 97.72% 99.17% 38.75% 64.41%

TABLE 2: Extra parameters, depth boundary and smoothness preservation metrics. Same colorization scheme as Table 1.

UNet Model
Depth Discontinuity Depth Smoothness Model Performance

Error ↓ Accuracy ↑ Accuracy ↑ Error ↓ Parameters ↓
dbeacc dbecomp F 0.25

1 F 0.5
1 F 1

1 α11.25o α22.5o α30o RMSEo

Vanilla [47] 1.279 4.110 48.89% 42.14% 32.33% 63.02% 77.94% 83.12% 15.95 27.69M
Conv 1.226 4.101 51.39% 45.92% 37.58% 62.88% 78.10% 83.35% 15.83 +6M (21.66%)
Attention [38] 1.321 3.891 51.34% 45.66% 38.05% 62.60% 77.61% 82.93% 15.99 +2M (8.17%)
SqEx [18], [56] 1.344 3.931 48.83% 41.12% 32.42% 66.22% 79.79% 84.54% 14.76 +88K (0.31%)
ExFuse [63] 1.528 4.865 51.60% 46.20% 37.20% 63.86% 78.76% 83.84% 15.50 +18M (64.99%)
Residual [21] 1.865 4.372 53.59% 48.28% 41.22% 62.89% 78.09% 83.38% 15.71 +4M (14.44%)
Hybrid (Ours) 1.312 3.733 49.41% 42.94% 34.42% 64.24% 78.82% 83.86% 15.36 +1K (0.01%)

Vanilla [47]
(0.218)

Conv
(0.604)

Attention [38]
(0.471)

SqEx [18], [56]
(0.798)

ExFuse [63]
(0.674)

Residual [21]
(0.404)

Hybrid (0.842) Hybrid vs Conv Hybrid vs Attention Hybrid vs SqEx Hybrid vs ExFuse Hybrid vs Residual

FIGURE 6: Normalized performance indicators for direct depth (d), boundary (b) and smoothness (s) preservation accuracy (a)
and error (e) metrics. The numbers inside the parenthesis indicate the area covered by each different approach, with the largest
area of the hybrid skip connection indicating its more balanced performance across all traits.

Tables 1 and 2 present the performance of each skip
connection on the M3D test set for the direct depth estimation
metrics, as well as the boundary and smoothness preserva-
tion ones respectively. Evidently, the hybrid skip connection
(learnable blending factors, K = 9) outperforms the other
skip connections approaches for dense regression in two
aspects. First, it offers the largest gain in terms of improving
direct depth estimation performance. Second, it additionally
offers the more balanced performance increase compared to a
vanilla UNet [47] across the secondary – competing – perfor-
mance traits. Finally, it does so at a reduced extra parameter
cost (last column in Table 2). While SqEx (Residual) offers
an important performance boost for preserving the depth
map’s smoothness (boundaries), it does so at the expense
of preserving boundaries (smoothness). The (second) better

balanced approach is that of ExFuse which manages to offer
reasonable performance gains across all performance traits.
These comparisons can be more easily discerned in Figure 6
that illustrates radar plots across different normalized accu-
racy (a) and error (e) indicators for all performance axes:

da = (0.2× (δ1.05 + δ1.1 + δ1.25 + δ1.252 + δ1.253))
−1

ba = (F
1.0
1 +F 0.5

1 +F 0.25
1 /3)−1, sa = (α11.25o+α22.5o+α30o/3)−1

de = (RMSE ×RMSLE)−1, se = (RMSEo)−1

be = (dbeacc × dbecomp)−1.

Figure 7 presents qualitative results of our K = 9 hybrid
skip model, compared to the SqEx and Residual models. The
latter are the better performing models in terms of surface
and boundary preservation respectively, but clearly showcase
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the difficulty in achieving a balance between these two traits,
as their improved performance on one, translates to a reduced
performance on the other. In contrast, the hybrid skip model
strikes a better balance in preserving both traits.
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FIGURE 7: Qualitative results on the M3D test set samples.
From top to bottom: i) input color image, ii-iv) predicted
depth boundaries for the Residual, Hybrid and SqEx models,
v-vii) predicted normal maps for the same models, and viii)
the groundtruth normal maps.

C. HYBRID SKIP ABLATION
We additionally perform an ablation study of the three
functional components that jointly formulate the HybridSkip
connection. First, we examine a scenario where only the
learnable blending of the encoder and decoder features is in-
troduced, denoted as Fblend = Hi([δD+(1−δ)E ; ϵ E+(1−
ϵ)D]). Then we also conduct two experiments where only a

single filter is applied either only at the encoder features (low
pass) or the decoder ones (high pass) respectively denoted
as Flow = Hi([fl(E);D]) and Fhigh = Hi([E ; fh(D)]). The
results for the two larger kernels (i.e. K = 7,K = 9) are
presented in Tables 3 and 4, where the former includes the
metrics related to direct depth estimation performance and
the latter includes the metrics related to the secondary traits,
depth smoothness and boundary preservation.

While each functional component in isolation may im-
prove performance along a single axis or metric, it is evident
that their combination leads to the most balanced perfor-
mance boost. Interestingly, we observe that the preservation
of structural edges is easy to achieve, but at the expense of
smoothness or direct performance, something that is better
mitigated when all components co-exist as a HybridSkip con-
nection. However, the discrepancy with respect to boundary
preservation between K = 7 and K = 9, with the smaller
kernel showing improved accuracy, indicates the selection of
the kernel parameters should be tuned on a per-dataset basis.

D. OTHER ARCHITECTURES
Finally, we examine the behavior of other UNet architec-
tures, and established models for 360o depth estimation with
respect to their preservation of additional estimated signal
traits. Specifically, for the former, we use UNet++ [66]
and a SqEx UNet++, which is a UNet++ extended with
squeeze-n-excite [18] skip connections, which were found
to be the most balanced alternative in the skip comparison
experiments in Section IV-B. For the latter, we employ the
state-of-the-art BiFuse [54] and HoHoNet [51] models. All
experiments are done using the same training scheme and our
rich supervision, as presented in the previous experiments,
essentially only switching the architecture for each different
experiment, even for the BiFuse and HoHoNet models, for a
fairer comparison.

Tables 5 and 6 present the direct and secondary metrics
respectively, including the baseline UNet and our proposed
vanilla UNet variant with HybridSkip connections. While
HoHoNet, a model specialized for the 360o domain, pro-
duces high quality depth estimation, followed by our model,
its behaviour with respect to preserving discontinuity and
smoothness is largely reduced, showcasing worse perfor-
mance even compared to the vanilla UNet. On the other
hand, BiFuse largely favours smoothness instead of bound-
ary preservation, whereas both UNet++ variants naturally
show improved boundary preservation. As also seen in the
experiments comparison different skip connections, the SqEx
UNet++ balances the two secondary traits better, offering
good results for smoothness as well, compared to the pure
UNet++ architecture, overcoming the deficits of skip connec-
tions. Nonetheless, its direct depth estimation performance
is still at similar levels to UNet++, and inferior to the bet-
ter performing 360o depth estimation models. Overall, our
hybrid skip connection vanilla UNet model, offers the more
balanced performance across direct and secondary trait met-
rics, as illustrated in Figure 8, with only the SqEx UNet++
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TABLE 3: Direct depth metrics performance metrics for the HybridSkip connection ablation experiments. Same colorization
scheme as Table 1. Since Fblend is a (learnable) blending of the encoder and decoder features, with no spatial filters applied,
we duplicate the row and adjust the colorized ranking only with respect to the two different kernel sizes.

Model Kernel
Direct Depth

Error ↓ Accuracy ↑
RMSE RMSLE AbsRel SqRel δ1.25 δ1.252 δ1.253 δ1.05 δ1.1

Fhybrid

K = 9
0.3937 0.0639 0.1010 0.0596 90.76% 97.72% 99.17% 38.75% 64.41%

Flow 0.3921 0.0718 0.1095 0.0658 89.24% 97.50% 99.14% 38.47% 62.58%
Fhigh 0.4105 0.0678 0.1090 0.0660 89.36% 97.43% 99.07% 34.77% 61.38%

Fblend N / A 0.4006 0.0670 0.1095 0.0649 89.35% 97.54% 99.12% 35.78% 61.09%
0.4006 0.0670 0.1095 0.0649 89.35% 97.54% 99.12% 35.78% 61.09%

Fhybrid

K = 7
0.3912 0.0646 0.1039 0.0611 90.40% 97.69% 99.16% 36.46% 62.66%

Flow 0.4017 0.0684 0.1106 0.0698 88.86% 97.22% 98.96% 39.57% 62.76%
Fhigh 0.4002 0.1200 0.1106 0.0681 89.06% 97.36% 99.05% 36.49% 61.43%

TABLE 4: Depth boundary and smoothness preservation metrics for the HybridSkip connection ablation experiments. Same
colorization and arrangement scheme as Table 1.

Model Kernel
Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Accuracy ↑ Error ↓
dbeacc dbecomp F 0.25

1 F 0.5
1 F 1

1 α11.25o α22.5o α30o RMSEo

Fhybrid

K = 9
1.312 3.733 49.41% 42.94% 34.42% 64.24% 78.82% 83.86% 15.36

Flow 1.360 3.960 50.26% 43.60% 35.62% 63.76% 78.43% 83.52% 15.65
Fhigh 1.371 3.833 47.86% 41.07% 30.56% 63.05% 77.90% 83.04% 15.93

Fblend N / A 1.308 4.098 50.74% 44.66% 36.25% 63.09% 78.04% 83.23% 15.90
1.308 4.098 50.74% 44.66% 36.25% 63.09% 78.04% 83.23% 15.90

Fhybrid

K = 7
1.661 4.472 51.10% 44.14% 35.95% 63.97% 78.72% 83.79% 15.45

Flow 1.377 3.786 51.36% 44.54% 35.97% 62.99% 77.80% 82.97% 16.04
Fhigh 1.266 3.941 52.14% 45.94% 37.78% 61.99% 77.42% 82.72% 16.33

TABLE 5: Direct depth metrics performance across different architectures. Same colorization scheme as Table 1.

Model
Direct Depth

Error ↓ Accuracy ↑
RMSE RMSLE AbsRel SqRel δ1.25 δ1.252 δ1.253 δ1.05 δ1.1

Vanilla UNet [47] 0.4055 0.1158 0.1083 0.0649 89.43% 97.34% 99.09% 36.67% 62.12%
BiFuse [54] 0.4243 0.0668 0.1142 0.1427 90.68% 97.22% 98.71% 41.18% 65.36%
HoHoNet [51] 0.3718 0.0603 0.0998 0.0871 92.14% 97.80% 99.08% 42.65% 69.72%
UNet++ [66] 0.4544 0.0736 0.1236 0.1274 87.81% 96.65% 98.49% 37.18% 60.94%
SqEx UNet++ [18], [66] 0.4507 0.0716 0.1231 0.1526 88.76% 96.80% 98.57% 37.20% 62.87%
HybridSkip UNet (Ours) 0.3937 0.0639 0.1010 0.0596 90.76% 97.72% 99.17% 38.75% 64.41%

TABLE 6: Number of parameters, depth boundary and smoothness preservation metrics for different architectures. Same
colorization scheme as Table 1.

Model
Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Accuracy ↑ Error ↓
dbeacc dbecomp F 0.25

1 F 0.5
1 F 1

1 α11.25o α22.5o α30o RMSEo

Vanilla UNet [47] 1.279 4.110 48.89% 42.14% 32.33% 63.02% 77.94% 83.12% 15.95
BiFuse [54] 1.321 3.580 41.42% 33.83% 28.70% 69.73% 80.98% 84.99% 13.89
HoHoNet [51] 1.109 4.019 45.10% 36.33% 30.50% 55.63% 72.86% 79.10% 18.75
UNet++ [66] 1.235 3.986 48.18% 42.61% 34.27% 62.98% 77.20% 82.37% 16.27
SqEx UNet++ [18], [66] 1.144 3.982 48.00% 42.49% 34.82% 66.14% 79.15% 83.85% 14.98
HybridSkip UNet (Ours) 1.312 3.733 49.41% 42.94% 34.42% 64.24% 78.82% 83.86% 15.36

model coming close in terms of balanced performance.

V. CONCLUSION
In this work we have designed a hybrid skip connection for
the UNet architecture which relies on long range skip con-
nections fusing features with a large semantic and spectral
gap. The simultaneous blending and spatial nature of the
hybrid skip connection allows for a balanced performance
boost across all performance traits for depth estimation, a
dense regression task, with minimal parameter overhead.
These results indicate that it may be worth exploring the

hybrid image concept in the various existing UNet modifica-
tions [19], [36], [43], [52], [66], or even CNN architectures
without long range skip connections, with a recent report
[4] providing interesting evidence about their interplay with
CNNs. Potential explorations may include short range skip
connections (e.g. residual units), or integration within basic
CNN buildings blocks (e.g. squeeze-and-excite operations or
Octave Convolutions [8]). One limitation is the design of
the filters themselves, which are currently performed on the
spatial domain and whose parameters remain fixed during
training. While larger kernel sizes may provide a more bal-
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Hybrid
vs

UNet [47]
(0.719 vs 0.206)

Hybrid
vs

BiFuse [54]
(0.719 vs 0.651)

Hybrid
vs

HoHoNet [51]
(0.719 vs 0.587)

Hybrid
vs

UNet++ [66]
(0.719 vs 0.355)

Hybrid
vs

SqEx UNet++ [18], [66]
(0.719 vs 0.706)

FIGURE 8: Same scheme as Figure 6, with larger numbers inside the parenthesis indicating the area covered by each different
approach, with larger areas indicating more balanced performance across all traits.

anced performance improvement as illustrated in Figure 3,
each output signal’s distribution may be more tuned to spe-
cific kernel parameters (e.g. K = 7 showing better boundary
preservation in Table 4). Spectral or learnable filtering may
allow models to better adapt to the task and data at hand.
Further, experimenting with adaptive blending will open up
dynamic dual feature representations instead of the fixed
blending factors that statically choose representations at the
end of the model’s training. It also remains to be seen if these
balanced skip connections also boost performance in other
downstream tasks like segmentation.
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