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Abstract

In this paper, re-identification techniques are exploited to add
context awareness to a multi-target tracker and enhance its
tracking performance, in an online manner. To achieve that,
targets are labeled as independent, occluders or occluded ones,
based on the completeness of their appearance information.
For each category, a different tracking strategy is employed to
achieve the optimal results. In cases of tracking failure, an on-
line automated re-identification technique is proposed, to alle-
viate multiple identity assignments to the same target. Experi-
mental evaluation conducted on the CAVIAR and PETS 2009
datasets shows that the proposed mechanism enhances track-
ing performance compared to a baseline tracker and achieves
competitive performance with state of the art methods.

1 Introduction

Surveillance automation becomes increasingly important as
new cameras are installed daily in public or private areas. Au-
tomation aims at real-time processing of aggregated footage,
reducing human effort and interaction. Online tracking of mul-
tiple objects in semi-crowded environments is a very active re-
search area in computer vision [1, 2, 3]. A tracker has to over-
come challenges like appearance variations [4], intra-class dis-
crimination [5], scene occlusions [6] and combinations of the
above. Tracking can also be expanded into a network of cam-
eras where targets are associated along different cameras [7].

Detection-based trackers have emerged as a popular choice
for tracking due to their improved performance and accuracy
[8]. They are using appearance models to find the new position
of an object by re-detecting it in every frame. The tracker’s
observation model is based on trained detectors capable of lo-
calizing an object class (pedestrians, cars, etc.) in many scales
and viewing angles [8, 9]. The association of the detection re-
sponses across frames is based on spatiotemporal constraints.
To further improve discriminability between targets of the same
class during inter-object occlusions, the use of adaptive, target-
specific classifiers, assigned on every object, has been widely
proposed. The appearance models in these methods aim at
making the targets of the same class distinguishable [10]. Re-

Figure 1. Proposed mechanism. Target categorization sets
the fusion rules of the observation models while ID validation
checks the originality of newly found objects.

cently, a new trend has emerged where the track by detection-
based tracker is supported with target-specific classifiers. The
combined responses of the two trackers are producing a more
robust tracking either for single-target [11], or multi-target sce-
narios [12].

Multi-target trackers can be categorized to online and of-
fline based on the association methodology followed and the
use of post-processing techniques. Online methods consider
only past and current frames and take decisions in a causal
way [1]. Offline methods get information from future frames
as well, and they use post-process data, such as energy mini-
mization schemes [13], to link fragmented trajectories.

Person re-identification (Re-ID) is being studied inten-
sively but mainly for inter-camera target associations [14, 15,
16, 17]. The problem is approached by appearance modeling,
where the need for robust descriptors becomes a priority [15].
There are few works that combine Re-ID with intra-camera
tracking. In [18], a matching method is used in combination
with a motion-based tracker. The work in [19] associates track-
lets in a sliding window, where linking is achieved without in-
termediate knowledge between matching frames or any form
of data pre-processing, while [20] associates trajectories in an
empirical way. In most of the related work Re-ID is employed
in post-processing schemes to associate tracklet, while in the
presented work it is used for context awareness in an online
fashion.



In this paper, the main contribution is the introduction of
a context-aware target-labeling procedure, using Re-ID tech-
niques to enable dynamic tuning of the tracking parameters.
Each target is labeled based on the completeness of its ap-
pearance information as independent, occluder or occluded. A
baseline tracker, constructed combining a detector and a classi-
fier, is enhanced with the proposed context-aware labeling. For
each category, it employs different fusion weights for the detec-
tor and the classifier responses. Moreover, Re-ID is used to pre-
vent targets from acquiring multiple identities. Every time that
a new target is introduced close to an occlusion area, it would
normally acquire a new identity number (ID). An automated
Re-ID based technique is proposed to validate newly found tar-
gets and link them with their previous IDs when needed. The
proposed approach runs in a causal way and association deci-
sions are taken online upon each frame.

The rest of the paper is organized as follows: the baseline
tracker is described in Section 2, while intra-camera Re-ID is
analysed in Section 3. The proposed method is described in
Section 4. Experimental results on public benchmark datasets
are evaluated in Section 5, followed by the conclusions in Sec-
tion 6.

2 Baseline Tracker

A baseline tracker has been implemented as a tracking ref-
erence to validate the advantages of the proposed attachable
module. Initially, an object detector is applied on each frame
to construct a response map of object localizations. Asso-
ciation of the objects across frames is, then, facilitated by
an online learning-based classifier. The classification unit is
adapted through time on each target appearance. Association
is achieved based on the assumption that objects cannot move
drastically between consequent frames. In our experiments, the
baseline tracker used the detection responses reported in [11]
for the pedestrian detection and the Compressive Tracker [21]
as the target-specific classifier.

Figure 2. The segmentation of a cropped frame (a) is guided
by a trimap (b), color-mapped with foreground pixels in white,
probably foreground pixels in gray and background pixels in
black. As a result, target (c) is represented only by relevant
pixels.

Detection responses are depicted as rectangular regions,
where each region is described by a bounding box. For each
successive frame, the correspondence process attempts to asso-
ciate each region with one of the existing tracks based on spa-

Figure 3. (a) Unsupervised segmentation shots extracted from
one frame. (b) Target shots are accumulated every Nth frame
into the gallery to construct a multi-shot representation.

tiotemporal constraints [5]. Single-object tracking is feasible
with a detection-based association. However, in multi-target
tracking scenarios, association becomes challenging, because
a single response can belong to many objects during an occlu-
sion, causing ambiguities. Therefore, a tracker must exploit
each target appearance individually to increase its intra-class
discrimination capability by using a classifier on each target.
Moreover, detection responses can be sparse resulting in track-
ing errors.

The tracker is initialized by each new entry found by the
detector. Using two sets of samples, characterizing the inner
box area as positive and the outer space as negative, Haar-like
features are extracted and used to train a naive Bayes classi-
fier [21]. During tracking, the model is being updated accord-
ing to a predefined learning rate so as to optimize tracklets’
construction. During classification, the search window is set
to cover the area around the target. Target-specific adaptation
minimizes object’s centre variation, guides tracker when detec-
tor response is sparse and resolves short-term occlusions suc-
cessfully. Update is suspended when objects are participating
in an occlusion. However, classifier’s performance is based on
its limited search window size which is typically appropriate
for localizing an object on successive frames. The weakness of
classifier’s search method is revealed when objects are either
occluded for a long period of time or the template undergoes
large appearance differences , resulting in the template update
problem (a.k.a. drifting) [22].

Detector’s and classifier’s predictions, DP i
k and CP i

k re-
spectively, can compensate each other’s errors by using a
weighting scheme. Detector’s sparsity and its inability to han-
dle short-term occlusions and the classifier’s drifting problem
can be overcome by fusing both predictions into a final one
FP i

k using a weight function:

FP i
k = w ·

[
DP i

k

CP i
k

]
(1)



where w = [wd wc] is the weights vector. As a result,
the detector acts as the unbiased observation model while the
classifier refines results in an adaptive way. The default fu-
sion weights of the detector and the classifier predictions are
equiponderant. In section 4.1, a mechanism is proposed to con-
figure the weights according to the scene context.

3 Intra-camera Re-ID

In the relevant literature, Re-ID methods are considered inde-
pendent from tracking and are tested on datasets with already
cropped targets accompanied with Ground Truth annotation for
segmenting foreground pixels from the background [16]. In an
autonomous tracking framework, though, a preprocess unit is
required to construct the image gallery. Also, Re-ID matching
relies on target’s appearance, thus object segmentation is nec-
essary to construct representative descriptors. However, most
trackers provide detection windows around the objects, where
the localization may not be centered in the box or the box may
not have the correct size.

There is a plethora of methods for segmenting a target in-
side a window [23, 24, 25]. There have been impressive devel-
opments in techniques of semi-automatic segmentation, where
user interactions refine the results [26]. We propose to fully au-
tomate segmentation based on the assumption that, despite the
inaccurate localization of the detector, the center of tracker’s
detection window usually contains the most relevant informa-
tion. Therefore, segmentation is biased to accept pixels in the
center of the box and reject the ones in the boundaries.

The pre-process unit is fed with cropped boxes of indepen-
dent objects in parallel with tracking. Segmentation is guided
by an initial trimap T = TF , TP F , TB , tagged with areas for
foreground TF , probably foreground TP F and background pix-
els TB (Figure 2). For efficiency, the number of shots per rep-
resentation is limited. To counterbalance appearance changes
through time, shots are aggregated in each Nth frame. Con-
sequently, every tracklet can be represented by a volume of
cropped and segmented images, i.e. a multi-shot represen-
tation. The representations are accumulated to construct the
gallery. Results of this process can be seen in Figure 3.

Re-ID approaches consider subjects as sets of local and
global features extracted from a set of images [15]. Asymmetry
driven body division is applied to separate the box into body
parts by maximizing the difference between upper and lower
HSV histograms of the human body under the assumption that
pedestrians have a bimodal chromatic distribution (i.e. blouse
and trousers). Along with the histograms, the Maximally Sta-
ble Color Regions [27], that encode the texture information,
are accumulated into the representation. Derived either from a
single frame or from a sequence of frames, a single or a multi-
ple signature is generated. Matching of the signatures produces
ranked results where the first ranking position indicates the best
pair for linkage. Matching is based on appearance similarity
and is expressed by the distance dReID between the target A
and the matching candidate B:

dReID(A,B) = dHSV (A,B) + dMSCR(A,B) (2)

Labels/Weights wd wc

Independent 0.5 0.5
Occluder 0.2 0.8
Occluded 0.8 0.2

Table 1. Fusion weights of trackers based on object state.

where dHSV is the Bhattacharyya distance between the target’s
respective parts (upper and lower) and dMSCR is the MSCR
distance [27]. The aforementioned distance regards only the
case where two single-shot representations are compared. Our
technique falls within the case of Single-shot vs Multi-shot sig-
nature matching [14]. To compare a single-shot representation
versus a multi-shot one, the mean distance is used, derived from
each comparison between the single-shot representation with
each shot from the multi-shot one.

For the Re-ID module, the methodology presented in [14]
was ported in C++ to be integrated to our framework. The
texture descriptor in the original version was excluded due to
its disproportional computational burden. For independent tar-
gets, a tracklet of 3 frameshots per second was produced, re-
gardless the video frame rate, and a total of 5 frameshots were
accumulated into each multi-shot representation based on the
observation reported in [16]. For object segmentation on the
frameshots, we used [24] with the user-defined mask accepting
central points as foreground elements.

Figure 4. In (a), independent objects A and B are about to
meet. In (b), occlusion has begun with A passing behind B.

4 Occlusion Handling
A tracked object can be either fully independent from other
objects, or an occluder hiding other objects or hidden by an oc-
cluder. In the proposed framework, it is argued that a different
tracking strategy should be followed in each case. Independent
objects are easy to track since there is no noticeable detection
sparsity. Problems occur when objects get cluttered with each
other. Inter-object occlusions are detected when their bounding
boxes overlap (Figure 4).

4.1 Target Categorization

In order to categorize the targets, the completeness of their ap-
pearance is evaluated. During an occlusion, the content of an
occluded bounding box might miss valuable appearance infor-
mation and only the most-front object has full visual complete-
ness. Based on the inherent capability of the re-identification



technique to order objects based on their appearance similarity,
targets are labeled as occluders or occluded.

Assume K objects participating in an occlusion at frame
n. To categorize the bounding boxes during frame n, each box
is compared against its multi-shot representation, extracted as
described in Section 3. Each comparison, produces a similar-
ity score dReID between the box’s single-shot at frame n and
the multi-shot representation since the object was independent
before frame n − 1. A total of K comparisons are produced
and the target with the minimum distance is categorized as the
occluder. The rest K − 1 boxes are labelled as occluded.

At this point, the baseline tracker is aware of the target cat-
egorization and can now use different strategies for each target
group. For occluders, fusion favors the classifier, while for hid-
den targets, fusion favors the detector since the template might
not be visible. The different weights for each target category
can be seen in Table 1.

4.2 ID Validation

A common tracking error occurs when an object gains multiple
ID numbers. There are cases where long-term occluded targets
are lost and may re-appear outside of the search window of the
classifier resulting into the initialization of a new target. Their
original bounding boxes cannot be terminated due to the persis-
tency of occluded bounding boxes. The tracker terminates only
independent tracklets in the absence of detection responses. To
prevent ID switching errors and the drifting of orphan occluded
boxes, the Re-ID mechanism is triggered to check the original-
ity of newly found targets near occlusions.

Any attempt for a new entry (FP x) by the tracker, around
an occluded area S, must be compared against all candidates
classified as occluded. The minimum of the comparison dis-
tances (dmin

ReID) indicates the best pair for association. Due to
the fact that results are ranked, a global threshold thReID is
used to ensure that the minimum distance is within acceptable
limits. If dmin

ReID(FP x, {FP iεS}) < thReID , the target re-
gains its ID number. Otherwise, a new target is initialized.

In literature, Re-ID methods use distance metrics for pair-
wise scoring leading to efficiency and simplicity. Neverthe-
less, no absolute confidence measure exists due to the absence
of machine learning algorithms during the feature extraction
stage and the fact that association is treated as a ranking prob-
lem. This leads to the inevitable use of thresholds, which are
heuristically defined in order to maximize true matches [16].
During our experiments, a threshold of thReID = 0.7 is used
in all cases. In order to define this threshold, a bimodal distribu-
tion of the correct and wrong matching distances was created.
By fitting two Gaussian distributions on the distances data and
identifying their intersection, the threshold is set, as in [14].

5 Experimental Results

The proposed approach is applied for evaluation purposes on
two different datasets: CAVIAR1 and PETS 20092, which have

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
2http://www.cvg.rdg.ac.uk/PETS2009/

Tracker Type GT MT PT ML
Li et al. [10] Offline 143 84.6% 14.0% 1.4%

Bak et al. [19] S.window 140 84.6% 9.5% 5.9%
Baseline tracker Online 138 85.5% 12.3% 2.2%

Proposed method Online 138 86.3% 10.1% 3.6%

Table 2. Comparison of different tracking results on the
CAVIAR Dataset.

Tracker Type GT MT PT ML
Zhang et al. [12] Online 19 78.9% 15.8% 5.3%
Badie et al. [20] Offline 12 50.0% 33.3% 16.0%
Baseline tracker Online 19 73.7% 26.3% 0%

Proposed method Online 19 78.9% 21.1% 0%

Table 3. Comparison of different tracking results on the PETS
2009 S2L1 View 01 sequence.

been widely used as tracking evaluation datasets in literature.
The CAVIAR project dataset depicts the view across a hallway
in a shopping center. The ground plane that stretches among the
z-axis in combination with the low positioning of the camera
results in sequences with many long-term occlusions. In total,
it includes 26 video sequences, containing a varying number of
individuals and groups. However, 20 of the 26 sequences were
used as testing set as in [10]. The average length of the video
sequences is 1500 frames. The resolution of the frames is 384
x 288 pixels and the frame rate of each sequence is at 25 frames
per second (fps). Following the literature [3], the ground truth
data of the CAVIAR dataset is filtered, removing objects that
are too small or partially out of the scene.

From the PETS 2009 dataset, the sequence S2L1 is used
for the experiments. It depicts a campus road where a sparse
crowd is walking. Challenges for this sequence include the low
sampling rate of the camera which produces fast moving ob-
jects and multiple occlusions. Moreover, a sign at the center of
the frame constitutes a scene occluder which covers all people
behind it and in some cases for long periods. The length of the
video sequence is 795 frames and the resolution of the frames
is 768 x 576. The frame rate of the sequence is at 7 frames per
second.

For comparison with other state-of-art methods, we
adopted commonly used metrics [28]. The metrics used are:

• GT: the number of ground truth trajectories.

• MT: the percentage of trajectories successfully tracked for
more than 80% of their total length.

• PT: the percentage of trajectories that are tracked between
20% and 80% of their total length.

• ML: the percentage of trajectories that are tracked for less
than 20% of their total length.

The higher value, is better for MT, while the lower value, is
better for PT and ML.



Tracking evaluation results are depicted in Tables 2 and
3. For the Caviar dataset, the comparison shows that the pro-
posed framework achieves the most MT, while keeping the
ML lower than [19]. Compared to the offline method [10],
our system achieves the most MT, but more ML trajectories.
Offline trackers consider all detection responses across frames
given and can handle detection sparsity better than the online
approaches that decide in a causal way. For the PETS 2009
dataset, the comparison shows that our system outperforms all
approaches, achieving the same MT as [12], while ML is 0.
These results show that the baseline tracker produces compara-
ble results considering the state-of-the-art methods, while our
attachable mechanism enhances and improves the overall per-
formance of the proposed framework. Example sequences of
output frames are depicted in Figures 5 and 6.

6 Conclusions

In this work the exploitation of Re-ID techniques is pro-
posed to enhance a multi-target tracker, introducing dynamic
parametrization of the tracker on a target-based level. The pro-
posed methodology labels the targets according to their appear-
ance completeness to individual, occluder or occluded, em-
ploying a different tracking strategy in each case. Moreover,
the proposed framework is exploiting Re-ID to alleviate multi-
ple ID assignment to the same target. It must be noted that all
the above functionalities are available in a online fashion and
they could be integrated to any multi-modal tracker. The results
of the experimental evaluation show a significant improvement,
compared to the baseline tracker and state-of-the-art tracking
methods employing Re-ID techniques.
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