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Abstract

In this paper, an automated methodology that builds a profile
for each pedestrian tracked based on its appearance, its oc-
clusion status and the semantic information related to its po-
sition, is presented. The extracted profiles are utilized to per-
form context-aware tracking in multi-target tracking scenarios.
A novel fusion scheme that combines the output of multiple
trackers, exploiting context-related information cues is pro-
posed. A set of decision rules is created that implicitly inte-
grates occlusion reasoning capabilities in multi-target scenar-
ios. Key aspects of the fusion process presented are (a) a com-
mon, context-aware methodology to assess the confidence of
each tracker’s output and (b) a correlation scheme that evalu-
ates the consistency of the trackers’ output. The confidence and
consistency metrics extracted are used to produce weights for
the fusion of the available trackers.

1 Introduction

People tracking automation is becoming a cornerstone in se-
curity and surveillance applications, due to the enormous cost
of human superintendence. As surveillance systems grow in
scale, heterogeneity and capabilities, there is an increasingly
critical need to provide an automated surveillance solution,
able to perform under different conditions. Nevertheless, the
existing tracking methods are still facing a number of chal-
lenges deriving from the diversity of the content that they have
to process. The human mind can overcome these challenges
imposed in multi-target people tracking by efficiently combin-
ing its inherent pattern recognition capabilities with semanti-
cally rich information gathered from the scene and the accu-
mulated experience. In recent literature, multi-target tracking
methodologies propose the combination of multiple types of
trackers in a single system, in order to achieve robust track-
ing results. Given that each method has its own strengths and
weaknesses, and operates optimally under different conditions,
it is possible to create a general tracker with strong overall per-
formance by combining different types of trackers in a Late or
Decision Level fusion, where different cues are evaluated sep-
arately and the obtained decisions are fused.

Different late fusion methods have been presented, where
multiple trackers are fused to produce more robust tracking re-
sults. In [1], [2], a multi-target, tracking-by-detection frame-

work is proposed, which employs an hierarchy of trackers to
select the most efficient tracking strategy. In [3], the authors
combine a pedestrian detector and person specific classifiers
in a particle filtering framework. In [4], authors describe a
tracking-by-detection framework for multi-target tracking, in-
cluding an occlusion reasoning stage. Other late fusion tech-
niques include [5], where a number of weak labelers-trackers
are fused through a majority voting scheme. Furthermore, in
[6] the trackers are treated as black boxes. Their output consis-
tency and correlation are calculated and then, they are fused us-
ing Gaussian Mixture Models. Late fusion schemes exploiting
context awareness have also been proposed [7]. In [8], multiple
characteristics of the scene are modelled to assist a tracker that
segments the target in multiple blocks and follows a multi-level
tracking scheme. However, motion based block tracking is il-
lumination intolerant, which can prove problematic for scenes
with rapid illumination change. In [9], an adaptive tracking
algorithm is presented, combining probabilistic and determin-
istic trackers with a confidence estimation stage and pedestri-
ans interactions to calculate reliable trajectories. However, its
performance relies on a number of heuristics. Authors in [10]
propose an off-line approach, where an incremental learning
method of a non-linear motion map to produce more robust mo-
tion affinities between trajectories. In [11], an off-line method
is described, where the social grouping behaviour of moving
targets is modelled to assist the trajectory linking problem. The
results are promising, however, the method seems likely to fail
under heavy occlusions, where very close targets may merge.

Building on this approach, we present a novel multi-target
tracking framework exploiting context information to enhance
performance. A set of decision rules is created that implicitly
integrates context-aware reasoning capabilities in multi-target
scenarios. Rules take under account context information re-
garding the observed scene, status information for the targets
being tracked, occlusion information in multi-target scenarios.
The exploitation of context information and the enhanced oc-
clusion reasoning method leads to a dynamically tuned multi-
target solution for online tracking in surveillance videos.

The rest of the paper is organized as follows: after pre-
senting the target profiling in Section 2, the baseline tracking
scheme is provided in Section 3 and the multi-tracker fusion
scheme is presented in 4. Experimental results are presented in
Section 5 and finally, conclusions are drawn in Section 6.



2 Target Profiling

The Target Profiling subsystem is responsible to build an up-to-
date profile for each target. The profile consists of appearance
information, occlusion status and position.

2.1 Signature Extraction

The detector response is often imperfectly localized, including
background segments. In order to produce a robust signature
for each target, an automated segmentation process is applied
to isolate the target, as described in [12].

Pedestrians often feature a bimodal color distribution in
their appearance, deriving from the upper and lower clothing
parts (i.e. blouse and trousers). A body division is applied to
separate the templates into two parts, namely upper (Iu) and
lower (I l). It is proposed that the calculation of the division
axis Y is performed by maximizing the Bhattacharyya distance
dBh between the upper and lower HSV histograms h(I), pro-
ducing an accurate representation of the target.

argmaxy(dBh(h(Iu(y)), h(I l(y)))) (1)

The signature of each template consists of a combination of
multiple color descriptors. HSV histograms and affine covari-
ant regions (MSCR) are utilized .

2.2 Occlusion Status

We argue that a different tracking strategy should be followed
for each one of the related targets according to its occlusion sta-
tus. For that purpose, the notion occlusion state is introduced.
Each target is classified to either independent or occlusion-
related, based on the intersection of the bounding boxes (bbs).
The intersection Q between the boxes bbl and bbm of people
l,m, respectively, is defined as:

Q(bbl, bbm) = 2 · (bbl ∩ bbm)
bbl ∪ bbm

(2)

In order to have an occlusion and taking into account that
bbs include background segments, an intersection of 30% of the
total bb area has been heuristically defined as the threshold for
occlusion, in all experiments.

An occluded object, depending on its relative position with
other targets, can be an occluder, hiding other objects, or hid-
den by an occluder. In an occlusion scenario targets are labeled
as occluders or occluded based on their similarity to their signa-
ture. The target with the minimum distance from its signature is
categorized as the occluder. The rest are labelled as occluded.
The occlusion state of each target is updated for every frame.

Occlusion-related targets are classified either as occluders
or occluded. If a target’s state is occluder, the tracking strategy
remains the same. On the other hand, when the target’s state
is occluded, there is limited availability of appearance infor-
mation. Thus, the classifier and the motion prediction module,
during this time, halt their model updating, until the target be-
comes fully visible again.

2.2.1 Structure Modelling

The structure of the scene can be captured based on the sta-
tistical analysis of the motion detected in a training set. The
pedestrian trajectories are extracted, filtered and, subsequently,
used as input to automatically identify and label regions in the
scene with certain characteristics. The output is a set of differ-
ent masks, each mapping a different aspect of the scene struc-
ture, namely motion activity and entry/exit regions.

(a) (b)
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Figure 1. Examples of scene modeling masks from CAVIAR
[13]. (a) Original frame, (b) Active areas mask, (c) Entry/Exit
areas mask

The motion activity in each region of the scene is captured
in the form of a binary mask, depicting areas with significant
activity. To construct it, the coordinates of all the trajectories
from the training set are collected and mapped on the scene.
Morphological filtering is then applied resulting in a binary
mask, where the true area represents the active areas of the
scene. The produced mask is denoted as active area map and
an example is depicted in Fig. 1b.

Entry/exit zones are mapped using the starting and end-
ing points of the accumulated trajectories gathered, excluding
those identified in the first and last frames of the sequence be-
cause people may falsely appear to enter in the middle of the
scene introducing noise. The qualified points are clustered into
disjoint sets using the euclidean distance. Each identified clus-
ter marks an entry/exit zone. Altogether, they form a convex
hull. Assuming that a person cannot enter or exit from the in-
ner area of the hull, clusters in the convex hull are excluded,
while all remaining clusters form the entry/exit zone map. The
final map is depicted in Fig. 1c as a binary mask.

3 Target Tracking

In this section, a methodology to fuse the tracking responses
from multiple trackers through a dynamic context-aware pro-
cess to improve tracking efficiency is presented.



3.1 Target Initialization/Termination

Due to the detector’s uncertainty, initialization/termination of
the targets when they enter/leave the scene, can be challenging.
An accumulative voting system is proposed to robustly iden-
tify the entrance/exit of people in the scene, overcoming the
detector’s sparsity and false positive detections. When a new
target is detected, a hypothesis is formulated. If enough con-
secutive detections are accumulated, the hypothesis is accepted
and it is assigned a unique identification number (ID). The ini-
tialization threshold thinit is defined based on the appearance
frequency of the detector’s false positive detections (FPs). A
threshold is defined, by requiring at least 99% of the FPs to
be eliminated. This requirement removes possible outliers that
will affect the threshold definition. To terminate tracking, when
the object exits the scene, a similar voting scheme is employed,
counting frames with no matching response. When a threshold
thterm is reached, the target is terminated.

The thresholds calculated using the statistical processing of
the detector responses are generally valid for the scene. How-
ever, the tracker’s performance can be improved by modify-
ing them in a region level according to its motion activity and
whether it consists entry/exit zones. In regions with no motion
activity, the appearance of a new target is rare and, therefore,
the initialization threshold is increased to avoid false detec-
tions. The termination threshold in the same area is decreased
to assist the quicker deletion of false target detections or valid
targets that have drifted away. On the other hand, in entry/exit
zones the thresholds for initialization and termination are both
lowered as the possibility of a change in target population num-
ber is very high. A statistical analysis similar to the one de-
scribed above was performed for each of the respective areas.

Moreover, a validation process for each newly identified
target is proposed to avoid the re-initialization of targets whose
tracking has been lost due to extensive occlusion events. The
signature extracted from each initialized target is compared
with the signatures of the existing targets to identify possible
matches. In order to minimize the number of possible candi-
dates, the pool of possible matches is restricted to targets in the
vicinity that are labeled as occluded. If the newly initialized tar-
get matches a prior target it regains its former ID. Otherwise,
the target is considered new. This module is activated in the
proposed framework on-demand, when a new object appears,
to minimize the computational burden.

3.2 Trackers Pool

The proposed fusion framework is tracker-agnostic. In or-
der to test it, a pool of state-of-the-art trackers has been as-
sembled, containing a detection-based tracker, a target-specific
classification-based tracker and an appearance-independent
motion predictor.

Tracking by Detection: Object detection can facilitate a
basic multi-target tracker with robust performance in simple
cases. Current detectors combine speed, performance and in-
variance to considerable changes in lightning and scale. By
applying the detector on every frame, we construct a sequence

of detection response maps depicting possible object localiza-
tions. A detector can localize many instances of the class in
a frame, allowing multi-target tracking. The tracking of the
detected objects is accomplished by linking their responses
along consecutive frames, in an association process commonly
known as the assignment problem.

A detector requires target visibility and heavily relies on
the training of the model itself. The detection response can be
either sparse or include a lot of false positives. A low detec-
tion rate might lead to undesirable side effects such as tracking
inaccuracies or an untimely tracking termination. Moreover,
when two targets collide (occlusion), the detector merges the
targets in one response, limiting the accuracy of this approach
in scenarios with occlusions.

Tracking by Classification: A tracker needs to know a pri-
ori each target’s appearance independently to resolve associ-
ation ambiguities in multi-target and occlusion scenarios. A
target-specific classifier can localize a specific object in subse-
quent frames, given an initial template. The model is updated
with a predefined learning rate λ that limits the contribution of
new templates to the classification model. The optimal learn-
ing rate value depends on the content and the characteristics of
the video. A classifier is initialized for each one of the targets
to model their appearance in the scene.

While online adaptation of the classification model is es-
sential to track non-rigid and variable targets (e.g. a person), it
introduces a gradual failure of the template a.k.a. drifting. Due
to imperfect target localization and scale changes, background
features are increasingly incorporated in the template, leading
to a gradual template failure and, finally, the loss of the target.

Tracking by Motion prediction: A motion prediction ap-
proach that is appearance-independent is proposed in this work,
based on [14]. The proposed approach exploits the observed
motion behavior of targets on the scene, and builds on the local
motion models acquired through motion modeling to create an
online motion prediction module.

The first step in motion prediction is to create the motion
model for the examined scene, based on prior motion patterns.
The accumulated prior trajectories that are used as training
material are divided into smaller tracklets with a fixed length
Ntracklet. The informative tracklets are filtered, producing a
large set that summarize the motion patterns observed in the
scene. The dominant tracklets in each neighbourhood repre-
sent local motion models. Gaussian Process (GP) regression is
used in order to model the dominant motion patterns.

The local motion models identified are exploited to create
an online motion prediction module. Given a person in the
scene, a tracklet containing the Ntracklet prior locations of the
target is fed to the Motion Prediction module. This tracklet is
assigned to a grid point of the scene, based on its localization.
The motion models that correspond to this grid point are em-
ployed to estimate the next position of the target.



4 Tracker Fusion
In this section, a context-aware fusion of independent trackers
is introduced for multi-target tracking in surveillance video se-
quences. A late fusion scheme is employed, fused with context
information to streamline performance. In order to fuse differ-
ent trackers efficiently, a confidence metric of their response
is required. However, trackers do not produce any metric or
they produce metrics which are not comparable. Therefore, a
tracker-agnostic framework to assess their performance is pre-
sented.

4.1 Tracker Confidence

In order to facilitate the evaluation of the tracker confidence,
information cues that measure the robustness of the tracker are
proposed, capturing the consistency of the tracking responses,
in terms of speed and appearance.

Speed: In a small time window, it can be assumed that ob-
jects are moving in a stable speed (inertia). Therefore, a sud-
den change could be an indication of a tracking failure. Speed
similarity is defined as:

Simsp = min(V̄N , VTk
)

max(V̄N , VTk
)

(3)

where V̄N is the mean speed in the last N frames and VTk
is

the speed in the examined frame.

Appearance: In the same time window, appearance informa-
tion is also likely to be preserved, fully or partly. Therefore, a
sudden change in the appearance of a moving target could also
be an indication of a tracking failure. In order to test the track-
ing consistency, the candidate response is compared against
prior observations, using appearance signatures to extract an
appearance similarity score Simapp.

We assume that a candidate response with consistent speed
and appearance has a significant probability to be correct. De-
viation in either one could be an indication of a tracking failure.
Therefore, the overall confidence Si of tracker i, normalized to
[0, 1], is defined as:

Si = Simsp + Simapp

2 (4)

4.2 Tracker Accordance

In a frame, every individual tracker provides the system with
a different tracking response. Besides the performance of each
tracker, the pair-wise proximity of the respective responses is
also an indication of accurate tracking. Response similarity is
calculated taking under account: distance, overlap and resem-
blance of the responses, as presented below.

Distance: Two trackers do not produce exactly the same re-
sponses for the same target. Nonetheless, the centers of the
responses should be close, to increase their credibility. The
similarity Simdist of two responses with bounding boxes bbi

and bbj , in terms of their distance, is defined as the euclidean
distance of their centers.

Overlap: Besides the distance between two responses, the
size and shape of their bounding boxes contain essential infor-
mation. Therefore, the overlap of two responses is also em-
ployed as a similarity measure Simovrl.

Appearance: Appearance similarity among tracker re-
sponses can be utilised also to assess the pair-wise tracker
accordance. The appearance similarity (Simapp) among the
responses is employed to evaluate the appearance variation
among them.

We assume that pairs of tracking responses with high sim-
ilarities in terms of distance, overlap and resemblance have a
significant probability to be accurate. Therefore, the overall
Accordance metric Ai,j between trackers i, j is defined as:

Ai,j = Simdist + Simovrl + Simapp

3 (5)

where Simdist, Simovrl, Simapp are the distance, overlap and
appearance cues, respectively.

4.3 Dynamic Fusion

A fusion scheme that adjusts to the confidence and accordance
of the trackers’ responses is proposed here. Intuitively, can-
didate responses with high confidence, whose responses are
confirmed by competing trackers, are more likely to represent
the true position of the target and therefore, their contribution
leads to more accurate tracking results. It is important, thus,
to employ a fusion scheme which will “reward” the reliable
responses, while it will “punish” the weak ones.

Towards this end a pair-wise combinatorial fusion is em-
ployed. Trackers are dynamically combined in pairs to pro-
duce intermediate results using the tracker’s confidence. The
intermediate results are then fused using the tracker accordance
metric. As a result, responses that share common characteris-
tics are boosted during fusion. The final response can be calcu-
lated as:

R =
∑ Ai,j

Asum
· ( Si

Si + Sj
·Ri + Sj

Si + Sj
·Rj) (6)

where Rk is the response of tracker Tk.

5 Experimental Results
The proposed approach is applied for evaluation purposes on
two different publicly available datasets: CAVIAR and PETS
2009, which have been widely used as tracking evaluation
datasets in the literature.

Two sets of metrics are used to cover all aspects of tracking
evaluation. The first set is the CLEAR MOT metrics, which fo-
cuses on the frame to frame performance of the tracker. The
second set of metrics used is the trajectory quality metrics,
which focus on performance in the trajectory level. The trajec-
tories are classified to mostly tracked (MT), partially tracked
(PT), and mostly lost (ML), which are trajectories success-
fully tracked for more than 80%, more than 20%, and less than
20%, respectively. Moreover, fragmentations (FM) and iden-
tity switches (IDS) are computed.



5.1 Evaluation of fusion contribution

In this section, the contribution of the trackers and the dynamic
fusion in the proposed system is evaluated and analyzed. We
use the CAVIAR dataset for the evaluation due to its more com-
plicated scenarios and its total frame length, and the results are
given in table 1. First, the results for each primary tracker, the
naive fusion methodology and the proposed one are presented.

Tracker MT PT ML FM IDS
Detector 83.33% 13.89% 2.78% 49 31
Classifier 43.06% 43.75% 13.2% 83 32
Predictor 6.25% 59.03% 34.7% 60 7
Naive Fusion 89.58% 9.722% 0.694% 40 25
Proposed 91.70% 7.60% 0.70% 29 13

Table 1. Evaluation of module contribution on CAVIAR
dataset

By observing the results, it is obvious that the detector per-
forms better than the other two. It is also clear, that the classi-
fier and the predictor cannot stand as individual trackers, some-
thing that was expected due to their nature. A naive fusion of
all trackers, where their mean value is used already improves
MT trajectories and decreases FMs and IDSs.

Albeit the increase in the MT by the naive fusion, still the
number of fragmentations and ID switches is high. These er-
rors are caused mostly during occlusions, where the detector
and the classifier cannot cope with the appearance changes.
Our context aware novel dynamic fusion scheme aims to boost
strong tracking responses with common characteristics and re-
duce the effect of weaker tracking responses to the final result.
The results affirm the tracking improvement, since theMT has
been further increased, and at the same time, the number of
FM and IDS has been significantly decreased.

5.2 Comparison with SoA

In this section, a comparison of the proposed framework
against other state-of-the-art online multi-target trackers is pre-
sented. The three datasets were employed and the evaluation
was performed using the parameters summarized in Table 2. In
order to render our results comparable with the related litera-
ture, the detection responses presented in [15] are used. The
proposed framework is compared against online trackers pre-
sented in Zhang et.al. [16] and Duan et al. [8] and offline

Parameter CAVIAR PETS09
frame 384x288 768x576
fps 25 7
thinit 7 3
thterm 11(5) 8(3)
learnrate 0.15 0.35

Table 2. Parameter set for the evaluated datasets.

trackers presented in Kuo et al. [15], Yang et al. [17], and
Nevatia et al. [10].

Tracker MT PT ML FM IDS
Kuo et al.[15] 84.6% 14.7% 0.7% 18 11
Nevatia et al.[10] 89.1% 10.2% 0.7% 11 5
Duan et al.[8] 89.7% 7.4% 2.9% 29 15
Proposed 91.7% 7.6% 0.7% 29 13

Table 3. CAVIAR statistical results using the trajectory quality
metrics

Tracker MT PT ML FM IDS
CVPR10 [15] 82.6% 17.4% 0.0% 21 15
CVPR11 [17] 78.9% 21.1% 0.0% 23 1
CVPR12 [10] 89.5% 10.5% 0.0% 9 0
AVSS12 [16] 78.9% 15.8% 5.3% 15 5

Proposed 94.7% 5.3% 0.0% 34 7

Table 4. PETS 2009 S2L1 (view 1) sequence statistical results
using the trajectory quality metrics

6 Conclusions
In this work, an online multi-target multi-tracker fusion frame-
work is presented, infused with context information to create
an on-line tracker. The contribution of the proposed work lies
in the exploitation of accumulated context information to assist
the tracking procedure. Semantic information regarding en-
try/exit zones, activity areas, and target modeling are employed
to assist tracking by guiding the association process and en-
abling adaptive, region-level parameter setting. Furthermore,
the inter-object relations are investigated and they are exploited
to resolve occlusion related issues. The responses of the tracker
pool are fused using a dynamic fusion strategy, based on a num-
ber of visual and spatio-temporal coherence rules.

The experimental evaluation on three different datasets
shows that the proposed framework provides very promising
results. Nevertheless, motion prediction of the targets is not
always accurate and deviations from the real trajectory are ob-
served. Predicting the human motion is not always possible
but it could be improved using a continuously updated motion
model that will feature ever more trajectory examples. Another
aspect of the architecture employed is the selection of the track-
ers. It is important to opt for trackers that cover different as-
pects of the tracking procedure, in order to complement each
other and balance their weaknesses. Thus, the final system will
be more robust and will efficiently adapt to different tracking
scenarios.
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Figure 2. Results for the CAVIAR dataset.

Figure 3. Results for the PETS 2009 dataset.
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