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Abstract Human activity recognition has received a lot of attention recently, mainly thanks
to the advancements in sensing technologies and systems’ increasing computational power.
However, complexity in human movements, sensing devices’ noise and person-specific
characteristics impose challenges that still remain to be overcome. In the proposed work, a
novel, multi-modal human action recognition method is presented for handling the afore-
mentioned issues. Each action is represented by a basis vector and spectral analysis is
performed on an affinity matrix of new action feature vectors. Using modality-dependent
kernel regressors for computing the affinity matrix, complexity is reduced and robust low-
dimensional representations are achieved. The proposed scheme supports online adaptivity
of modalities, in a dynamic fashion, according to their automatically inferred reliabil-
ity. Evaluation on three publicly available datasets demonstrates the potential of the
approach.
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1 Introduction

Human-machine interaction is entering a new era, with computers altering the way they
respond to human stimuli. Natural interaction, expressivity, affect [4] and activity recog-
nition [1] are the principal factors that enrich a human-machine interaction experience.
Indeed, technology now offers an increasingly large amount of sensing devices for captur-
ing human activity and, in many cases, hidden intentions, behaviors, affective and cognitive
states. Wearable inertial measurement sensors [11], robust video processing algorithms [1],
infrared and depth sensors [7] and audio [27] are only a few of the cues available for
understanding human activity. These advances brought automatic action recognition to the
front-end in many applications, ranging from entertainment to health-care systems. Based
on the above, it is understood that a robust action recognition scheme should fulfil a series
of criteria. First of all, algorithms guaranteeing real time performance are necessary, while
accuracy is equally important, especially when it comes to critical circumstances, such as
those involving healthcare systems. Although the more information is provided to a system,
the more accurate feedback it is likely to deliver, in many circumstances, a large volume of
information dramatically increases computational complexity, leading to systems not appro-
priate for real-time applications. Exploiting multi-modal information is also a significant
task that can boost the performance of a system but care should be taken for placing more
importance on ’good’ modalities than on noisy ones.

In the proposed work, a real-time, human action recognition method is introduced. The
proposed framework approaches the problem by taking into account the aforementioned
challenges. In particular, a low-dimensional representation of large dimensionality feature
vectors is utilized, by following a landmark-based spectral analysis scheme. In this way,
low-dimensional subspaces, encoding valuable information, are built, while new, unknown
actions are projected on them. Consequently, only valuable information from different
modalities is identified and used in the construction of the models and in further classifica-
tion of new instances. Based on the mathematical framework of spectral analysis, a method
for constructing the adjacency matrix combining cues from multiple modalities, is also
introduced in this work. Modalities are fused adaptively, according to automatically inferred
reliability metrics, guaranteeing increased robustness to sensor’s instability or tracking fail-
ures. Furthermore, a methodology for catering for large variance within the same action is
proposed; in this manner, different styles in executing the same action are handled, boosting,
in this way, the system’s ability to generalize for unknown individuals. Finally, for inferring
for new, unseen vectors, no local sub-manifold unfolding is necessary and, thus, only sim-
ple matrix operations are needed, making, thus, the proposed technique suitable for high
demands in real time applications. The above are illustrated through experiments, where
comparisons with state-of-the-art methods on three datasets are presented (HMMs & Bayes
classification, Bag-of-Words used in Support Vector Machines, multiclass Multiple Kernel
Learning) and classification speed is assessed.

The proposed technique builds on authors’ preliminary work on Microsoft kinect-based
activity recognition based on spectral analysis, [3] where results were presented on the
single-modality case of only depth data, while inter- and intra-individual sub-actions were
not considered and experiments were limited to a single scenario. The rest of the paper is
structured as follows: Section 2 gives an overview of systems employed for human action
recognition. Section 3 provides the technical details of the proposed method, while Section 4
presents extensive experiments on three publicly available datasets. Section 5 concludes the
paper.
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2 Related work

Feature pre-processing is strongly related to the utilized cue, in problems related to human
activity recognition. Raw inertial sensor data are used extensively, due to their ability to cap-
ture instantaneous features of local character and, thus, lead to a rich source of information
for action classification. Statistical [23], expressivity [5] and frequency domain parame-
ters [17], on the other hand, although local, convey a summary of an action for different
parts of the human body and, thus, they can be time independent. Such parameters usually
depend on efficient tracking in video sequences, which is a challenging area of research on
its own, attracting the attention of numerous researchers. Recent advances in object tracking
have given rise to new techniques aiming at handling (self-)occlusions and local anomalies,
using uncertainty-based techniques [36]. Space-Time Volumes [15] concatenate consecutive
vision-based two-dimensional human silhouettes along time, leading to three-dimensional
volumes and have been extensively used in non-periodic activities, with their performance in
the case of varying speed and motion still questioned [1]. Local descriptors (e.g. SIFT [24]
and Histograms of Oriented Gradients [19]) necessitate optimal alignment between training
and testing data and, although they possess strong discriminative power, they fail to take
advantage of whole body actions. A recently proposed approach in the domain of computer
vision has introduced the notion of mid-level descriminative patches [12] to automatically
extract semantically rich spatial or spatiotemporal windows of RGB information, in order
to distinguish elements that account for primitive human actions. Various feature extraction
techniques have also been proposed in the area of depth maps for human action recogni-
tion; typical is the work in [6], where the authors proposed the use of Depth Motion Maps
(DMMs) for capturing motion and shape cues concurrently. Subsequently, LBP descriptors
are employed for describing rotation invariant textures of the patches employed. Recently,
Song et al. [26] conducted experiments in re-projecting multiple modalities to a new space
where correlation among them is maximised and showed that, following this pre-processing
step, nonlinear relationships among different data sources can be found.

On a second level lay the methodologies which use as input processed features. The
robustness of the selected approach depends on the context of the application and the avail-
ability in features. Dynamic Time Warping (DTW) [30] is one of the most well-known
classification schemes. One of the major advantages of the method is its adjustability to
varying time lengths, but it usually requires a very large number of training examples, as it
is basically a template matching technique. Models describing statistical dependencies have
also been used extensively, mainly in order to encode time-related correlations. One of the
classical approaches, in this vein, are the Hidden Markov Models (HMMs) [16, 35]. Authors
in [32], propose a discriminative parameter learning method for a hybrid dynamic network
in human activity recognition. They showcase results on walking, jogging, running, hand
waving and hand clapping activities. Authors in [20] employ DBNs for the semantic anal-
ysis of sports-related events in videos. The probabilistic behavior of human motion-related
features has also been widely used through Support Vector Machines (SVMs). SVMs seek
hyperplanes in the feature space for separating data into classes. The data points on the mar-
gin of the hyperplane are called support vectors. Laptev et al. [18] use non-linear SVMs
for the task of recognizing daily activities of small temporal length (answer the phone, sit
down/up, kiss, hug, get out of car). Similar, authors in [29] use SVMs on temporal and time-
weighted variances, and authors in [21] employ SVMs in RGB and Depth data to recover
gestures, and then apply a fusion scheme using inferred motion and audio, in a multimodal
environment. Authors in [14] have also utilized SVMs for activity feature classification, on
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joint orientation angles and their forward differences, while view-invariant features (nor-
malized between-joint distances orientations and velocities) have been employed in [28].
The output of an Artificial Neural Network (ANN) can also be used for modelling the prob-
ability P(y|x) of an activity y to occur, given input feature vector x. Three and four layer
perceptrons are among the most common architectures. Typical is the work in [9], where
the authors perform indoors action recognition, using two modalities, namely, wearable
and depth sensors. Authors in [10] have also recently proposed a method for human action
recognition based on skeletal information, using Hierarchical Recurrent Neural Networks,
in order to epxloit temporal information in different parts of the human body, while the work
in [13] is proposing a three-dimensional Convolution Neural Network in order to jointly
make use of spatial and temporal information. Using Neural Networks, special attention
should be paid to high complexity during training, as well as overfitting. Classical classi-
fication schemes, such as k-Nearest Neighbor-based ones (k-NNs) and binary trees have
also been widely reported in the bibliography. The authors in [17] employ Discrete Fourier
Transform (DFT) as their representation scheme and feed the corresponding parameters to
a k-NN. The main drawbacks of these systems is that they are quite sensitive to parameter
fine tuning and tend to generalize poorly for uknown subjects. Recently, there is also a surge
in the use of Sparse Representation techniques, especially in the area of computer vision
tasks [25, 33, 34], and authors in [37] propose a novel methodology for pattern recognition,
applied on action, face, digit and object recognition by transferring the data structure into
the optimization process.

3 Landmark-based action recognition

Identical or similar actions represented by feature vectors xi∈Rm can be considered to lay
close to each other on a manifold space. Thus, they can be approximated by the linear com-
bination of representation vectors zi∈Rk (k << m) with a set of basis vectors lj∈Rm,
leading to the optimization problem of minimizing ||X−LZ||, with X = [x1, ..., xn]∈Rm×n

being a set of n actions, L = [l1, ..., lk]∈Rm×k a table of feature vectors corresponding to
landmark-features (derived randomly, after clustering or straight from the activities them-
selves) and Z = [z1, ..., zn]∈Rk×n the low-dimensional representation of X. A typical
approach for finding low-dimensional representations in manifold spaces is the calculation
of distances among all n data vectors, leading to the adjacency matrix W = (wi,j )

n
i,j=1 [31].

From W , the degree diagonal matrix D is built, whose elements are the column (or row)
sums of W . Subtracting W from D gives the graph Laplacian matrix L, and the eigenvectors
corresponding to its k smallest eigenvalues are the low (k)-dimensional representation of
the initial dataset. However, large datasets lead to time consuming construction and eigen-
decomposition of the Laplacian. Moreover, real-time action classification, using a spectral
analysis scheme, requires a per-frame unfolding of local submanifolds, as well as the use of
a pre-defined number of closest feature points in it. Authors in [8] present a methodology
for solving the problem by only using a subset of feature (basis) vectors lj instead of finding
one-to-one relationships among all feature vectors in a dataset, for building the adjacency
matrix. According to this method, the n data points xi∈Rm can be represented by linear
combinations of k (k � n) representative landmarks (basis vectors). This representation
can be used in the spectral embedding. The new representations are k-dimensional vectors
bi∈Rk while the landmarks are the result of random selection or a k-means algorithm. We
hereby extend this technique by introducing a dynamic weighting scheme for handling mul-
tiple modalities in the adjacency matrix and provide a framework for real time inference,
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using simple matrix operations avoiding, thus, manifold unfolding in testing, which would
be prohibitive for real time applications.

Instead of finding representative feature vectors, as in [8], though clustering, here, it
is straightforward to extract landmark basis vectors representing whole actions. Each of
these k′ classes of a training dataset can constitute a basis for building the landmark matrix
L∈Rm×k′

. Here, we consider each (sub-)action-specific landmark as the average of the cor-
responding m-dimensional feature vectors. The original data matrix X = [x1, ..., xn]∈Rm×n

can be approximated by the product of L and the representation matrix Z∈Rk′×n:

X≈LZ (1)

Since different individuals (or the same individual, at different times) might adopt dif-
ferent expressivity for performing the same action, the idea of sub-action basis vectors in
the spectral embedding is proposed here. In particular, since an action may be defined by
more than one classes, a within-action clustering scheme is followed. For a given action a,
a hierarchical cluster tree is used, in order to lead to the identification of significant sub-
clusters. The algorithm computes the matrix Y∈Rna×m of the cosine distance between pairs
of the na feature vectors belonging to the same action. It constructs ka clusters using the
distance criterion, finding the lowest height where a cut through the hierarchical tree leaves
a maximum of a pre-defined number of sub-clusters. A stopping criterion is also imposed,
so that heavily imbalanced clusters are not created. Using the above, the total number of the

landmarks used for spectral classification is k =
k′∑

a=1
ka ≥ k′.

Each element zji of the representation matrix Z can be found as the output of a kernel
function kh(·) (here, we use the Laplacian Kernel) of feature vector xi and landmark lj
normalized with the sum of the corresponding values for all landmark vectors:

zji = e
−‖xi−lj ‖

σ

∑

j

e
−‖xi−lj ‖

σ

(2)

with ‖ · ‖ being a vector distance metric, while σ is the width of the kernel. Z repre-
sents the similarity values between data vectors and actions’ (or sub-actions’) representative
landmarks and defines an undirected graph G = (V ,E) with graph matrix W = ẐT Ẑ,
where:

Ẑ = D−1/2Z (3)

with D being a diagonal matrix whose elements are the row sums of Z. Since each column
of the representation matrix sums up to 1, it is straightforward to check that the degree
matrix of W is the identity matrix. Consequently [22], the eigenvectors of W are the same
as those of the corresponding Laplacian matrix.

Then, the eigenvectors A = [a1...ak]∈Rk×k and eigenvalues σ 2
j of ẐẐT are calculated.

It is obvious that σj are the singular values of Ẑ and A consists of the left singular vectors
of Ẑ, found through singular value decomposition (4), while B = [b1...bk]∈Rn×k are the
eigenvectors of matrix W = ẐT Ẑ. Each row of B is a low-dimensional representation of
the original, high-dimensional feature vectors.

Ẑ = AΣBT (4)
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Consequently, and since AT = A−1, B can be computed directly from (4), as:

B = (Σ−1AT Ẑ)T (5)

Σ is a diagonal with elements σj , in decreasing order.

3.1 Dynamic fusion of different modalities

The system described above provides an analytical framework that can be easily extended
for dynamically fusing different information sources, according to automatically inferred
reliability metrics, injected directly into the similarity values between new features and
basis vectors. Different modalities may not be equally suitable for the classification prob-
lem. Issues attributed to noisy measurements, uncertainties caused by occlusions, or even
lack of correlation between a considered input channel and the activities to be detected are
factors that, if taken into account during modelling and evaluation, are expected to optimize
an action classification scheme performance. In this work, we introduce modality-specific
kernel widths σc for calculating the representation matrix. When properly weighted, they
can adjust the amount of reliability attributed to each modality. This can be achieved by
considering that σc increases with the probability of model θc,f of modality c and feature f

generating observation xc,f and is calculated as the normalized average for each modality,
using the following equations:

pc,f ≡ Pr(X = xc,f |θc,f ) (6)

pc = 1

Nc

∑

f

pc,f (7)

σc = ηc × pc

∑
pc

(8)

Nc is the number of features used for modality c and ηc is a multiplying factor. Thus,
(2), for given feature and basis vectors xc

i , lcj , corresponding to modality c, becomes:

zji =
∑

c

e
−‖xc

i
−lc

j
‖

σc

∑

j

∑

c

e
−‖xc

i
−lc

j
‖

σc

(9)

3.2 Classification of new instances

For classifying a new data vector x′ = [x′1...x′M ], coming from M modalities, to an activity,
the elements z′

j of the representation vector z′∈Rk defined by the similarities between x′

and L = [(l11...lM1 )T ...(l1k...l
M
k )T ] are found as:

z′
j =

∑

c

e
−‖x′c−lc

j
‖

σc

∑

j

∑

c

e
−‖x′c−lc

j
‖

σc

(10)

The representation b′ of the new feature vector in the low dimensional domain is given
by:

b′ = Σ−1AT D−1/2z′ (11)
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Classification result is given as the label C of the action with low-dimensional rep-
resentation matrix Ba (as calculated in training) that minimizes a distance metric d(·)
from b′:

C = arg min
a

d(b′, Ba) (12)

Thus, for new data vectors, no local sub-manifold unfolding is necessary and, for infer-
ence, simple matrix operations are needed. This is of great significance, since it allows
for real-time action recognition and constitutes the proposed method appropriate for online
evaluation of whether the projection of multiple modality features over the course of an
action is close to the subspace classes of a trained model.

The overall system is summarized in Algorithm 1:

4 Experimental evaluation

In order to have its accuracy validated, the proposed methodology has been tested on three
publicly available datasets.

4.1 Skoda Mini Checkpoint Dataset

In the Skoda Mini Checkpoint Dataset, one person, during a 3 hour recording, performed 70
repetitions of 10 activities in a car maintenance scenario (Fig. 1). Motion was captured using
20 accelerometers, placed on the left and right upper and lower arms. Each accelerometer
consists of its values on the x, y and z axis. In the experiments, in order to capture tempo-
ral and not only qualitative characteristics, every instance was split into 4 periods and the
average values of the above features were calculated within these time segments. The above
procedure gave a total of 240 features per instance.

For evaluation, the dataset was separated into seven parts of 100 instances, with activities
uniformly distributed. For extracting the training matrices, 5 parts were used, while one part
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Fig. 1 Example from the Skoda Mini Checkpoint dataset

(validation session) was used for determining the kernel width (2) that can give the highest
accuracy. In case of similar accuracies for different kernel widths, the one corresponding to
the lowest Sum of Squared Error (SSE) criterion of the low-dimensional classes was used.
Following the above procedure, an overall accuracy equal to 98.8 % was achieved. Authors
in [35] perform classification using Hidden Markov Models (HMM) on individual nodes.
The resulting classifiers are fused by employing a Naive Bayes Classifier, achieving a total
of 98 %. Figure 2 summarizes results obtained after extracting landmarks as average feature
vectors per activity as well as through random selection and kmeans, similar to [8]. It can
be seen that, using as landmarks average feature vectors for each activity, separately (10, in
this case), achieves better results than randomly or based on a kmeans algorithm, extracting
the same number of landmarks. The last two options gave results comparable to ours, only
for a large number of landmarks. However, this comes to a much higher computational
cost. Indicatively, a 240-sized feature vector necessitates 0.017 s for classification, when
the number of landmarks is equal to 10, while this time becomes four times higher for the
double number of landmarks.

4.2 Huawei/3DLife Dataset 1

Experiments on data using non obtrusive equipment were carried out, so as to test the effi-
cacy of the proposed scheme in more noisy but less obstrusive environments. Specifically,
using the same set of features as the ones employed in [28], the method was also tested on
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Fig. 2 Activity Recognition rates following landmark selection based on Average Feature Vectors per
activity, random selection and kmeans

the Huawei/3DLife Dataset 1, Session 2,1 where 14 subjects participated, each performing
a set of 16 repetitive actions. These actions are either sports-related, or involve some stan-
dard movements (e.g. knocking on the door), as shown in Fig. 3. Each action was performed
5 times by each subject. Subjects’ motion was captured using a series of depth sensors
(Microsoft Kinect). As authors in [28] report results on the non-repetitive action of running
on a treadmill, we hereby included this action in our experiments, as well.

Using Kinect depth sensors, human motion can be easily extracted in the form of mov-
ing human skeletons [2] and real-time feedback regarding a series of features’ positions is
obtained (head, neck, shoulders, elbows, hands, torso, hips, knees, feet). Authors in [28]
introduce a set of view-invariant features that we hereby present in brevity: For each joint,
its distance on all three axis from the torso, (as the torso is seen in the first frame of each
action) is calculated. This is normalized with the average distance between the torso joint
and the feet joints, in order to cater for different body sizes. Moreover, joint orientations
expressed in quaternions are used. Also, velocity information is used, both using positional
and orientation-related information. Velocities are calculated for two different time intervals
for each feature. The above strategy leads to 264-dimensional features per time segment.
Sun and Aizawa [28] use the above features and, after a feature refinement step, they rep-
resent them by Bags of Words at sampling intervals of the whole sequence of the action,
as well as three temporal subsequences and they use SVM for classification. Similarly, in
our experiments, we used the expected values of the same features over the course of each
action, as well as, three subsequences of them, which assists in differentiating between sim-
ilar actions with temporal differences (e.g. backward vs forward tennis moves). Since many
actions consist of less then 5 frames, velocity-related features were extracted for two time
segments.

Since reliability of each of the above features may vary depending on their origin, 4
different modalities were considered: Raw values of Positions, Raw values of Orienta-
tions, Positional Velocity and Orientational Velocity. Using the training data, a distribution

1Huawei/3DLife ACM Multimedia Grand Challenge for 2013
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Fig. 3 Examples from the Huawei/3DLife Dataset 1

separately for each feature variable is found and the corresponding new feature variables are
expected to fit well in it. In this dataset, gaussian distributions were found to fit well with
the data and, as such, reliability for each modality c of feature i can be given by (13):

σc = ηc ×
1

Nc

∑

i

1
σc

i

√
2π

e
−

(
(xc

i
−μc

i
)2

2σc
i

2

)

∑

j

1
Nj

∑

i

1
σ

j
i

√
2π

e

−
⎛

⎝
(x

j
i

−μ
j
i
)2

2σ
j
i

2

⎞

⎠

(13)

where μc
i and σc

i are the mean and standard deviation of feature i of modality c and ηc a
modality-specific parameter. Nc is the number of feature variables in modality c.

For training, as before, a leave-one-subject out protocol was followed, the Mahalanobis
distance was used in (12), while the maximum allowed number of sub-clusters per action
was two, and highly imbalanced sub-clusters were merged into the same cluster. Table 1
shows results achieved with the proposed method and different combinations of modalities.
It can be seen that, by fusing all feature modalities using proper reliability indicators, accu-
racy is maximized, while landmark-based action recognition achieves slightly higher results
than the popular method relying on Bag-of-Words employed in [28] on the same features. In
both experiments, for classification of new feature vectors, less than 0.02 s were necessary,
while training for each subject requires about 17 s using non-optimized Matlab code.

Table 1 Results on the
Huawei/3DLife Dataset Session
2 using the proposed technique
with/without reliability, different
combinations of modalities and
the technique described in [28]

All modalities (using reliability indicators) 80.4 %

All modalities (not using reliability indicators) 77.6 %

Position and Orientation raw values 71.0 %

Position and Orientation velocities 72.1 %

Method in [28] (Bag-of-words/SVM) 79.78 %
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4.3 Berkeley MHAD database

Experimental results are also presented on the recently published dataset, Berkely MHAD
(Multimodal Human Action Database), described in [23]. The dataset comprises 11 actions
performed by 12 subjects, with each subject performing a set of 5 repetitions of each action.
Three different types of actions resulted in a total of 82 min of recording time: 1) actions in
both upper and lower body extremities, 2) actions with high dynamics in upper extremities,
3) actions with high dynamics in lower extremities. The actions performed in the dataset,
are: jumping, jumping jacks, bending, punching, waving two hands, waving one hand, clap-
ping, throwing, sit down/stand up, sit down, stand up. For each action, 5 different cues were
used for recognition: A Mocap System, a set of multi-view video data, a set of two Microsoft
Kinect depth sensors, six three-axis accelerometers that capture the motion of hips, ankles
and wrists, and an audio system.

For the experiments in the proposed work, a set of 12 joint angles were used, as calculated
from the mocap data (see Fig. 4). Their variance in 5 successive temporal windows was
calculated, for each action. The above procedure led to a total of 180 features per action.
All accelerometer data were employed (6 three-dimensional vectors), and their variances in
15 temporal windows was considered, leading to a total of 270 features per action. Similar
to [23], the 7 first subjects were used for training, while the last 5 were used for testing.

As explained in Section 3.1, for efficient fusion of the two cues, reliability metrics
must be established. Here, using the training data, the distribution for each feature vari-
able is found and new features are expected to fit well in it. Subsequently, the probability
density function values of this variable for new features is calculated. The distribution con-
sidered in this case, for each feature, is the lognormal. More in particular, it was noticed
that the data corresponding to each feature variable do not exhibit symmetry but, instead,

Fig. 4 Examples from the
Motion Capture data, during the
action of “Throwing” [23]
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Table 2 Proposed method and
method in [23] results on mono-
modal and multi-modal instances
of the Berkeley/MHAD dataset

Proposed method [23]

MOCAP data 84.0 % 79.9 %

Accelerometer 72.0 % 85.4 %

MOCAP + Accel. 98.18 % 97.45 %

their distributions have large skews towards the positive direction and small skews towards
the negative one. Consequently, the common choice of a gaussian distribution should be
avoided. Instead, in this case, opting for lognormal parameterizations is more straightfor-
ward. Thus, each feature i, belonging to modality c, is considered to follow a lognormal
distribution f (xc

i | μc
i , σ

c
i ) with μc

i and σc
i being the mean and standard deviation, respec-

tively, of the associated normal distribution. Equation (14) can then be used to obtain the
normalized weight corresponding to each modality c:

σc = ηc ×
1

Nc

∑

i

1
σc

i

√
2π

e
−

(
(ln(xc

i
)−μc

i
)2

2σc
i

2

)

∑

j

1
Nj

∑

i

1
σ

j
i

√
2π

e

−
⎛

⎝
(ln(x

j
i

)−μ
j
i
)2

2σ
j
i

2

⎞

⎠

(14)

with ηc being a modality specific constant and Nc the number of feature variables in modal-
ity c. In our experiments, ηc was set to 6, for both modalities, as it achieved the best
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Fig. 5 Action classes represented by the 3 elements of bj explaining the highest variance among features,
for the Motion Capture features in the Berkeley-MHAD dataset
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Fig. 6 Action classes represented by the 3 elements of bj explaining the highest variance among features,
for the Accelerometer features in the Berkeley-MHAD dataset

accuracy on a validation dataset of 2 subjects, part of the training data of the 7 subjects.
Table 2 compares the results achieved using the proposed method and the method used
in [23], where multiclass Multiple Kernel Learning was used, while, Figs. 5, 6 and 7 are
indicative of the discriminative power of the proposed technique. Specifically, as the cor-
responding results suggest, using both modalities clearly helps to better distinguish classes
from each other that, using one modality alone, would not be possible. Moreover, classes
similar to each other (sit down - stand up) can be effectively separated at dimensionalities

-0.4-0.200.20.40.60.81-2-101234
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0.4

0.2

0

0.6

jumping in place
jumping jacks
bending-hands up then down
punching
waving - two hands
waving - one hand
clapping hands
throwing ball
sit down - stand up
sit down
stand up

Fig. 7 Action classes represented by the 3 elements of bj explaining the highest variance among features,
for the fusion of Motion Capture and Accelerometer features in the Berkeley-MHAD dataset
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1
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Fig. 8 Stand up - Sit down classes separated by lower-level elements of bj for the fusion of Motion Capture
and Accelerometer features in the Berkeley-MHAD dataset

of bj explaining lower feature variances (Fig. 8). For classification of new feature vectors,
less than 0.02 s were necessary, while training on the first 7 subjects requires about 25 s
using, non-optimized Matlab code.

5 Conclusions

In this paper, we used action-dependent basis vectors for projecting large-dimensionality
feature vectors to low-dimensional spaces. An affinity matrix between feature and basis vec-
tor was constructed, instead of the full adjacency matrix. In the proposed method, catering
for different action styles is taken into consideration, while, an online, adaptative, weight-
ing modality scheme is proposed in the representation matrix. Evaluation on three publicly
available datasets showed that the method is promising and that the proposed technique,
building on multimodal spectral analysis, can achieve high levels of accuracy, comparable
or even higher than techniques using state of the art methods in the field (Bag of Words, Hid-
den Markov Models, Support Vector Machines). Moreover, the proposed method provides
with an analytical approach for action recognition, using expressivity-dependent features.
This can alleviate from constraints imposed by the Markovian assumption in HMMs and the
large number of training data that need to be used. Finally, as seen through experiments, the
method can be used for real-time applications, since simple matrix operations are needed
for inference; for our classification purposes, in each of the experiments, less than 0.02 s
were needed for each instance, using non-optimized code, which is a promising result for
on-the-fly recognition of activities in a multimodal environment.
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