
Citation: Avgerinos, C.; Vretos, N.;

Daras, P. Less Is More: Adaptive

Trainable Gradient Dropout for Deep

Neural Networks. Sensors 2023, 23,

1325. https://doi.org/10.3390/

s23031325

Academic Editor: Christoph

M. Friedrich

Received: 12 December 2022

Revised: 17 January 2023

Accepted: 17 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Less Is More: Adaptive Trainable Gradient Dropout for Deep
Neural Networks
Christos Avgerinos, Nicholas Vretos * and Petros Daras

Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH),
57001 Thessaloniki, Greece
* Correspondence: vretos@iti.gr

Abstract: The undeniable computational power of artificial neural networks has granted the scientific
community the ability to exploit the available data in ways previously inconceivable. However,
deep neural networks require an overwhelming quantity of data in order to interpret the underlying
connections between them, and therefore, be able to complete the specific task that they have been
assigned to. Feeding a deep neural network with vast amounts of data usually ensures efficiency,
but may, however, harm the network’s ability to generalize. To tackle this, numerous regularization
techniques have been proposed, with dropout being one of the most dominant. This paper proposes a
selective gradient dropout method, which, instead of relying on dropping random weights, learns to
freeze the training process of specific connections, thereby increasing the overall network’s sparsity in
an adaptive manner, by driving it to utilize more salient weights. The experimental results show that
the produced sparse network outperforms the baseline on numerous image classification datasets,
and additionally, the yielded results occurred after significantly less training epochs.

Keywords: adaptive dropout; gradient dropout; gradient freezing; trainable dropout

1. Introduction

In recent years, artificial neural networks have demonstrated undeniable efficiency in
carrying out tasks such as image detection, action recognition, and compression, rendering
their implementations almost exclusive candidates for problem solving in such domains.
In conjunction with the technological advancements in computational power and data
handling, faster and more accurate networks are constantly designed, based on dense,
recursive architectures that are able to analyze more complex data. The efficiency of deeper
networks lies in the fact that these networks feature significantly more trainable parameters
than shallow networks, making them extremely flexible in interpreting diverse input data.
Although this is a major advantage, the excessive adaptation of a network’s neurons and
synapses to the available data establishes a risk of overfitting, and thus can render the
model unable to generalize.

In order to exploit the performances of very complex networks and concurrently
ameliorate this inherit adversity, several regularization techniques have been proposed,
such as cross validation [1,2], bagging [3], boosting weights [4], data augmentation [5–7],
early stopping [8], and weight decay [9]. One of the most efficient, effective, and therefore
popular regularization techniques is dropout [10], which tackles overfitting by randomly
removing nodes during training, with no additional computational overhead. Dropout
benefits the network by randomly adding noise to its hidden units, forcing the loss descent
path to frequently change and avoid settling to a local minimum. Dropout essentially
prevents the co-adaptation of activations, so that a network’s hidden units detect features
independently of each other. Although this method usually ensures better model perfor-
mance, dropout comes at the cost of a far more important convergence time. Randomly
changing the network’s loss descent path can multiply the necessary training time, as the

Sensors 2023, 23, 1325. https://doi.org/10.3390/s23031325 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031325
https://doi.org/10.3390/s23031325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3604-9685
https://orcid.org/0000-0003-3814-6710
https://doi.org/10.3390/s23031325
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031325?type=check_update&version=2

Sensors 2023, 23, 1325 2 of 12

model seeks for a general representation that fits the given input, using varying parts of its
components at each iteration. More specifically, for a network with t parameters, if all of
them are considered eligible for dropout, the number of possible loss descent paths would
be 2t.

This paper proposes a learnable adaptive training method that aims at producing
efficient models that are able to generalize accurately and fast. Extending the standard
random dropout technique, the proposed method freezes a part of the network’s parameters
based on the input information on every training step by zeroing targeted gradients. The
selection of gradients to be switched off is carried out by an ensemble of networks with
trainable parameters. The proposed method was evaluated by conducting experiments on
popular public image classification datasets, showing that a simple vanilla network with
dropout is outperformed by its modified learned sparse version.

The incentive behind the presented work is to enhance the standard behavior of the
dropout mechanism. The proposed method achieves this by selecting which weights and
gradients are frozen in each training step, instead of ambiguously dropping potentially
important ingredients of the network, i.e., the essence of the vanilla dropout technique.

The remainder of this paper is organized in four sections: Section 2 is a presentation of
prior publications on relative scientific domains. In Section 3, the description of the idea
and implementation of the presented method are detailed. Section 4 is an ablation study on
the performed experiments, and additionally analyzes the yielded results. Finally, Section 5
concludes the paper.

2. Related Work

Recently, numerous works have focused on tackling the overfitting problem that
occurs when complex artificial networks are implemented. Variations and extensions of
the dropout mechanism have been proposed, such as DropConnect [11], which inducts
network sparsity by randomly dropping the weights of a fully connected layer, instead
of its activations’ output vectors. In [12], the authors propose a regularizing method that,
when applied to very complex residual networks, randomly drops fractions of layers.
This approach aims at sparsifying the network during training, while retaining its com-
plexity during test time and thus boosting generalization while retaining performance.
DropBlock [13] is a generalization of Cutout [14], a data augmentation method where ran-
dom square regions of an image are masked out to improve performance and robustness on
object occlusion examples. In DropBlock, the authors apply this method to the feature maps
of convolution filters, aiming at better generalization of such layers with spatial structure.

Other papers aim to improve the generalization ability of multi-branch networks by
blocking possible co-adaptation between parallel branches or paths, either by randomly
dropping network fractions, as in [15,16], or by modifying activation functions, as in [17,18].
In other works, the dropout mechanism is extended, such as in Maxout [19], which intro-
duces a new layer that essentially generalizes the rectified linear unit (ReLU) and leaky
ReLU functions and exploits the averaging properties of dropout. In [20], instead of mask-
ing out weights, a random gradient regularization mechanism is introduced, inducing
noise to gradients in order to improve model generalization.

All mentioned dropout variations are established on randomly infusing noise to
either weights, activations, or gradients. During training, the weight, activity, or gradient
of a hidden unit is set to zero with a fixed probability using samples from a Bernoulli
distribution. On the contrary, approaches such as [21] are closely related to the presented
work, as the probability of a unit being dropped is not random but strongly related to the
candidate unit’s inputs and activation. A similar intuition was followed in [22], where
units and weights were ranked using an approximate rank of importance. The ambition of
that paper was to reduce the dependency between the important and unimportant features
of a network, i.e., to maximize the mutual information between units in the same layer, so
that the impact of dropping a unit is minimal. In [23], the authors proposed a learning-rate
dropout mechanism similar to the original dropout approach; upon each step, a random

Sensors 2023, 23, 1325 3 of 12

unit’s learning rate drops to zero, thereby temporarily disabling its training. Although the
main concept of that work is closely related to the present paper’s idea, they differ on the
important aspect of randomly freezing the network’s nodes, instead of selectively masking
the unimportant units.

3. Proposed Method

The proposed approach is an end-to-end trainable architecture as can be seen in
Figure 1, established on a continuous three-way communication channel between its
components—more specifically, a core network C with its set of parameters (weights and
biases) denoted as θC, a modified network Z with θZ, and a set of auxiliary networks, A,
comprising networks A1, A2, . . . , Ak, k ∈ 0, 1, 2, . . . , LC.

Figure 1. Example of the proposed method. The auxiliary network ensemble A, comprising networks
A1, A2, . . . , Ak, k ∈ 0, 1, 2, . . . , LC, is responsible for providing each layer of network C with a binary
mask Mk, which controls which parts of the lC

j layer will be trained. The applied masks’ performance
is evaluated on the next forward pass, and, if the proposals are accepted, the training procedure
continues with the modified version of C, Z.

We index the layers of a network U as lU
j , j ∈ 1, 2, . . . , LU , with LU representing the

total number of layers in a network U. Although each network is independently trained,
back propagated, and optimized for a specific objective, the information exchanged between
them is crucial for the maximal exploitation of the salient weights of network C.

On each training step, C represents a deep neural network that aims to minimize the
cost function:

J = − 1
T

(
T

∑
i=1

yi · log(ŷi)

)
, i ∈ 1, 2, . . . , T, (1)

where i is the input, T is the cardinality of the training dataset, yi is the ground truth value,
and ŷi the model’s estimation.

The ensemble of auxiliary networks, A, is responsible for providing C (Figure 2) with
a set of binary masks, B. In order to bolster the usage of salient features for each layer
of C, the proposed method implements a convolutional variational autoencoder network
for each auxiliary subnetwork, Ak. More information on the architecture of each network
can be found in Section 4. First, lC

j ’s weights are encoded to a lower dimension by the

respective encoder of Ak, and then, the decoder side attempts to reproduce them while
trying to ignore less important weights. The generated representations are the blueprint
from which the desired binary masks are extracted. The binary value, mn

j , of a neuron n

contained in layer lAk

j is decided by taking into account the neuron’s absolute gradient

value, |gAk

j,n |, after back propagation, compared to the strongest absolute gradient value per
layer, so that

Sensors 2023, 23, 1325 4 of 12

Figure 2. Architecture of the C network consisting of the input image, four convolutional layers,
and two fully connected layers. The proposed method is beneficial to the network even in such
minimal setups.

mn
j =

1 if |gAk

j,n | > pj ·max|GAk
j |

0 else

, n ∈ 1, 2, . . . , |lAk

j | (2)

where pj represents a masking threshold 0 ≤ pj ≤ 1, j ∈ 1, 2, . . . , LK for each layer of C, and

GAk

j represents the gradient matrix of layer lAk

j . A higher masking threshold pj implies that
the masking mechanism will be more aggressive towards that specific layer. The effects of
the threshold can be seen in Figure 3.

Apart from acquiring masks from a layer’s gradients, and in a similar manner, the
method takes into consideration the absolute weight value of each neuron, |wAk

j,n |, after
some training intervals, so that:

mn
j =

1 if |wAk

j,n | > pj ·max|WAk
j |

0 else

, n ∈ 1, 2, . . . , |lAk

j | (3)

where WAk

j represents the weight matrix of layer lAk

j .

Filtering parts of a layer lC
j by the respective lAk

j weight values provides more robust
mask proposals and acts as a review of the freezing procedure thus far. After some training
epochs, the network has built an effective generalization mechanism with more stable
weights than before, the values of which quantify their respective participation levels in
minimizing the loss function (1).

The assigned binary values mn
j of all neurons in layer lAk

j constitute the binary mask

Mj ∈ B. Each produced binary mask corresponds to each C layer, lC
j , and controls how

different parts of that layer are trained, by computing the Hadamard product between the
individual values of the mask and the respective layer’s gradient values, GC

j , after the latter
have been obtained through back propagation. The Hadamard product is calculated as:

Hj = Mj �GC
j =

Mj

11 · GC
j

11 · · · Mj
1NC

j · GC
j

1NC
j

...
. . .

...

Mj
NC

j 1 · GC
j

NC
j 1 · · · Mj

NC
j NC

j · GC
j

NC
j NC

j

 (4)

where� denotes the Hadamard product of two matrices, and NC
j the size of each dimension

of a lC
j layer.
The gradients computed on every training step express the magnitudes of adjustments

that network C needs to apply at each neuron so that Function (1) is minimized. The
concept of freezing neurons that only need minor adjustments during training aims at
a faster convergence time, as the network is targeted towards modifying the weights of
neurons that need these adjustments the most.

Sensors 2023, 23, 1325 5 of 12

The effectiveness of the applied masks is evaluated on the next forward pass of C. More
specifically, on each training step, the input data are propagated through C, and through
its modified counterpart, Z, which contains the updated weights, based on the masked
gradients, Hj, of the previous step. Depending on the calculated loss for each network,
lossC and lossZ, the algorithm either accepts the proposed parameters after masking, θZ,
consisting of all modified gradients GZ, and weights WZ, or rejects them and advances with
the original parameters θC, i.e., the unmasked gradients GC and weights WC, as updated
by C’s backward pass. Finally, either lossC or lossZ is passed to the auxiliary networks,
A1, A2, . . . , ALC

.
Although each auxiliary network Ak is an unsupervised generative model, its weights

are updated by inheriting the loss value of a supervised classification neural network,
lossC or lossZ. This behavior proves that the method is agnostic towards the individual
networks’ architectures, and shows that the intertwined behavior of the components
ensures uninterrupted, end-to-end integration.

Figure 3. Threshold effect on the third convolution filter, for p = 0.01, p = 0.05, and p = 0.1. Red
squares in the first dense example indicate same pixel neighborhoods for easier comprehension.

Sensors 2023, 23, 1325 6 of 12

4. Experiments and Results

The proposed method consists of an ensemble of networks, and its implementation
can become cumbersome when deeper architectures are employed. Testing the method on
upscaled networks is out of the scope of the proposed paper, as all state of the art methods
for dropout are tested against their respective vanilla dropout versions. The experimental
results show that a typical convolutional neural network is benefited when utilizing the
proposed adaptive dropout method, when compared to a standard dropout integration.

4.1. Datasets

• CIFAR-10 [24]: The CIFAR-10 dataset features 60,000 32 × 32 color images, divided
into 10 classes of 6000 images each. The training set consists of 50,000 images, whereas
the test set contains 10,000 images, randomly selected from each class.

• USPS Handwritten Digits (USPS) [25]: USPS is a dataset of handwritten digits fea-
turing 7291 training and 2007 8 × 8 testing examples, coming from 10 classes.

• Fashion-MNIST [26]: Fashion-MNIST is structured based on MNIST [27], a handwrit-
ten digit dataset, which is considered an almost solved problem, and is designed as a
more challenging dataset; it consists of clothing images divided into a training set of
60,000 samples and a test set of 10,000 28 × 28 grayscale samples of 10 classes.

• SVHN [28]: SVHN is an image dataset of house numbers, obtained from Google
Street View images. The dataset’s structure is similar to that of the MNIST dataset;
each of the 10 classes consists of images of one digit. The dataset contains over
600,000 digit images, split into 73,257 digits for training, 26,032 digits for testing, and
531,131 additional training examples.

• STL-10 [29]: The STL-10 dataset is an image recognition dataset inspired by the
CIFAR-10 dataset. The dataset shares the same structure as the CIFAR-10 dataset, with
10 classes of 500 96× 96 training images and 800 96× 96 test images in each. However,
the dataset also contains 100,000 unlabeled images for unsupervised training, with
content extracted from similar, but not the same categories as the original classes,
acquired from Imagenet [30]. Although this dataset was designed for developing
scalable unsupervised methods, in this study, it was used as a standard supervised
classification dataset.

4.2. Implementation Details

The core network C consists of four convolutional layers, each activated by a leaky
ReLU function and normalized by a batch normalization layer. The resulting feature map
is then flattened and fed to a fully connected layer, also activated by a leaky ReLU function
and followed by a batch normalization layer. The vanilla version of C randomly drops
some elements of the network by applying standard dropout with probability pdrop = 0.25.
The output is finally passed to a second fully connected layer and then activated by a
multi-class softmax function.

For every lC
j , an auxiliary network is built and trained in order to provide the required

binary mask to that specific layer. The auxiliary networks for the proposed approach are
based on variational autoencoders [31] with a fixed encoding section of four convolutional
filters and a modified decoding part of transposed convolutions, their number depending
on the size of the output mask to be applied on the lC

j gradients or weights. All filters are
activated using leaky ReLU activation functions, as they are slightly faster than normal
ReLU functions and alleviate the “dying ReLU” problem [32].

Variational autoencoders map their inputs to a distribution instead of a fixed feature
map; then, using the mean vector µ and the standard deviation vector σ, a sample of the
distribution can be fed to the decoding part of the network. Using the reparameterization
trick, the output of the decoder is backpropagated through the network, training the µ
and σ vectors, and also used for generating the essential binary masks, as described in the
previous section.

Sensors 2023, 23, 1325 7 of 12

For each experiment, the network was initialized by training in its vanilla version until
it reached a minimum validation accuracy of about 30%, which was typically achieved in
the first epoch. The model parameters were optimized using stochastic gradient descent,
whereas the learning rate was initialized at 0.01 and decayed every 5 epochs by 0.5.

4.3. Results

Tables 1–4 and Figures 4–8 demonstrate how different setup parameters of the pro-
posed method lead to either better accuracy or faster convergence time, when compared to
the standard vanilla dropout. The first two columns of each table hold the accuracy score
for each setup and the epochs at which they were performed, respectively. Columns 3 to 7
are the thresholds p used by the A network ensemble to acquire the binary masks B, which
were finally applied to every lC layer. Dynamically setting p, depending on the nature of
each filter and the magnitude of the layer’s units, is justified; convolution filters are more
sensitive to dropout compared to fully connected layers, as they directly interact with the
input. Additionally, considering the spatial correlation of their units, applying dropout to
the first convolution layers is expected to result in performance loss, as these layers are
responsible for extracting the fundamental features of the input. Column 8 expresses the
intervals of gradient masking; on some occasions, the binary masks were extracted after
accumulating gradients for a number of epochs, in order to let the dropout mechanism
have a broader knowledge of the impact of each unit on the training procedure. Finally, the
9th column holds the intervals of weight masking. Although the proposed method applies
temporary dropout to the gradients of the hidden units, the binary masks can occur from
the intensity of the gradients or a combination of the layer’s gradients and weight values.

Epochs

Figure 4. Performances of LIM and vanilla dropout methods on the CIFAR10 dataset, trained and
tested for 100 epochs. Graphs were smoothed for better comprehension; original graphs can be seen
in the background. Curves correspond to Table 2 scores. Black: vanilla. Red: 1. Green: 2. Blue: 3.
Orange: 4. Purple: 5.

On the CIFAR10 dataset, the proposed method outperformed the standard dropout
architecture in most circumstances. Additionally, as seen in Table 1, the models that utilize
the proposed dropout mechanism only need a few training epochs to score close to their
best performances. In experiment 5, for a small performance trade-off (less than 1%), the
model converged in just six epochs, which is a 168.4% reduction compared to the 70 epochs
needed when training with standard dropout. As already discussed, intense selective
dropout was only applied on the first fully connected layer, to the extreme of p = 0.7, in
experiments 3 and 4.

On the USPS dataset, our method outperformed the vanilla dropout architecture in all
experiments, as seen in Table 2. Experiments 1 and 2 improved the network’s performance
by 0.5%; in experiment 1, it performed its best in 62% fewer epochs than the vanilla version
needed. In experiment 3, it needed fewer training steps to outperform the vanilla version
by 0.25%, as its best performance reduced the required steps by 108.2%.

Sensors 2023, 23, 1325 8 of 12

Table 1. Accuracy scores, parameter tuning, and convergence times for different experiments on the
CIFAR10 dataset. The first row holds the best accuracy score for the vanilla dropout version and the
epoch at which it was attained.

CIFAR10

acc epoch conv1 conv2 conv3 conv4 fc1 int wMask

v 72.8 70

1 73.26 93 0.01 0.01 0.05 0.08 0.5 10 10

2 72.97 49 0.001 0.002 0.003 0.05 0.4 1 1

3 72.74 78 0.001 0.002 0.004 0.01 0.7 10 10

4 72.25 51 0.0 0.0 0.0 0.0 0.7 1 -

5 71.9 6 0.01 0.02 0.05 0.1 0.4 1 10

Epochs

Figure 5. Performance of LIM and vanilla dropout methods on the USPS dataset, trained and tested
for 100 epochs. Graphs were smoothed for better comprehension; original graphs can be seen in the
background. Curves correspond to Table 2 scores. Black: vanilla, purple: 1, red: 2, orange: 3, green: 4,
blue: 5.

Table 2. Accuracy scores, parameter tuning, and convergence times for different experiments on the
USPS dataset. The first row holds the best accuracy score for the vanilla dropout version and the
epoch at which it was attained.

USPS

acc epoch conv1 conv2 conv3 conv4 fc1 int wMask

v 96.21 94

1 96.71 49 0.0 0.0 0.0 0.0 0.7 1 -

2 96.71 85 0.01 0.01 0.02 0.03 0.3 1 4

3 96.46 28 0.002 0.002 0.003 0.05 0.2 1 1

4 96.41 92 0.001 0.001 0.01 0.2 0.5 5 1

5 96.41 53 0.001 0.001 0.002 0.01 0.1 1 20

Sensors 2023, 23, 1325 9 of 12

Epochs

Figure 6. Performances of LIM and vanilla dropout methods on the fashion-MNIST dataset, trained
and tested for 50 epochs. Curves correspond to Table 3 scores; black: vanilla, red: 1, orange: 2, green:
3, blue: 4, purple: 5.

Table 3. Accuracy scores, parameter tuning, and convergence times for different experiments on the
fashion-MNIST dataset. The first row holds the best accuracy score for the vanilla dropout version
and the epoch at which it was attained.

Fashion-MNIST

acc epoch conv1 conv2 conv3 conv4 fc1 int wMask

v 90.51 48

1 92.55 28 0.0 0.002 0.007 0.01 0.5 1 1

2 92.26 35 0.008 0.008 0.008 0.008 0.8 1 1

3 91.84 23 0.005 0.01 0.05 0.1 0.5 1 1

4 91.44 34 0.005 0.005 0.01 0.02 0.5 1 1

5 91.36 43 0.01 0.01 0.01 0.2 0.5 1 1

On Fashion-MNIST, the proposed method surpassed the standard dropout version by
2.04% (experiment 1) in 52.6% fewer epochs. In the third experimental setup, our method
outperformed the baseline by 1.33% the fastest, in 23 epochs, or 70.4% fewer steps. All
reported training procedures on the Fashion-MNIST dataset used weight masking in every
epoch, as this setup was found to perform the best.

Epochs

Figure 7. Performances of LIM and vanilla dropout methods on the STL-10 dataset, trained and
tested for 100 epochs. Graphs were smoothed for better comprehension; original graphs can be seen
in the background. Curves correspond to Table 4 scores; black: vanilla, red: 1, purple: 2, green: 3,
orange: 4, blue: 5.

Sensors 2023, 23, 1325 10 of 12

Table 4. Accuracy scores, parameter tuning, and convergence times for different experiments on the
STL-10 dataset. The first row holds the best accuracy score for the vanilla dropout version and the
epoch at which it was attained.

STL-10

acc epoch conv1 conv2 conv3 conv4 fc1 int wMask

v 50.08 99

1 52.26 22 0.001 0.001 0.002 0.05 0.2 5 1

2 51.76 100 0.001 0.002 0.01 0.01 0.1 2 1

3 50.86 28 0.1 0.1 0.15 0.2 0.4 5 1

4 50.79 12 0.02 0.02 0.1 0.2 0.4 5 1

5 50.56 48 0.001 0.001 0.002 0.01 0.3 5 5

On STL-10, the best performing experimental setup achieved a 2.18% increase in
performance, compared to the vanilla version, and only needed 22 epochs, a 127.2%
reduction in convergence time. Setup 4 achieved a performance improvement of 0.71% in
just 12 epochs, or 156.7% less epochs than the original dropout version. Weight masking
was applied every epoch, and all setups accumulated gradients before freezing the dropout
candidate parts.

Epochs

Figure 8. Performances of LIM and vanilla dropout methods on the SVHN dataset, trained and tested
for 50 epochs. Graphs were smoothed for better comprehension; original graphs can be seen in the
background. Curves correspond to Table 5 scores; black: vanilla, red: 1, green: 2, blue: 3, orange: 4,
purple: 5.

Table 5. Accuracy scores, parameter tuning, and convergence times for different experiments on the
SVHN dataset. The first row holds the best accuracy score for the vanilla dropout version and the
epoch at which it was attained.

SVHN

acc epoch conv1 conv2 conv3 conv4 fc1 int wMask

v 90.19 17

1 90.45 12 0.001 0.001 0.002 0.01 0.6 1 1

2 90.43 11 0.001 0.003 0.008 0.01 0.5 1 1

3 90.36 12 0.001 0.001 0.01 0.02 0.5 1 1

4 90.25 26 0.001 0.001 0.002 0.005 0.6 1 1

5 90.17 5 0.001 0.003 0.008 0.01 0.3 1 2

Finally, on the SVHN dataset, the standard dropout version performed its best much
quicker than on the previous datasets; however, the proposed method still outperformed

Sensors 2023, 23, 1325 11 of 12

it in terms of both accuracy and epochs needed. In our best experiment, 1, our algorithm
surpassed the vanilla one’s performance by 0.26% in 34.5% fewer epochs. The fastest
experiment for our method, 5, resulted in optimal performance almost identical to that of
the vanilla version, being inferior by only 0.02%, but also faster by 109%.

5. Conclusions

In this paper, we proposed a novel algorithm for selectively disabling weight updating
on parts of the network, based on both gradient and weight values of the respective network
units. The proposed idea was tested in five well-known image classification datasets,
yielding favorable performance results. Although the limited processing power restricted
the architecture to an essential convolution network, the extended experiments have shown
that this alternating scheme is able to match or surpass standard dropout performance in
considerably fewer training steps. Convergence time is extremely important in practical
machine learning applications; shorter network training times enable researchers to acquire
knowledge quickly, and therefore conduct extended and more meaningful experiments.
More importantly, faster production of models translates into additional ideas and methods
for circumventing potential obstacles in research and integration.

Author Contributions: Conceptualization, C.A. and N.V.; methodology, N.V.; software, C.A.; valida-
tion, C.A. and N.V.; formal analysis, C.A.; investigation, C.A.; resources, N.V.; data curation, C.A.;
writing—original draft preparation, C.A.; writing—review and editing, N.V. and P.D.; visualization,
C.A.; supervision, N.V. and P.D.; project administration, N.V.; funding acquisition, P.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Commission (INTREPID, Intelligent Toolkit for
Reconnaissance and assessmEnt in Perilous Incidents) under Grant 883345.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, D.M. The Relationship between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics

1974, 16, 125–127. [CrossRef]
2. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In 14th International

Joint Conference on Artificial Intelligence—Volume 2; IJCAI’95; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995;
pp. 1137–1143.

3. Freund, Y. Boosting a Weak Learning Algorithm by Majority. Inf. Comput. 1995, 121, 256–285. [CrossRef]
4. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
5. Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017,

arXiv:1712.04621.
6. Cubuk, E.D.; Zoph, B.; Mané, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies from Data. arXiv 2018,

arXiv:1805.09501.
7. Ohashi, H.; Al-Naser, M.; Ahmed, S.; Akiyama, T.; Sato, T.; Nguyen, P.; Nakamura, K.; Dengel, A. Augmenting Wearable

Sensor Data with Physical Constraint for DNN-Based Human-Action Recognition. In Proceedings of the ICML 2017 Times Series
Workshop, PMLR, Sydney, Australia, 6–11 August 2017.

8. Prechelt, L. Early Stopping-But When? In Neural Networks: Tricks of the Trade; This Book Is an Outgrowth of a 1996 NIPS Workshop;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69.

9. Krogh, A.; Hertz, J.A. A Simple Weight Decay Can Improve Generalization. In Proceedings of the 4th International Conference on
Neural Information Processing Systems; NIPS’91; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1991; pp. 950–957.

10. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

11. Wan, L.; Zeiler, M.D.; Zhang, S.; LeCun, Y.; Fergus, R. Regularization of Neural Networks using DropConnect. In Proceedings of
the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.

12. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K. Deep Networks with Stochastic Depth. arXiv 2016, arXiv:1603.09382.
13. Ghiasi, G.; Lin, T.Y.; Le, Q.V. DropBlock: A regularization method for convolutional networks. arXiv 2018, arXiv:1810.12890.

http://doi.org/10.1080/00401706.1974.10489157
http://dx.doi.org/10.1006/inco.1995.1136
http://dx.doi.org/10.1007/BF00058655

Sensors 2023, 23, 1325 12 of 12

14. DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552.
15. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-Deep Neural Networks without Residuals. arXiv 2017,

arXiv:1605.07648.
16. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. arXiv 2018,

arXiv:1707.07012.
17. Gastaldi, X. Shake-Shake regularization. arXiv 2017, arXiv:1705.07485.
18. Yamada, Y.; Iwamura, M.; Akiba, T.; Kise, K. Shakedrop Regularization for Deep Residual Learning. IEEE Access 2019,

7, 186126–186136. [CrossRef]
19. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. In Proceedings of the 30th International

Conference on Machine Learning; Dasgupta, S.; McAllester, D., Eds.; PMLR: Atlanta, GA, USA, 2013; Volume 28, pp. 1319–1327.
20. Tseng, H.Y.; Chen, Y.W.; Tsai, Y.H.; Liu, S.; Lin, Y.Y.; Yang, M.H. Regularizing Meta-Learning via Gradient Dropout. arXiv 2020,

arXiv:2004.05859.
21. Ba, J.; Frey, B. Adaptive dropout for training deep neural networks. In Proceedings of the Advances in Neural Information Processing

Systems; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Lake Tahoe, NA,
USA, 2013; Volume 26,.

22. Gomez, A.N.; Zhang, I.; Kamalakara, S.R.; Madaan, D.; Swersky, K.; Gal, Y.; Hinton, G.E. Learning Sparse Networks Using
Targeted Dropout. arXiv 2019, arXiv:1905.13678.

23. Lin, H.; Zeng, W.; Ding, X.; Huang, Y.; Huang, C.; Paisley, J. Learning Rate Dropout. arXiv 2019, arXiv:1912.00144.
24. Krizhevsky, A.; Nair, V.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. University of Toronto, Toronto, ON,

Canada, 2019.
25. Seewald, A. K. Digits—A Dataset for Handwritten Digit Recognition; Institute for Artificial Intelligence: Vienna, Austria, 2005.
26. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
27. Deng, L. The Mnist Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Process. Mag. 2012, 29,

141–142 . [CrossRef]
28. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature Learning

NIPS Workshop on Deep Learning and Unsupervised Feature Learning; Springer: Granada, Spain, 2011.
29. Coates, A.; Ng, A.; Lee, H. An Analysis of Single Layer Networks in Unsupervised Feature Learning. In Proceedings of the

Artificial Intelligence and Statistics AISTATS, Ft. Lauderdale, FL, USA, 2011. Available online: https://cs.stanford.edu/~acoates/
papers/coatesleeng_aistats_2011.pdf (accessed on 11 December 2022).

30. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

31. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
32. Lu, L. Dying ReLU and Initialization: Theory and Numerical Examples. Commun. Comput. Phys. 2020, 28, 1671–1706. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2960566
http://dx.doi.org/10.1109/MSP.2012.2211477
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
http://dx.doi.org/10.4208/cicp.OA-2020-0165

	Introduction
	Related Work
	Proposed Method
	Experiments and Results
	Datasets
	Implementation Details
	Results

	Conclusions
	References

