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ABSTRACT

In this paper, we present a novel multi-sensor fusion method
to build a human skeleton. We propose to fuse the joint po-
sition information obtained from the popular Kinect sensor
with more precise estimation of body segment orientations
provided by a small number of wearable inertial sensors. The
use of inertial sensors can help to address many of the well
known limitations of the Kinect sensor. The precise calcu-
lation of joint angles potentially allows the quantification of
movement errors in technique training, thus facilitating the
use of the low-cost Kinect sensor for accurate biomechani-
cal purposes e.g. the improved human skeleton could be used
in visual feedback-guided motor learning, for example. We
compare our system to the gold standard Vicon optical mo-
tion capture system, proving that the fused skeleton achieves
a very high level of accuracy.

Index Terms— Kinect, Inertial sensor, Motion capture,
Skeleton tracking, Multi-sensor fusion

1. INTRODUCTION

The capture and analysis of human movements (e.g. walk-
ing, jumping, running) is common in a number of domains,
including: sport science, musculoskeltal injury management,
neural disease rehabilitation, clinical biomechanics and the
gaming industry [1, 2]. The analysis of joint/body segment
position, angles and angular velocities, requires highly accu-
rate motion capture. Unfortunately, the more accurate motion
capture systems tend to be expensive, whether camera based
(e.g. Vicon, UK) or inertia sensor based (e.g. XSens, Hol-
land). This places highly accurate motion capture outside the
reach of most users.

To increase access to motion capture, researchers have ex-
plored the use of depth cameras, such as the Microsoft Kinect,
as low-cost alternatives. The Kinect uses a infrared based ac-
tive stereovision system to get a depth map of the observed
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scene [3]. While the Kinect was designed to recognize ges-
tures in gaming applications, it has the capacity to determine
the position of the center of specific joints, using a fixed and
rather simple human skeleton. This allows for both the provi-
sion of visual feedback on the body’s motion (which is essen-
tial in motor learning in the above science domains), and the
measurement of joint motion. However, the Kinect has limi-
tations in accurately measuring the latter, especially when the
joint motions are not parallel to the Kinect’s depth sensor and
when parts of the body are occluded due to the body’s orien-
tation.

A second problem with the Kinect system is its low and
varying sampling frequency (25 - 35Hz) [3], which cannot be
determined by the user. In particular, when assessing joint an-
gular velocities, small errors in joint angles are significantly
magnified when differentiated [4]. In addition, it is very prob-
lematic to quantify body position or joint angle at individual
key events (e.g. initial foot strike when running) when move-
ments are fast and sampling frequencies are so low that they
preclude both the identification of when the key events occur
and the capture of the frame of data at that specific time. This
is an important requirement in domains such as sport science
and clinical biomechanics. A possible solution to the limi-
tations of the Kinect system is to combine the Kinect based
data with data from wireless inertial motion units (WIMUs)
which can provide greater accuracy in the measurement of
body segment angles and angular velocities, and also have
much higher sampling frequencies (e.g. up to 512 Hz) at con-
sistent rates [5]. WIMUs can incorporate tri-axial accelerom-
eters and gyroscopes, to determine angular measures and fa-
cilitate an accurate identification of key events which involve
impact (e.g. ground contact when jumping, striking a ball
in tennis) and thanks to advances in memos technology, they
are relatively low cost. The use of WIMUs alone, however, is
limited because of significant challenges in determining accu-
rate joint center position necessary in the provision of visual
feedback on the body’s motion. This provides the motivation
for fusing information from the Microsoft Kinect and multi-
ple WIMUs.



Ross A. Clark et al. presented in [3] a study about the pre-
cision of the Kinect in a biomechanics or a clinical context,
focusing on the movement of a subject’s foot. It is noted that
the Kinect is potentially able to achieve reliable gesture track-
ing of the subject’s feet, especially if one combines the Kinect
sensor with other modalities, i.e. another camera-based sys-
tem. In [6], the authors explore the combined use of iner-
tial sensors and the Kinect for applications in rehabilitation
robotics and assistive devices. The method was evaluated on
experiments involving healthy subjects performing multiple
degree-of-freedom tasks. As in the work presented in this pa-
per, the author used the Kinect as a first joint angle estimator
as well as a visualization tool to give feedback to the patients
in their rehabilitation process. In [7], the authors present an
application of the use of a Kinect to monitor and analyze post
stroke patients during one specific activity: eating and drink-
ing. The use of inertial-aware sensorized utensils can help this
monitoring, introducing another source of information i.e. a
fusion between the optical Kinect and inertial sensors.

The aim of our work is to explore the benefit of com-
bining the position-based information provided by the Kinect
with the orientation measures provided by the WIMUs sen-
sors to determine an accurate skeleton representation of a sub-
ject along with measures of joint angle. The results are com-
pared to a gold standard Vicon 3D motion analysis system.

2. CONSTRUCTION OF A FUSED SKELETON

2.1. Overview

In general, a Wireless/Wearable Inertial Measurement Unit,
or WIMU, is an electronic device consisting of a microproces-
sor board, on-board accelerometers, gyroscopes and a wire-
less connection to transfer the captured data to a receiving
client. WIMUs are capable of tracking rotational and transla-
tional movements and are often used in MoCap systems.

Although there are different technologies to monitor body
orientation, wearable inertial sensors have the advantage of
being self-contained in a way that measurement is indepen-
dent of motion, environment and location. It is feasible
to measure accurate orientation in three-dimensional space
by utilizing tri-axial accelerometers, and gyroscopes and a
proper filter. We have employed the filter described in [8] to
minimise computational load and to operate at low sampling
rates in order to reduce the hardware and software necessary
for wearable inertial movement tracking. The mathematical
derivation of the orientation estimation algorithm is described
in the next section.

2.2. Computing orientation estimation from inertial sen-
sors

In this paper, we use an algorithm which has been shown to
provide effective performance at low computational expense.
Utilizing such a technique, it is feasible to have a lightweight,

inexpensive system capable of functioning over an extended
period of time. The algorithm employs a quaternion repre-
sentation of orientation and is not subject to the problematic
singularities associated with Euler angles. The estimated ori-
entation rate is defined in the following equations [8]:{

qt = qt−1 + q̇t∆t

q̇t = q̇ω,t − β ∇f
||∇f ||

, (1)

where

∇f(q, Eg, Sa) = JT (q, Eg)f(q, Eg, Sa)

Sa = [0, ax, ay, az]

Eg = [0, 0, 0, 1]

q = [q1, q2, q3, q4]

(2)

In this formulation, qt and qt−1 are the orientations of the
global frame relative to the sensor frame at time t and t−1 re-
spectively. q̇ω,t is the rate of change of orientation measured
by the gyroscopes. Sa is the acceleration in the x, y and z
axes of the sensor frame, termed ax, ay , az respectively. The
algorithm calculates the orientation qt by integrating the es-
timated rate of change of orientation measured by the gyro-
scope. Then gyroscope measurement error, β, was removed
in a direction based on accelerometer measurements. This
algorithm uses a gradient descent optimization technique to
measure only one solution for the sensor orientation by know-
ing the direction of the gravity in the Earth frame. The objec-
tive function f and its Jacobean J are defined by the following
equations:

f(q, Sa) =

 2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay

2(0.5− q2
2 − q2

3)− az

 (3)

J(q) =

 −2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0

 (4)

2.3. Initialization of the multi-modal sensor framework

As stated in section 2.2, each inertial sensor w is defined by a
local coordinate system described by a quaternion qw, thus a
triple of orthonormal vectors (Xw, Yw, Zw). In order to join
them in a common WIMU global coordinate system we ini-
tialize the sensors while they are fixed on a rigid plank, shar-
ing the same orientation (XW , YW , ZW ). From this initial
configuration, we can evaluate a multiple WIMUs framework
in a consistent manner.

The inertial sensors and the Kinect do not share the
same spatial reference coordinate system. As a second
initialization frame, we map these two spatial systems to-
gether in order to compare consistently the Kinect rota-
tional joints (XK , YK , ZK) and the WIMUs estimate ori-
entation (Xw, Yw, Zw), see Figure 1(a). These two spatial
configurations are linked by a known fixed rotation. We can



(a) (b)

Fig. 1. Configuration of our testing platform. During the ini-
tialization step (a) the spatial coordinate system of each iner-
tial sensor are the same and this spatial reference is aligned
with the Kinect one. (b) Each WIMU is fixed on the subject’s
bones: Xw is fixed along the bone toward the smaller joint.
The black skeleton is a representation of our fused skeleton.

then consider in our computation a unique global coordi-
nate system embedding the multiple WIMUs and the Kinect
sensor.

To apply this sensor framework to a real experimenta-
tion process, we need to map each inertial sensor to a spe-
cific bone of the subject. Furthermore, we need to identify
what kind of rotation was performed over time from the local
frame of each WIMU. We depict in Figure 1(b) the standard
configuration we designed to tackle these two issues. On the
one hand, the multiple WIMU framework is designed to be
linked with the Kinect skeleton system. As a consequence,
our nine inertial sensors are fixed to the subject’s forearms,
arms, thighs, shanks and finally to the chest. These corre-
spond respectively to the fused skeleton jointsR/LF ,R/LA,
R/LT , R/LT and T . On the other hand, to identify the
three different kinds of rotation (flexion-extension, abduction-
adduction, pronation-supination), each inertial sensor is fixed
according to the scheme depicted in Figure 1(b): each sen-
sor is fixed on the side of each limb. Each local sensor axis
Xi

w is aligned with the associated bone, oriented toward the
ground while in a standing pose. The Zw axis is pointing to-
ward the interior of this bone. As a consequence, the local ro-
tations along the axes (Xw, Yw, Zw) describe the pronation-
supination, the abduction-adduction and the flexion-extension
of each limb relative to their associated joint respectively. The
sensor attached to the torso is oriented as Xtorso is pointing
toward the ground and Ztorso is directed toward the back of
the subject. Our experiments, as well as the global synchro-
nization issue, are analyzed in section 3.

2.4. Skeleton fusion

We build our fused Kinect / WIMUs skeleton using three sep-
arate information sources given by each modality. The Kinect
sensor provides the initial joint positions of our skeleton, as
well as the global positioning of the subject’s body over time.

The WIMUs provide the orientation information we need to
animate each bone of our fused skeleton over time.

Firstly, we consider a reference skeleton provided by the
Kinect sensor and the associated skeleton extraction algo-
rithm. This reference skeleton is the starting point of our
fused skeleton synthesis method and is built from a reference
frame captured by the Kinect. We need this reference skele-
ton to be as accurate as possible, in the sense that the Kinect
algorithm produces a stable result. In this work, the reference
frame is selected manually from a sequence where the subject
stands still in front of the Kinect sensor. This step could be
achieved automatically by measuring the relative stability of
the results produced by the skeleton extraction algorithm over
time. At this point, the fused skeleton is similar to the Kinect
skeleton. The more carefully the reference frame is chosen,
the more accurate the result will be.

Secondly, for each subsequent frame captured by the two
sensory modalities, we consider one specific joint captured
by the Kinect skeletonization algorithm, and the rotational
data provided by the WIMUs. The aim of this specific Kinect
skeleton joint is to track the global displacement of the sub-
ject’s body over time, as the WIMUs cannot provide this in-
formation easily. For stability and simplicity purposes, we
choose to consider the torso joint of the Kinect skeleton. As
a consequence, the location of the central joint T (see Fig-
ure 1(b) for the sensor labels) of our fused skeleton is updated
with respect to the displacement of this Kinect joint.

Finally, our fused skeleton is built from the reference
skeleton. For each set of data captured by the WIMUs, each
bone of our fused skeleton is rotated according to this ro-
tational information in a hierarchical manner. It should be
noted that the fused skeleton bones may not be aligned with
the Xw axis of their associated inertial sensor: this case can
only happen if the Kinect skeleton is perfectly aligned with
the local orientation of each inertial sensor. Consider an
inertial sensor Wt : {qt} associated with a fused skeleton
bone Bt ∈ R3 constructed at a time t. We aim to rotate Bt
according to the subsequent rotational information provided
by Wt+1. Let the quaternion ∆qt+1 be the rotational offset
occurring from t to t+ 1:

∆qt+1 = q∗t ⊗ qt+1 (5)

The ⊗ denotes the quaternion product and ∗ denotes the
quaternion conjugate The resulting rotated bone Bt+1 can
then be expressed by

Bt+1 = M∆qt+1Bt , (6)

where M∆qt+1 is the rotation matrix induced by ∆qt+1.
The four bones linked to the fused skeleton joint T (see Fig-
ure 1(b)) are rotated using (6). This first process defines a new
position for the starting and the ending points of our fused
skeleton bones RA,LA,RT and LT (arms and thighs). In a
hierarchical way, this displacement implies respectively new
positions for the bones RF,LF,RS and LS (forearms and
shanks). From this point, the bones RA,LA,RT and LT are



rotated using the same method (6), inducing new hierarchical
position changes. Then the bones RF,LF,RS and LS are
rotated, our fused skeleton Bbti+1

, b ∈ [1, .., 12] is then finally
complete from a time ti to a subsequent one ti+1.

3. RESULTS

3.1. Data Collection

To evaluate the proposed technique, data was captured us-
ing nine wearable inertial sensors recording the data at 256
frames per second. The location of the sensor on each body
segment was chosen to avoid large muscles, as soft tissue de-
formations due to muscle contractions and foot-ground im-
pacts may negatively affect the accuracy of joint orientation
estimates. In addition, a Kinect depth sensor was also em-
ployed to record the movements. In order to have a ground
truth reference, the Vicon motion-capturing system using the
standard Plug-in Gait model was also used. Reflective mark-
ers were placed on the body corresponding to Vicon’s stan-
dard Plug-in Gait model. Twelve cameras were used to record
the data at 250 frames per second.

The subject was asked to perform a series of different ac-
tions with five trials for each gesture. However in this paper,
only the knee and elbow flexion-extension are reported for a
subject standing on their left leg while flexing and extend-
ing their right knee (simulated kicking). Since each sensor
recorded data independently, a physical event was required to
synchronize all inertial sensors together. This was achieved
by instructing the subject to perform five vertical jumps, en-
suring large acceleration spikes would occur simultaneously
on each device, that would be clearly visible in the accelerom-
eter stream.

3.2. Accuracy Evaluation

The Vicon data gathered provides orientation information,
which serves as the ground truth of this evaluation proce-
dure. Tracking of the Kinect skeleton was performed using
OpenNI2, NiTE2 that computes positions and orientations of
15 human skeleton joints, see Figure 1(b).

For the evaluation of the proposed methodology, we chose
to compare the angle joints of the knees and elbows, given
their biomechanical importance. Typically a joint rotation is
defined as the orientation of a distal segment with respect to
the proximal segment. In order to measure body joint angles,
the orientation of the two wearable inertial sensors attached
on the distal and proximal segments were calculated using
the described fusion algorithm. Then a technique based on
leg and hand segment movements was used to calibrate and
align the reference frame of the two inertial sensors [9, 10].
For instance, this can be applied to the upper arm and forearm
segments to calculate elbow joint angles. This is described by
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Fig. 2. Plots of four joint angles (degrees) during the right
knee flexion-extension. We compare the Kinect skeleton (red
curves) and the WIMU orientations (blue curves) to the Vicon
system (green curves) as a ground truth reference.

the following equation:

qelbow = q∗upperarm ⊗ qforearm (7)

where qupperarm and qforearm are the quaternion representa-
tion of the orientation of the upper arm and forearm respec-
tively.

Figure 2 shows the plots of four joint angles during the ac-
tion of the right knee flexion-extension: the sujects both knees
and elbows. We are comparing both the Kinect skeleton and
the fused skeleton against the Vicon ground truth skeleton.
These plots clearly shown that the fused skeleton produces
joint angles that are much closer to the Vicon derived angles.
One can see that the Kinect’s knee angle behaves abnormally
when the corresponding leg stretches during the knee flexion-
extension. This occurs because the Kinect allows the knee
joint to bend in any direction, as depicted in the skeleton’s
left leg in Figure 3. Another observation is that for the joints
that do not participate in one particular action (e.g. left knee
during right knee flexion-extension) the Kinect generates un-
reliable joint angles, which is not the case for the proposed
fused scheme. Moreover, in all the plots it can be seen that
the Kinect joint angles produce large fluctuations (i.e. greater
noise) than the angles of the proposed method. Results from
the fused scheme show smaller errors, with a relatively con-
sistent offset to the Vicon data. The offset we can observe
is due to the misalignement of the WIMUs along the sub-
ject’s bones. Future research could focus on resolving this
misalignment.

Further to the joint angle plots, Table 1 depicts the root
mean squared error values (RMSE) and the cross correlation
measure (C) of each of the four joints by comparison with Vi-
con during two specific gestures. The actions chosen in this
table are the right and the left knee flexion-extension. RMSE
values generated by our proposed method are lower than those
from the Kinect, and cross correlation measures imply that



Fig. 3. The Kinect (with red color) and the proposed (blue)
skeleton drawn over the Kinect’s reconstructed depth map.
Note the Kinect’s inability to capture the left hand and leg on
the left image and the right leg in the right image.

Joint angle Left knee flexion Right knee flexion
RMSE C RMSE C

Kinect L-Elbow 16.73 ˚ 0.13 9.93 ˚ 0.61
Fusion L-Elbow 14.19 ˚ 0.70 3.81 ˚ 0.85
Kinect R-Elbow 12.06 ˚ 0.41 10.34 ˚ 0.56
Fusion R-Elbow 6.97 ˚ 0.89 5.12 ˚ 0.84
Kinect L-Knee 29.51 ˚ -0.63 26.94 ˚ -0.02
Fusion L-Knee 6.79 ˚ 0.73 8.98 ˚ 0.50
Kinect R-Knee 9.82 ˚ 0.82 12.96 ˚ 0.80
Fusion R-Knee 4.10 ˚ 0.99 5.86 ˚ 0.99

Table 1. The RMSE values of the chosen joint angles against
the Vicon system and their cross correlation measure C. We
are measuring two different movements: left and right knee
flexion-extension. Each gesture is performed while the sub-
ject stand still in front of the Kinect, see an illustration in Fig.3
(right).

our fused skeleton is far more accurate than the Kinect one
referring to the Vicon skeleton. Figure 3 depicts two snap-
shots of the extracted skeleton. The skeletons are drawn over
the Kinect foreground surface to enable a natural evaluation
of the produced joints’ positions and angles. As can be seen,
the Kinect skeleton is not fully aligned with its depth map and
results in large errors especially in the knee. The whole cap-
tured sequence that depicts the extracted skeleton is available
on our website.

4. CONCLUSION

In this paper we have presented a multi-sensor fusion ap-
proach to improving the skeleton provided by the popular
Kinect sensor. Whilst the Kinect, designed as a games con-
troller, provides an important low-cost approach to motion
capture and measurement, the accuracy obtained is not suf-
ficient for many biomechanical applications. For this reason,
we introduce a second data modality, corresponding to multi-

ple wireless inertial measurement units and present a frame-
work that allows the efficient fusion of these complementary
data sources. The results show that the proposed approach can
obtain more accurate joint angle measurements, approaching
those of very expensive gold standard optical capture systems.
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