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ABSTRACT In this paper, a Mahalanobis Distance-based Graph Attention Network for graph classification,
is proposed. In contrast to traditional Graph Attention Networks, the proposed approach learns the
covariances between node features so as to determine the attention between nodes, instead of directly
learning the attention coefficients using learnable parameter matrices. During training, the network learns the
covariance matrix that is essential component of the Mahalanobis distance, and thus adjusts the covariances
between node features based on the specific characteristics of the graph under examination. Leveraging
Mahalanobis distance, the model manages to capture complex features correlations leading to better graph
representations. Additionally, the proposed method combines the concepts of multi-head and multi-view
to achieve enhanced performance and generalization ability. Multi-head attention enables the model to
focus on diverse aspects of the data, whereas multi-view attention provides different perspectives on node
relationships. Extensive experiments on benchmark datasets demonstrate that the proposed method either
outperforms or is on par with the state-of-the-art methods. The study also examines the impact of the number
of heads and views for the multi-head and multi-view concepts respectively on the proposed method.

INDEX TERMS Graph attention networks, mahalanobis distance, attentionmechanism, graph classification.

I. INTRODUCTION
Graph-structured data play a pivotal role in various tasks,
requiring effective handling of information, related with
the dependencies between graph elements. From simulating
complex physics systems [1] and learning molecular fin-
gerprints to predicting protein interfaces [2] and classifying
diseases [3], there is a great demand for powerful models
capable of learning from graph inputs [4]. Graph Neural
Networks (GNNs) have been a leading type of neural
networks that capture dependencies in graphs by efficiently
performing message passing between nodes and they have
demonstrated remarkable capabilities in addressing diverse
challenges [4].
Three categories of GNNs can be identified according

to the type of prediction: 1) Node-level predictions, which
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include node classification, regression, clustering, among
others. Node classification involves categorizing nodes
into predefined classes, whereas node regression predicts
continuous values associated with each node. Node clustering
seeks to partition nodes into disjoint groups, where nodes
with similar properties are grouped together. 2) Edge-
level predictions, which include edge classification and
link prediction, which require the model to classify edge
predefined types or predict whether an edge exists between
two given nodes. 3) Graph-level tasks that include graph
classification, regression, and matching. All the above-
mentioned graph-level tasks require the model to learn graph
representations [4].

Recently, multiple variants of GNNs, such as Graph
Convolutional Networks (GCNs) [5], Graph Attention Net-
works (GATs) [6], and Graph Recurrent Networks (GRNs)
[7], have attracted significant attention for their remarkable
performances in deep learning tasks. GCNs leverage graph
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convolutions to perform node-level predictions efficiently,
whereas GATs utilize attention mechanisms to capture node
dependencies more effectively. GRNs, on the other hand,
capture temporal dependencies in dynamic graph-structured
data.

The proposed method is inspired by Graph Attention
Networks (GATs) and addresses the graph classification
task. Graph classification plays a significant role in various
real-world applications, including bioinformatics, social
network analysis, and recommendation systems [8]. The
ability of GATs to provide discriminative representations by
calculating the significance of neighboring nodes, as well as
their ability to adapt to different graph structures, along with
their shared parameters, forms a set of advantageous features
for tackling graph classification tasks.

In this paper, a modified version of the GAT network is
proposed that specifies the attention between nodes using
the Mahalanobis distance [9]. This distance measures the
dissimilarity between vectors in a multivariate space, consid-
ering the covariance of the node features. In the proposed
approach the covariance matrix is learnable. This enables
the proposed Mahalanobis Distance-based Graph Attention
Network (MD-GAT) to capture complex correlations and
adaptively determine the significance of all neighboring
nodes. The main contributions of this paper are:
Mahalanobis Distance-Based Attention: A novel attention

mechanism is introduced that utilizes the Mahalanobis
distance and its learnable covariance matrix to capture node
dependencies in graph-structured data more efficiently.
Extension of the GAT Network With the multi-view

Concept: The proposed MD-GAT extends the GAT network
by introducing the multi-view concept. Each view constructs
a different complete graph derived from the input graph and
thus, extracts different relations between nodes.
Enhanced Generalization Ability: MD-GAT model

enhances the generalization ability of graph classification
by learning meaningful representations, using Mahalanobis
distance. Extensive experiments were conducted on diverse
benchmark datasets for graph classification, demonstrating
the superior performance of MD-GAT compared to the
state-of-the-art graph classification methods.

II. RELATED WORK
Graph Convolutional Networks can be divided in two cate-
gories: spectral and spatial convolution methods. In spectral
convolution, for the understanding of the graph’s underlying
structure, the Laplacian matrix of the graph is used. In the
Fourier domain, eigen decomposition on the Laplacianmatrix
is performed to obtain its eigenvalues and eigenvectors
and allows the transformation of the graph data into a
more informative representation in the spectral domain.
A representative model of this domain is the GCN model [5].
In spatial convolution, instead of using the graph’s Laplacian
matrix, it directly considers the features of neighboring
nodes to understand the node’s properties, thus, it operates

on the local neighborhood of the node in the graph.
Spatial convolutions are computationally simpler and faster
compared to spectral convolutions. A representative model
of this type of convolution methods is the GAT network [6]
and consequently, the proposedMD-GATmethod falls within
this category of GNNs.

Graph classification defined as the task that aims to
associate a label with an entire graph. Except for the message
passing over nodes/edges, it also needs to retrieve graph-level
representation to achieve accurate predictions. In spatial
domain, PSCN [10] proposes a novel framework for learning
convolutional neural networks suitable for arbitrary graph
data, with various graph types and node/edge attributes, that
extracts locally connected regions from graphs, producing
efficient feature representations. Similarly, DGCNN [11],
which is an end-to-end architecture, attempts to extract
information from arbitrary graph structures directly and
sorts the vertices of a graph in a consistent order by using
a SortPooling layer, enabling traditional neural networks
to be trained. Compared to PSCN, DGCNN improves
expressibility by allowing gradient backpropagation through
SortPooling, dynamically sorts nodes to reduce overfitting
to specific orderings, and integrates preprocessing directly
into the neural network. On the other hand, KGCNN [12],
addresses the challenge of applying CNNs to graph data by
integrating graph kernels with classical neural networks, and
extracting patches from graphs, creating feature embeddings
using graph kernels and feeding them to classical CNNs.
In GIN [13], the authors prove that many popular GNN
variants cannot learn to distinguish certain simple graph
structures and thus, they introduce a most expressive
GNN architecture, comparable in power to the Weisfeiler-
Lehman (WL) [14] graph isomorphism test and capable
to capture different graph structures. Finally, the authors
of DGK [15] propose a unified framework that lever-
ages the dependency information between sub-structures
to learn latent representations for graphs, inspired by
recent advancements in language modeling and deep
learning.

In the spectral domain, Defferrard et al. [16] propose
the generalization of convolutional neural networks from
low-dimensional regular grids (image/video/speech), to high-
dimensional irregular grids like graphs, achieving local,
stationary and compositional feature learning. DiffPool [17]
proposes a differentiable graph pooling module that produces
hierarchical graph representations that maps nodes to a
set of clusters in each GNN layer, in order to pass this
coarsened output to the next GNN layer. Its main limitation
is its quadratic space complexity due to the need to
maintain an entire assignment matrix that relates nodes from
the original graph to the pooled graph, which becomes
prohibitive for large graphs. In [18], Cangea et al., propose
differentiable graph coarsening, that reduces graph’s size
adaptively, similarly to an image downsampling. Graph
U-net [19] introduces a graph pooling (gPool) operation that
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reduces graph nodes based on scalar projections and a graph
unpooling operation (gUnpool) to reconstruct initial structure
using node positions. CapsGNN [20] extracts node features
in capsule form and utilizes a routing mechanism to generate
expressive high-level capsules and thus, to capture graph-
level information. However, CapsGNN fails to distinguish
between neighbor and self-connected edges, losing self-
information, and introduces noise from multi-hop neighbors,
which, with more layers, leads to over-smoothing and
difficulty distinguishing node features across classes [21].
Finally, GFN [22] is introduced as a neural set function
defined on a set of graph augmented features. These features
include both graph structural/topological features and graph
propagated features. In contrary to other methods, GFN
focuses on the simplicity and efficiency instead of the
expressiveness or trainability of GNNs.

PPGN [23] presents amodel that utilizesmatrixmultiplica-
tion and Multilayer Perceptrons (MLPs) to achieve provably
stronger 3-WL expressiveness compared to message passing
models. However, it requires quadratic memory and cubic
time complexity, making the model prohibitive for large
graphs [24]. To address the problem of pre-set persistence
feature weights in existing methods, [25] developed WKPI,
which learns an optimal weight-function from labeled data
and applies it to persistence summaries for improved graph
classification performance.WKPI introduces a learnable pos-
itive semi-definite weighted-kernel for computing distances
between persistence diagrams. QGNN [26] aims to learn
quaternion embeddings for graph-structured data, extending
the traditional GCNs to operate within the Quaternion space,
which offers highly expressive computations through the
Hamilton product.

Moreover, given the success of attention models in deep
learning [27], [28], [29], [30], researchers introduced the
attention mechanism in graph-based models as well. Over
the recent years, numerous approaches [6], [31], [32],
[33], [34], [35], [36] have been proposed, each presenting
distinct definition of the attention and employing it for
a range of valuable objectives. However, all of them
have the same objective: the exploitation of attention to
effectively focus on the most task-relevant parts for decision
making [34]. Notably, attention mechanism has significantly
enhanced graph neural networks by accomplishing tasks
such as information aggregation for nodes [6], model
integration [33], node selection via pooling methods [32] and
guiding random-walks through essential nodes [31].
The proposed method, is a modified version of the GAT

networks and it is inspired by the MV-AGC [37] approach.
MV-AGC is a spectral-based method, which uses the notion
of views, where in each view a different complete graph is
constructed from the pairwise Mahalanobis distances of the
vertices in the feature space. Each view encapsulates a dif-
ferent relation between vertices in a distance metric learning
context and this is achieved by learning a different covariance
matrix for each view, which defines the interdependencies
between nodes.

III. METHODOLOGY
In this section, the proposed method for graph classification
is thoroughly detailed. For the easy comprehension of the
proposed MD-GAT network, a brief overview of the tradi-
tional GAT networks is provided. In contrast to the traditional
GAT networks, in the proposed method the Mahalanobis
distances [9] between node pairs are calculated to represent
attention coefficients. The concepts of multi-head from
GAT [6] and multi-view from MV-AGC [37] are combined,
as can be seen in Fig. 1, to capture complex correlations and
more meaningful node feature dependencies.

A. GRAPH ATTENTION NETWORKS (GATS)
In this subsection, a single graph attention (GAT) layer
from [6] is presented. It uses as input a set of node features,
{x1, x2, . . ., xN}, xi ∈ Rd , where N is the total number of
nodes, and d is the number of features in each node. This
GAT layer produces a new set of node features, {x′

1, x
′

2, . . . ,
x′
N}, x

′
i ∈ Rd ′

.
In order to transform the initial input features into high-

level features, a shared linear transformation parametrized
by a weight matrix W ∈ Rd ′

×d , is applied to each node.
Subsequently, the attention mechanism computes attention
coefficients αij for each pair of nodes i and j -as long
as they are neighbors (masked attention)-, determining the
importance of node j to node i based on their feature
similarities. In this case, the neighborhood Ni contains
all the first-order neighbors of node i. The attention
coefficients are computed by the attention mechanism as
follows:

αij =
exp

(
LeakyReLU

(
aT [Wxi∥Wxj]

))∑
n∈Ni

exp
(
LeakyReLU

(
aT [Wxi∥Wxn]

)) (1)

where α is a single-layer feedforward neural network
parametrized by the weight vector a ∈ R2d ′

, xi represents
the feature vector of node i, xj represents the feature vector
of node j, xn represents the feature vector of node n that
belongs to the neighborhood Ni of node i. W represents a
shared learnable linear transformation that modifies the input
graph node features from size d to d ′. The output features are
then aggregated by applying the concatenation operation ∥,
which requires the weight vector a that stores the learnable
attention coefficients to have size equal to 2d ′ (a ∈ R2d ′

).
The LeakyReLU activation introduces non-linearity to the
attention mechanism. For easy comparison across different
nodes the Softmax function is applied to the attention
scores, in order to normalize coefficients across all choices
of j.

After normalizing the attention coefficients, they are used
to determine the impact of each neighboring node j ∈ Ni on
the central one i. This is calculated as a weighted combination
of the neighboring features, with the weights determined
by the attention coefficients. After applying the activation
function σ to introduce nonlinearity, the updated, enriched
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FIGURE 1. Overview of the proposed MD-GAT network: This figure depicts a single-layer MD-GAT network architecture. Graph-structured data pass
through the network, H heads are initialized using Wh where h ∈ [1, . . . , H] and in each head, V views are initialized by using V number of covariance
matrices Mv , where v ∈ [1, . . . , V ]. The output of the MD-GAT layer is concatenated, and a max-pooling layer returns the most significant task-related
view. After passing through an MLP network and two fully-connected layers, the log Softmax gives the final prediction.

node features are obtained according to (2).

x′
i = σ

∑
j∈Ni

αijWxj

 (2)

To enhance the model’s performance and stabilize learning
process [6], GAT employs multiple attention heads, each
with its own set of learnable parameters. The attention heads
h = {1, 2, . . . ,H}, where H represents the total number of
heads in a single GAT layer, operate independently on the
node features, capturing different patterns and relationships
within the graph. The output of each attention head h is
concatenated and further aggregated to obtain the final node
representations:

x′H
i = ∥

H
h=1σ

∑
j∈Ni

αhijW
hxj

 (3)

where ∥ represents concatenation operation, αhij are the
normalized attention coefficients computed by the h-th
attention mechanism (αh) and Wh is the weight matrix
of head h. The final size of each node feature using
multi-head attention will be Hd ′, and not d ′ (attention
with 1 head). The attention mechanism in [6] allows the
model to dynamically adjust the importance of neigh-
boring nodes based on the learned attention coefficients.
The introduction of multiple attention heads enables the
model to capture diverse patterns and improves the node
representations.

B. MAHALANOBIS DISTANCE-BASED GRAPH ATTENTION
NETWORKS (MD-GATS)
In this subsection, a modified version of GAT, called Maha-
lanobis Distance-basedGraphAttention Network (MD-GAT)
is described. The proposed method is inspired by [37],
which introduces views to encapsulate different dependencies
between vertices, and thus it constructs different complete
graphs according to views.

Mahalanobis distance can measure the dissimilarity
between two feature vectors x, y and can be expressed by (4):

dist(x, y) =

√
(x − y)TC−1(x − y) ∀x, y (4)

where, C is the covariance matrix of the feature space to
which x and y belong, and the terms −1 and T denote the
matrix inverse and transpose operations, respectively.

In the proposed approach, where a single MD-GAT layer
takes as input a set of nodes {x1, x2, . . . , xN }, xi ∈ Rd ,
where N is the total number of nodes, and d is the number of
features in each node, the Mahalanobis distance is computed,
after transforming the input features by applying a linear
transformation using weight matrix W ∈ Rd ′

×d , which
modifies the feature dimensionality from d to d ′.
In the multi-view concept, each view can be seen as a

unique perspective or interpretation of the data. Specifically,
for each view v ∈ [1, . . . ,V ], where V is the total number
of views in a single MD-GAT layer, a positive semi-definite
matrix Mv ∈ Rd ′

×d ′

is associated, where M = C−1, which
is a transformation matrix or the inverse of the covariance
matrix of the feature space of the nodes. These matrices
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are learnable and each of them belongs to a single view.
According to (5), the Mahalanobis distance between the
feature vectors of nodes i and j, for the view v ∈ [1, . . . ,V ]
is:

distv(i, j) =

√
(Wxi − Wxj)TMv(Wxi − Wxj) ∀xi, xj ∈ Rd

(5)

Mv ∈ Rd ′
×d ′

, where d ′ is the feature dimensionality after
applying the linear transformation W, is defined as Mv =

QvQT
v , where Qv is randomly initialized at the beginning of

the learning process.
Furthermore, a feature difference matrix F ∈ Rc×d ′

is defined, where c =
1
2N (N − 1) and N is the total

number of nodes in the graph. This matrix F contains all
feature differences between unique pairs of nodes i, j, without
considering their connectivity and thus, the graph structural
information.

Following [37], for the optimization of memory consump-
tion and achieving end-to-end training, unique distance pairs
are computed as follows:

dv = diag
((

(FMvFT ) ⊙ Ic
)1/2)

= ((FMv ⊙ F)1d )1/2 ∈ Rc (6)

where diag is the operator that maps the main diagonal of a
c× cmatrix into a vector ∈ Rc and 1d ′ is a d ′ element vector
of ones. Ic is the identity matrix of size c× c and ⊙ denotes
the Hadamard operation. The unique distance pairs in dv are
then stored in a view distance matrix Dv ∈ RN×N . In order to
integrate graph structure information into the network, theDv
is modified to store only distances between connected nodes
(masked attention).

In MD-GAT, the attention coefficients are computed by
integrating this distance matrix Dv in (1):

αvij = exp(Dv(i, j))
/ ∑

n∈Ni

exp(Dv(i, n)) (7)

whereαvij stores the normalized attention coefficients between
nodes i and j, computed by using the v-th transformation
matrixMv and Ni denotes the neighbors of node i.
To enhance the expressive power of the model and capture

diverse relationships between nodes, the concept of multi-
head attention from the traditional Graph Attention Networks
(GAT) is introduced to the MD-GAT framework. The multi-
head mechanism allows the model to focus on different
aspects of the data, aiding in better representation learning.

Thus, the MD-GAT framework is extended to include
multiple heads or perspectives, each characterized by its
unique weight matrix Wh, where h ∈ [1, . . . ,H ] and H is
the total number of heads in a single MD-GAT layer. Thus,
(7) is modified to:

αvhij = exp(Dh
v(i, j))

/ ∑
n∈Ni

exp(Dh
v(i, n)) (8)

where αvhij denotes the normalized attention coefficients
between nodes i and j, computed by using the transformation
matrixMv from the v-th view and the weight matrixWh from
the h-th head. Ni represents the neighbors of node i. After
computing the Mahalanobis distances for all heads and views
and for all nodes, they are concatenated and pass through a
max-pooling layer to keep the most significant view for the
task. The max-pooling layer is used to fuse the different views
and it is performed in the third dimension (view dimension)
as can be seen in Fig. 2.

1) INCORPORATING MAHALANOBIS DISTANCE FOR
FEATURE CORRELATION IN ATTENTION MECHANISM
As can be seen in (1), the operation aT [Wxi∥Wxj] is
used to compute the attention scores between nodes. This
operation combines concatenation operation and dot product
operations to compute the attention coefficients. This implies
that GATs assume that all features are totally independent,
which is incorrect for complex datasets where features are
correlated. By integrating the Mahalanobis distance into the
attention mechanism, the model computes attention scores
based on a more sophisticated metric that considers the
underlying data distribution and this is achieved with the
learnable covariance matrix into the Mahalanobis distance
calculation. This matrix, allows the model to learn the
dependency between node features during training. The
existence of the covariance matrix in the Mahalanobis
equation is the reason this distance measure has been chosen
over alternatives. For instance, if it is assumed that the
node features are totally independent, this would mean that
C−1

= I for (4), where I is the identity matrix. This
special case of Mahalanobis distance defines the Euclidean
distance (9), which measures the straight-line distance
between two feature vectors x, y in a feature space and is
defined as:

distE (x, y) =

√
(x − y)T I(x − y)

=

√
(x − y)T (x − y) (9)

Euclidean distance assumes that features are independent
and that each feature contributes equally to the distance
calculation. This assumption is often not valid in real-world
data where features may be correlated or vary significantly
in scale. It computes distance based purely on the raw
differences between feature values, which can lead to inac-
curate similarity measures if features are not independent.
On the other hand, Mahalanobis distance explicitly considers
feature correlations by incorporating the covariance matrix
Mv. For instance, if two features are highly correlated,
the Mahalanobis distance will appropriately reduce their
combined influence on the distance calculation. This way,
it ensures that features are weighted according to their actual
statistical distribution, leading to a more balanced and fair
comparison. In section IV. there is an experimental analysis
on this topic.
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2) COMPUTATIONAL COMPLEXITY OPTIMIZATION
The most computationally intensive operation in MD-GAT is
represented by (5), which through linear algebra operations
results to (6) to optimize computations by exploiting the
symmetry in the distance matrix. This transformation is
crucial for efficiently handling pairwise distances within the
MD-GAT network.

In order to compute the Mahalanobis distance between the
feature vectors of nodes i and j for a specific view v the feature
difference matrix F is introduced. This matrix F captures the
difference between the feature vectors of all possible unique
pairs of nodes. Specifically, each entry Fij in matrix F is given
by:

Fij = Wxi − Wxj (10)

Here, F ∈ Rc×d ′

, where c =
1
2N (N − 1) represents the

total number of unique node pairs and d ′ denotes the feature
dimensionality after applyingW.
Next, the matrix product FMvFT is computed, where

FT is the transpose of F. This product results in a c × c
matrix in which each entry (i, j) corresponds to the squared
Mahalanobis distance between the features of node pairs
i and j:

(FMvFT )ij = (Wxi − Wxj)Mv(Wxi − Wxj)T (11)

Next, the Hadamard product is applied with the identity
matrix Ic on (11), ensuring that only the diagonal elements
are considered:

(FMvFT ) ⊙ Ic (12)

Finally, to obtain the actual Mahalanobis distances, the
square root of the diagonal vector is computed by (6).

The resulting vector dv contains theMahalanobis distances
for each unique pair of nodes. This vector is then used to
construct the distance matrix Dv, which incorporates the
graph structure by storing distances only between connected
nodes.

These optimizations reduce the time complexity from
O(n2d2) to 0.5 O(n2d2), where n is the number of nodes and
d is the dimension of the node feature vectors. For instance,
for graphs with n = 80 and d = 128 the operations
are reduced from 104, 857, 600 to 52, 428, 800. Similarly,
the complexity of Hadamard multiplication decreases from
O(n2d) to 0.5O(n2d) per view, resulting in an overall time
complexity reduction by a factor of 4. Although the time
complexity remains quadratic, the layer’s scalability now
scales linearly with the number of views. Additionally,
regarding space complexity, it is reduced from O(n4) to
0.5O(n2d). For instance, for graphs with n = 80 and d =

128 the space complexity is reduced from 40, 960, 000 to
819, 200 bytes.The learning space complexity is O(d2) per
view [37].

IV. EXPERIMENTS
In this section, the evaluation benchmarks are described
and their statistical information is presented in 2. The

FIGURE 2. This figure depicts the max-pooling process when applied to
the concatenated views. In this example the number of views is equal
to 3.

experimental setup and the evaluation protocols are thor-
oughly described and the experimental results in 3 to 7 and in
Fig. 3 to 5 are extensively discussed.

A. DATASETS
The performance of MD-GAT is evaluated on standard
benchmark graph classification datasets, bymeasuring classi-
fication accuracy and standard deviation. These datasets are:
1) MUTAG [38], which consists of edges that correspond
to atom bonds and vertices to atom properties, and the goal
is to predict the mutaginicity on Salmonella typhimurium,
2) PTC-MR [39], which consists of 344 molecules com-
pounds represented as graphs, where classes indicate carcino-
genicity in rats, 3) PROTEINS dataset [40], which consists of
1113 graphs classified as enzymes or non-enzymes. Nodes
represent amino acids and edges between nodes exist if they
are less than 6 Angstroms apart, 4) IMDB-BINARY [15]
and 5) IMDB-MULTI [15], which both of them consist
of ego networks of 1000 actors, where nodes represent
actors, and edge exists between them if they appear in the
same movie and the objective is to find the movie genre,
and finally 6) COLLAB [41] dataset, which consists of
5K researchers’ ego networks from three fields of Physics.
In 2 a statistical summary for each benchmark is described.
Additionally, MD-GAT is compared against the state-of-the-
art graph classificationmethods to demonstrate its superiority
in capturing complex feature dependencies.

Some of the biological datasets have both discrete vertex
labels and continuous-valued vertex attributes. Following all
previous works presented here, for fair comparison, only the
discrete vertex labels are used for training. Moreover, the
social network datasets (IMDB-BINARY, IMDB-MULTI,
COLLAB) do not provide any vertex information, thus the
one hot encoding of each vertex degree is used as feature
vector.

B. EXPERIMENTAL SETUP
For a fair comparison of theMD-GAT network with the state-
of-the-art methods, two different evaluation protocols are
followed. The comparisonmethods include both kernel-based
and deep learning approaches. The implementation of the
MD-GAT network is based on the official codes of [42],
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TABLE 1. Abbreviation table for mathematical elements.

TABLE 2. Description summary of benchmarks.

TABLE 3. This is a comparison table of mean accuracies along with their standard deviations for the evaluation protocol 1, between the MD-GAT network
and the state-of-the-art methods. The bold fonts denote the best mean accuracy for each dataset.

VOLUME 12, 2024 166929



K. Mardani et al.: Mahalanobis Distance-Based Graph Attention Networks

TABLE 4. This is a comparison table of mean accuracies along with their standard deviations for the evaluation protocol 2, between the MD-GAT network
and the state-of-the-art methods. The bold fonts denote the best mean accuracy for each dataset.

[43], and [44]. For the experiments, a m-layer MD-GAT
network is used. In the proposed method, after applying a
dropout layer to the initial node features, they pass to the
first MD-GAT layer. The output features from all heads
and views are concatenated to the corresponding dimensions.
A max-pooling layer is applied to the view dimensions to
choose the most significant view as can be seen in Fig. 2.
The updated features then pass to the next MD-GAT layer
and follow the same process. All the MD-GAT layers have
hidden dimensions equal to 128. After the lastMD-GAT layer
and the last max-pooling layer, the features pass through a
2-layer MLP network in order to aggregate all nodes in a
single entity. Thus, the MLP network has input dimensions
equal to the number of nodes, hidden dimensions equal to the
number of heads (H) × hidden dimension of each MD-GAT
layer (128) and output dimensions equal to 1. After the MLP
network, a dropout layer is applied. The output features pass
to a fully-connected layer with input dimensions equal to
the size of the concatenated features after m layers and H
heads (number of MD-GAT layers (m) × number of heads
(H) × hidden dimension of each MD-GAT layer (128)) and
the output dimensions are equal to 128. The output of this
fully connected layer passes to the Elu layer and then, to the
last fully connected layer with output dimensions equal to
the number of classes for each dataset. Finally, the graph
prediction is obtained after applying a log Softmax function.
For the experiments GeForce RTX 3090 Ti, RTX A5000,
GV102, and GeForce RTX 2070 were used and the code
implementation was carried out using PyTorch [45].

C. EVALUATION PROTOCOL 1
The first protocol follows the approach of 10-fold cross-
validation similar to [37], and the mean classification accu-
racy across folds with the standard deviation are calculated
and presented in 3. The proposed method consists of m = 3
MD-GAT layers with 128 hidden dimensions in each layer,
for all datasets. The number of heads for each layer ranges
from 1 to 4 heads and the number of views from 1 to 2. All
layers have the same number of heads and views, but different

for each dataset. The number of heads and viewswas selected
after extended experiments for each dataset. In order to
prevent overfitting, three dropout layers are used in the MD-
GATnetwork. The first dropout layer in applied directly to the
input features and its value ranges from 0.3 for larger datasets
to 0.5 for smaller ones. The second dropout layer is applied
to the attention coefficients after Softmax layer and its value
ranges from 0.0 for larger datasets to 0.5 for the smaller ones.
The third dropout layer is applied after MLP layer and before
the last two fully connected layers and its value ranges from
0.3 for larger datasets to 0.6 for the smaller ones. For weight
initialization, Glorot initialization [46] has being used for W
and uniform initialization with value range (0, 1) for Q. The
number of epochs is different for each dataset and it ranges
from 50 for COLLAB and PROTEINS datasets to 350 for
IMDB-BINARY dataset. For all datasets, the model was
trained usingAdamoptimizer [47], learning rate starting from
0.001 and reducing according to the MultiStepLr scheduler
in epochs 20 and 30 with value γ = 0.1, and weight decay
0.0004. The batch size ranges from 4 for larger datasets to
64 for smaller ones.

D. EVALUATION PROTOCOL 2
The second approach follows the evaluation protocol of [35],
where a 10-fold cross-validation is used, and the epoch with
the highest accuracy is selected from each fold and the
average accuracy over the ten folds is calculated, along with
the corresponding standard deviation. This protocol is applied
to predefined data splits for fair and clear comparison. For
the experiments, m = 3 MD-GAT layers with 128 hidden
dimensions in each layer were used, for all datasets. The
number of heads of each layer ranges from 1 to 4 heads
and the number of views from 1 to 3. All layers have the
same number of heads and views, but different for each
dataset. The initialization ofW andQ, the values of the three
dropout layers, as well as the settings for learning rate and
weight decay follow the evaluation protocol 1. The number
of epochs is different for each dataset and it ranges from
50 for COLLAB and PROTEINS datasets to 200 for PTC-MR
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TABLE 5. This is an experimental results table, that demonstrates the impact of multiple heads and views in MD-GAT layers for the MUTAG dataset. The
bold fonts denote the best combination of number of heads and views according to the mean accuracies.

TABLE 6. This is an experimental results table, that demonstrates the impact of multiple heads and views in MD-GAT layers for the PTC-MR dataset. The
bold fonts denote the best combination of number of heads and views according to the mean accuracies.

dataset. The batch size ranges from 4 for larger datasets to
128 for smaller ones.

E. EXPERIMENTAL RESULTS
According to the experimental results presented in 3, which
correspond to the evaluation protocol 1, the proposed method
outperforms the competitive methods in 4 out of 6 datasets
in terms of accuracy. As can be seen in 3, MD-GAT fails to
surpass the MV-AGC network in 3 out of 6 datasets in terms
of standard deviation. Notably, 2 of these datasets lack label
information for vertices, and thus, the one hot encoding of
each vertex degree is used as feature vector. Although these
feature vectors pass connectivity information into the model,
they may lack task-related information about the vertices and
thismight negatively affect model performance. Additionally,
the results on the PTC-MR dataset surpass all previous works
except for MV-AGC, which maintains a lead over all other
methods by a largemargin. The authors ofMV-AGC, attribute
this success to the critical importance of the provided vertex
labels in the dataset for classification. This characteristic does
not apply to the proposed method. Generally, the MD-GAT
network combines high accuracy and generalization ability
yielding either superior or comparable results.

According to the experimental results of 4 that correspond
to the evaluation protocol 2, the proposed method outper-
forms all competitive methods in all datasets. It is clear
that MD-GAT performs well on multiple datasets, and this
demonstrates a consistent behavior. Furthermore, it achieves
lower standard deviations compared to the second-best
methods for most datasets, indicating an improved ability
of generalization. This clear comparison across all 10 folds
in standard splits, as shown in 4, underscores the benefits

of using Mahalanobis distances to determine attention
coefficients and combining the multi-head and multi-view
concepts. This combination leads to the creation of high-level
feature representations, resulting in superior performance in
terms of accuracy and enhanced generalization ability.

F. IMPACT OF MULTI-HEADS AND MULTI-VIEWS
In order to highlight the benefits of heads and views inde-
pendently, as well as, their combination, experiments were
conducted on small datasets (MUTAG, PTC-MR, IMDB-
MULTI) without any hyperparameter tuning for multiple
number of heads and views. In 5, 6, and 7, themean accuracies
along with their standard deviations are presented for V =

1, . . . , 5 and H = 1, . . . , 4, where H is the total number of
heads and V is the total number of views in a single layer.

1) DISCUSSION ON ABLATION STUDY FOR MULTI-HEADS
AND MULTI-VIEWS
In 5, the mean accuracies and their standard deviations for the
MUTAG dataset are presented. As can be seen, this dataset
achieves the best performance with V = 1 and H = 2.
Several observations can be made: although in most cases
heads do not impact the accuracies for H > 2, they can
improve the generalization ability of the model. On the other
hand, high number of views do not positively affect the mean
accuracies for this dataset at all, but in some cases it may
improves the generalization ability of the model. This dataset
is the smaller one, therefore it is reasonable to conclude that
high number of heads and views and consequently higher
number of trainable parameters will not improve the model
performance on this small dataset.
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FIGURE 3. Training loss and test accuracy for MUTAG dataset.

FIGURE 4. Training loss and test accuracy for PTC-MR dataset.

FIGURE 5. Training loss and test accuracy for IMDB-MULTI dataset.

In 6, the mean accuracies along with their standard
deviations are presented for the PTC-MR dataset. As can
be seen, the best accuracy is achieved for V = 3 and
H = 2. This is a small dataset as well, however it
is larger than MUTAG. Again, it can be observed that

for H > 2, heads neither improve mean accuracies
nor standard deviations. However, views, in most cases,
improve both mean accuracies and standard deviations.
Thus, in this dataset views offer higher impact than
heads.
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TABLE 7. This is an experimental results table, that demonstrates the impact of multiple heads and views in MD-GAT layers for IMDB-MULTI dataset. The
bold fonts denote the best combination of number of heads and views according to the mean accuracies.

In 7, the mean accuracies along with their standard
deviations are presented for the IMDB-MULTI dataset.
Similarly to the PTC-MRdataset, the top accuracy is achieved
with 2 heads and 3 views. In contrast to both previous
datasets, on these experiments for the IMDB-MULTI dataset,
both heads and views, offer improved performance and
enhanced generalization ability.

2) CONCLUSIONS FOR MULTI-HEADS
The addition of multiple heads in MD-GAT layers is
primarily intended to enhance feature extraction capabilities
by allowing the model to focus on different parts of the graph
data simultaneously. For the MUTAG dataset, increasing the
number of heads beyond two does not lead to substantial
improvements in accuracy. This is indicative of the dataset’s
size limitations, where the benefits of additional heads are
overshadowed by the risk of overfitting. However, in larger
datasets like IMDB-MULTI, the presence of more heads
contributes positively to the model’s performance, suggesting
that the model can leverage multiple heads to extract richer
and more varied features effectively. Moreover, in terms
of generalization ability, as can been from the standard
deviations, all the datasets show to benefit from multiple
heads, in some cases more than others. For instance, in the
MUTAG dataset, it can be seen that the standard deviation is
reduced as more heads are added to the model when V = 1.
On the other hand, in the PTC-MR dataset V = 2 shows that
additional heads do not improve the model’s generalizability.

3) CONCLUSION FOR MULTI-VIEWS
The impact of varying the number of views is more
pronounced. Increasing the number of views allows the
model to learn from multiple graph representations, each
capturing different structural aspects of the data. This is
particularly beneficial in larger datasets. For instance, for
MUTAG dataset which is the smaller one, additional views
do not yield significant performance improvements but may
still contribute to the generalization ability by providing
varied perspectives. In contrast, the PTC-MR dataset which
is larger that MUTAG, demonstrates that additional views
improve both accuracy and standard deviation, indicating
that multiple views help the model to generalize better.
Additional experiments were conducted to show the influence
of multiple views in the convergence rate and stability
during training. The multiple views imply the initialization

of multiple covariance matrices as mentioned in section III.
The experiments in Fig. 3 to 5 examine the case where
the covariance matrix is a fixed matrix, specifically the
identity matrix (Euclidean distance) and the cases where the
covariance matrices are learnable and their number varies
from 1 to 5 (mutli-view concept). All the experiments assume
that H = 1 and all the settings for each dataset (MUTAG,
PTC-MR, IMDB-MULTI) are the same except for the number
of views V , that will be examined. As can be seen, for all
datasets especially for MUTAG and PTC-MR, the learnable
covariancematrices contribute positively to the converge rate,
especially when their number increases (multi-views). On the
contrary, the stability during the training process presents a
minor deterioration.

V. CONCLUSION
MD-GAT offers a novel approach to graph classification,
leveraging the Mahalanobis distance to improve the atten-
tiveness of nodes and capture more meaningful relationships
in graph-structured data. After extensive experiments, the
choice of the number of heads and views depends on the
dataset size and the information that is stored on vertex level.
Larger datasets might benefit from multiple sets of heads
and views, while smaller datasets may achieve their best
performance with fewer heads and views. It is essential to
perform hyperparameter tuning to find the optimal configu-
ration for each specific dataset. For future research, it would
be interesting to explore alternatives to the max-pooling
layer, aiming to make a more informed selection of the most
significant view. Additionally, conducting experiments with
an increased number of GAT layers could be beneficial to
enhance both performance and generalization capabilities.
Moreover, by considering higher-order neighboring nodes
as part of the neighborhood, the proposed method may
capture more complex dependencies between nodes. Lastly,
the reduction of computational complexity would be valuable
for the MD-GAT model to run more efficiently, making it
more suitable for large-scale applications.
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