
1

MSIDX: Multi-Sort Indexing for Efficient
Content-based Image Search and Retrieval
Eleftherios Tiakas, Dimitrios Rafailidis, Anastasios Dimou and Petros Daras, Member, IEEE

Abstract—In this paper, a novel approximate indexing scheme
for efficient content-based image search and retrieval is pre-
sented, called Multi-Sort Indexing (MSIDX). The proposed
scheme analyzes high dimensional image descriptor vectors,
by employing the value cardinalities of their dimensions. The
dimensions’ value cardinalities, an inherent characteristic of
descriptor vectors, are the number of discrete values in the
dimensions. As expected, value cardinalities significantly vary,
due to the existence of several extraction methods. Moreover,
different quantization and normalization techniques used in the
extraction process, have a strong impact on the dimensions’ value
cardinalities. Since dimensions with high value cardinalities have
more discriminative power, a multiple sort algorithm is used
to reorder the descriptors’ dimensions according to their value
cardinalities, in order to increase the probability of two similar
images to lie within a close constant range. The expected bounds
of the constant range are defined in detail, following deterministic
and probabilistic analyses. The proposed scheme is fully suitable
(a) for real-time indexing of images, and (b) for searching and
retrieving relevant images with an efficient query processing
algorithm. In our experiments with five real datasets, we show the
superiority of the proposed approach against hashing methods,
also suitable for approximate similarity search.

Index Terms—Multi-sort, indexing, content-based image re-
trieval, approximate similarity search.

I. INTRODUCTION

THE availability of images over the Internet emerged the
imperative need to address the challenge of content-based

searching, in order to find visually similar content. Exhaustive
search is infeasible for large scale applications due to its exten-
sive time requirements. Thus, indexing methods are needed,
able to provide efficient search time and retrieval accuracy.
However, multimedia objects like compressed images, video
and audio streams are usually described by sequences of
descriptor vectors with over than a thousand dimensions, and
their similarity is examined by nearest neighbor search. In this
high dimensional space, the performance of existing widely
studied tree-based indexing methods deteriorate significantly,
due to the well-known problem of Dimensionality Curse [29],
[10].

In the last decade, many dimensionality reduction methods
[23], [27], [59], [28], [51], [2], [46], [4] and hashing tech-
niques [19], [15], [13], [45], [43], [38], [32], [57], [34], [44],
[30], [50], [58], [42], [31], [36], [56], [24], [33], [25] have been
proposed to overcome the problems of the tree-based methods
and thus to provide efficient solutions for high-dimensional
data. In the first case, dimensionality reduction methods try to
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reduce the number of dimensions of the high-dimensional data.
In particular, the data are transformed into a lower-dimensional
space by using dimensionality reduction methods and then
an index is built on it. In the second case, the encoding of
such data into binary codes using appropriate hash functions
enables higher scalability due to the compactness of the data
and their efficient indexing. Similar high-dimensional objects
are mapped to similar binary codes. Therefore, approximate
nearest neighbor search is performed by only examining
similar binary codes. However, the hashing methods often fail
to achieve high accuracy in their approximations, especially
when the hashing functions are drawn independently from the
data, or when a short binary code length is selected. Moreover,
for long binary code lengths a significant preprocessing time
is required.

In the proposed MSIDX method, a new key factor is
exploited, which to the best of our knowledge, has not been
explored so far. In particular, the motivation for designing a
novel indexing scheme is the correlation between the value
cardinality in every dimension of the descriptor and the
discriminative power of the specific dimension, assuming that
dimensions with high value cardinalities have more discrim-
inative power. This correlation is explored by examining the
content-based descriptor vector extraction process of images.

A. Analysis of the Dimensions’ Value Cardinalities of Descrip-
tor Vectors

The value cardinalities of the descriptor in each dimension
is the number of unique discrete values that can be found in
the examined dimension throughout a database of descriptor
vectors. The range and the density of these observed values is
strongly affected by the extraction strategy followed for each
descriptor type. In this section, the impact of the descriptor
extraction techniques on the dimensions’ value cardinalities is
further analyzed and discussed.

Descriptor vectors of images, representing either a local area
or the whole image, are extracted by forming histograms that
describe the value distribution of a specific attribute, which
defines the unique characteristics of the descriptor. Due to
differences in scale, resolution, color distribution and illumi-
nation, the descriptor assigned to the same object or texture
can vary significantly among different content. Moreover, in
the case of creating a global image descriptor from local
ones using a histogram-based technique, the population of the
histogram is defined by the number of local descriptors. This
number is affected by various design choices, such as the size
of the image, the localization strategy (dense grid or interest
points) and the extraction density in the selected strategy.



2

In order to produce comparable histograms for search and
retrieval purposes, normalization [37] and descriptor value
quantization techniques are applied during the post-processing
phase. Using normalized vectors implies the use of the contour
of the histogram, which is more robust to the above mentioned
factors, rather than the absolute values of the histogram. It
has been shown that applying normalization leads to higher
accuracy in retrieval methodologies [49], [60]. After the nor-
malization process, the descriptor values become real numbers.
Unfortunately, floating-point arithmetics increase the complex-
ity of the calculations, leading to increased processing time
and storage needs, especially for large databases of images.
Descriptor value quantization decreases the value cardinalities
of the representation space through a destructive process,
introducing a trade-off between accuracy and performance.

After applying this post-processing, the observed value
cardinalities in each dimension of the descriptor change
significantly. The design choice in the quantization strategy
followed, is to define the theoretical bound to the cardinalities
of the descriptor. In practice, though, this bound is reached
for a very limited number of dimensions. In most dimensions
the descriptor vectors values hold zero or are highly repetitive,
restricted and non-distinctive. Therefore, these dimensions do
not posses significant descriptive power and do not enhance
the retrieval accuracy of the system. This observation holds
even more for descriptors with high dimensionality.

B. Contribution and Layout

In this paper, a new indexing method is proposed, called
MSIDX, which employs the value cardinalities of the descrip-
tors’ dimensions, achieving high retrieval accuracy and low
search time. In particular, by reordering the dimensions of the
descriptor vectors according to their value cardinalities based
on the proposed multiple sort algorithm, MSIDX increases the
probability of two similar images to lie within a close constant
range. The expected bounds of the constant range are de-
fined, following both deterministic and probabilistic analyses.
MSIDX fully supports the following desired characteristics:
(a) dynamic indexing and storing of the new image content,
by supporting a real-time insertion technique, and (b) efficient
search time and accurate retrieval. Through extensive exper-
imental evaluation with five publicly available datasets, we
demonstrate that the proposed MSIDX method significantly
outperforms state-of-the-art hashing methods, also suitable for
approximate similarity search.

The rest of the paper is organized as follows: after sum-
marizing the related work in Section II, the proposed MSIDX
scheme is described in Section III, while the mathematical
formulation for determining the bound of the constant range
is provided in Section IV. Experimental results are presented
in Section V and finally, conclusions are drawn in Section VI.

II. RELATED WORK

A. Tree-based Methods

Several tree-based indexing methods have been proposed
for the problem of nearest neighbor search, such as: KD-trees
[18], [5], [6], R-trees [22], M-Trees [14], Quad-Trees [47],

Vantage Point Trees (VPT) [12], Voronoi Trees (VT) [16], etc.
Additionally, several tree-based indexing methods for approx-
imate nearest neighbor search have also been proposed, such
as: Spatial Approximation Tree (SAT) [40], Approximating
Eliminating Search Algorithm (AESA) [55]. Extensive surveys
for the most tree-based methods can be found in [48], [11],
[8].

The main strategy for all tree-based indexing methods is
to prune tree branches on the established bounding distances
in order to reduce the node accesses. However, in high-
dimensional spaces, where the multimedia objects lie, the tree-
based indexing methods are inefficient, performing worse than
exhaustive search [7].

B. Dimensionality Reduction Methods

Instead of indexing the data into the original high-
dimensional space, dimensionality reduction methods aim at
mapping the data into a lower-dimensional subspace. The
main idea is to make such a transformation without losing
much information and build an index on the subspace. Many
local and global dimensionality reduction methods have been
proposed, such as the works in [23], [27], [59], [28], [51], [2],
[46]. Global dimensionality reduction methods map the whole
dataset into a much-lower dimensional subspace. For example,
the Isometric Feature Mapping method [2] estimates geodesic
distances and uses them to project the data into the embedded
space. Local dimensionality reduction methods divide the
dataset into correlated clusters and then each cluster is reduced
in subspaces independently. For example, the Locally Linear
Embedding method [46] projects the data to a low-dimensional
space, while preserving local geometric properties.

The preprocessing cost of such transformations is often
high, due to dense matrix operations (especially products,
eigenvector and eigenvalue calculations). Several optimization
techniques have been proposed to reduce the preprocessing
cost and keep the accuracy of the estimated distances [28],
[51]. For example, the Laplacian Eigenmaps method [4] uses
an extra weighted distance between the data points as a loss
function in order to evaluate and optimize the dimensionality
reduction results.

Dimensionality reduction methods can be used either for
approximate or exact similarity search. In the first case,
the similarity search is performed only into the transformed
subspace. In the second case, firstly the similarity search is
performed into the transformed space, where lower bounds
on the distances are used for filtering, then a resulting set of
candidates is returned, and finally the candidates are refined
in the original space with exact search (e.g. [28]).

In the case of exact similarity search, the recently proposed
Data Co-Reduction (DCR) method of [28], significantly out-
performs the existing methods for lossless retrieval, especially
in the presence of extremely high dimensionality. The DCR
method simultaneously reduces both the size and the dimen-
sionality of the original data into a compact subspace, where
lower bounds of the actual distances in the original space can
be efficiently established to achieve fast and lossless similarity
search in a filter-and-refine approach.
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In the case of approximate similarity search, it has been
demonstrated that the dimensionality reduction methods re-
turn accurate results in relative low dimensional spaces [51].
However, MSIDX also offers an approximate solution that
significantly reduces the search time, while the computational
cost of additional data transformations of the dimensionality
reduction methods is avoided.

C. Hashing Methods

The hashing methods have proven to be suitable for approx-
imate similarity search, since they support efficient indexing
and data compression. The basic idea of the hashing methods
is (a) to encode the distances between the data into the form of
compressed sequences of bits by using hash functions, and (b)
to store the encoding distances into buckets, in order to ensure
that the probability of collision is much higher for data that
are close to each other than those that are far apart. Then,
they approximate exact similarity measures by comparing
hash codes, using a hamming distance on binary codes or
other measures. Different strategies are followed during the
preprocessing for the generation of the binary codes. The
existing hashing methods can be broadly categorized as data-
independent and data-dependent.

In data-independent hashing methods, the hashing functions
are defined independently from the data. One of the most
popular method is Locality Sensitive Hashing (LSH) [19],
which is based on projection onto random vectors drawn from
a specific distribution. Many hashing methods, where also
a randomized process is followed in various metric spaces,
are: p-stable LSH [15], min-hash [13], Shift-Invariant Kernels
Hashing [45], Entropy based LSH [43], Multi-Probe LSH
[38], posteriori Multi-Probe LSH [32], etc. Such methods are
based on random projections and according to the Johnson-
Lindenstrauss Theorem [35], at least O(lnn/ϵ2) projection
vectors are required (where n is the dataset size), so as
to preserve the pairwise distances with a relative error ϵ.
Therefore, in order to decrease the relative error and increase
the probability that similar objects have similar hash codes,
the random projection based methods require many random
vectors to generate the hash tables (each table corresponds
to one random vector), leading to a large storage space
and a high computational cost. Alternatively, several methods
instead of following randomization strategies use determin-
istic structuring based methods like grids [57], space filling
curves [34], [44], or lattices [30], [50]. Since the efficiency
of the deterministic structuring methods depend on the data
distributions, the randomized processes are more adaptive and
usually more efficient. However, the data-independent hashing
methods are often inefficient, especially for short lengths of
binary codes, due to the fact that their hashing functions are
drawn independently from the data.

In data-dependent hashing methods, the hashing functions
are defined only for a preselected training dataset, which is
usually a subset of the data, and involve similarity calculations
for the training dataset. They try to fit the data distribution
to the feature space in order to group the similar items
and preserve locality. Notable examples of data-dependent

hashing methods are: Spectral Hashing [58], which is based
on spectral graph partitioning; K-means based hashing [42],
which uses K-means clustering in the generation process of
the binary codes; Subspaces Product Quantization [31], which
decomposes the feature space into a Cartesian product of low-
dimensional subspaces, each subspace is quantized separately,
and the asymmetric distances are computed between the query
and the quantized codes with the help of lookup tables;
Kernelized Locality-Sensitive Hashing [36], which generalizes
hashing to any Mercer kernel; Semi-Supervised Hashing [56],
which exploits label information of the training set; Multi-
ple Feature Hashing [53], which combines multiple features
(i.e., global feature HSV color histogram and local visual
features LBP) of videos, in order to learn the hash codes of
the training keyframes and a series of hash functions in a
joint framework; Iterative Quantization [20], which minimizes
quantization error by rotating zero-centered PCA projected
data; Joint Optimization [24], which jointly optimizes both
search accuracy and search time using compact binary codes;
Random Maximum Margin Hashing [33], which constructs
hash functions by using large margin classifiers with arbitrarily
sampled data points that are randomly separated into two sets.

Efficiency improvements of data-dependent methods over
independent ones have been shown in several studies [31],
[58], on condition that limited hash code sizes are considered.
This happens because by increasing the number of hash func-
tions there is a lack of independence between them. For exam-
ple, Spectral Hashing [58] outperforms many data-independent
methods for small code sizes, but it is outperformed by the
data-independent method of Shift-Invariant Kernel Hashing
[45] for sizes over 64 bits. Moreover, in all data-dependent
hashing methods there is often a significant preprocessing cost
for learning the selected training dataset and for generating the
binary codes.

In all aforementioned hashing methods, the most common
technique for assigning the binary codes is to partition the
metric space of the projected data points with appropriate
hyperplanes and set two different codes for each side. In a
very recent approach, Spherical Hashing [25], hypershperes
(instead of hyperplanes) are used, so as to partition the data
points and to compute the binary codes. In the experimental
evaluation of [25], authors showed that Spherical Hashing
outperforms other state-of-the-art hashing methods.

III. THE PROPOSED MSIDX METHOD

The key idea of the proposed MSIDX method is: to reorder
the storage positions of images’ descriptors according to value
cardinalities of their dimensions, by performing a multiple sort
algorithm, in order to increase the probability of having two
similar images in storage positions that do not differ more
than a specific global constant range, denoted by a parameter
W .

In particular, a dataset of images’ descriptor vectors, which
are stored either in the memory or in the disk, are reorganized
based on the value cardinalities of the dimensions. Thus, each
new image is inserted and allocated in a specific storage
position in the existing dataset of descriptor vectors. The
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MSIDX approximate indexing scheme is designed to support
the following functionalities: (a) preprocessing for indexing
and storing of a pre-existing image dataset in the form of
high dimensional descriptor vectors, (b) insertion for real-
time indexing and storing of a new (non-existing) image
in the form of descriptor vector, (c) query processing for
searching of the top-k similar images to a posed image query
and (d) deletion for removing already indexed images. In the
rest of this section, the respective algorithms are described,
accompanied with their implementation details and complexity
analysis, followed by the space requirements of the MSIDX
indexing scheme.

A. Preprocessing Algorithm

Algorithm Description
Let N be the total number of the available images oj ,

j = 1, ..., N , from which a set S of D-dimensional descriptor
vectors is extracted with values vij , i = 1, ..., D. From now on
when we are referring to an image oj we imply its descriptor
vector, thus oj ∈ S. After loading the dataset S in memory,
each D-dimensional vector is stored in a specific storage
position posj , which is equal to a pointer, linked to a physical
memory address. According to the position posj , each image
oj is connected with the previous oj−1 and the next stored
image oj+1 in a doubly linked list L.

The outline of the MSIDX preprocessing algorithm is
depicted in Figure 1. In line 1, the value cardinality ci is
computed for each dimension i, where three separate cases
can be identified depending on the descriptor value type.

(a) Integer values: In case that the values are integer, only
the different values are taken into account, and the total
count is the value cardinality ci.

(b) Normalized real values: In case that the values are
real, produced by value normalization techniques of
previously integer values as described in Section I-A,
the calculation strategy of the value cardinality ci is the
same with the case of integer values, due to the restricted
value cardinality of the original integer-valued descriptor
vector.

(c) Real values: In case that the extraction process of the
descriptor generates real values, the calculation strategy
of the value cardinality ci is performed after limiting
the decimal accuracy of the descriptor values, as in
the case of integer values. However, in practice, the
extracted descriptors have a limited decimal accuracy,
usually between 4 and 6 decimals, due to space and
computational restrictions. It is stressed that in our
experiments no additional value quantization was used.

In line 2, the priority index pi is created, based on the value
cardinalities ci. Since dimensions with high value cardinalities
correspond to dimensions with high discriminative power, the
value cardinalities ci are sorted in a descending order. The
priority index pi is the position of the value cardinality ci in the
sorted value cardinalities. Thus, high value cardinality ci of the
dimension i corresponds to high priority index pi. Then, in line
3, except for the strong ordering criterion of value cardinalities
ci, an additional ordering criterion ex could be used, stored

into the extra dimension D + 1 of image’s oj descriptor
vector. Therefore, in line 4, a specific priority index pk (with
k = D + 1) is computed for the extra dimension D + 1. It is
important to note that the steps in lines 3 and 4 are optional
and the calculation of the values ex in the extra dimension
D + 1 and its respective priority index pk are completely
free to be selected according to the requirements of different
domains and applications. For example, an aggregation of
the descriptor vector values could be used in the optional
dimension D + 1 to enhance the similarity/distance between
the images. Consequently, in case of defining a high priority
index pk for the optional dimension D+1, the images will be
reordered based primarily on this aggregation. In line 5, the
multiple sort algorithm is performed in the storage positions
of images posj according to the calculated dimensions priority
indices pi. In line 6, the reordered dataset S′ is returned, while
the images’ posj positions and their interconnections (posj−1,
posj+1) are updated in the doubly linked list L.

Algorithm Preprocessing-MSIDX(S)
Input: S = the set of N D-dimensional descriptor vectors
Output: S′ = the multiple-sorted set

01a. compute value cardinalities ci, of the dimensions
01b. i = 1, ..., D of dataset S.
02a. sort the value cardinalities ci descending,
02b. create a priority index pi on dimensions, i = 1, ..., D,
02c. based on the sorted value cardinalities.
03a. [optional] calculate ex, for each image oj ∈ S,
03b. j = 1, ..., N , store it in an extra dimension D + 1.
04a. [optional] define a specific priority index pk,
04b. with k = D + 1 for the ex values.
05a. multiple sort the N images, using the pi order
05b. in all dimensions.
06a. update the positions in L and
06b. return the multiple-sorted dataset S’.

Fig. 1. MSIDX preprocessing algorithm.

Implementation Details and Complexity Analysis
For each dimension, the value cardinality and the respective

priority index are calculated in O(N logN), using a common
set structure (binary tree, heap, etc.). Therefore, a complexity
O(D ·N logN) is required, to compute the value cardinality
and the priority index for all dimensions. The multiple sort
procedure is performed by the quick sort algorithm, based on
the comparative function of Figure 2, with complexity O(D ·
N logN). Summarizing, the total complexity of the MSIDX
preprocessing algorithm is O(D ·N logN).

B. Insertion Algorithm

Algorithm Description
Since S′ is reorganized based on the preprocessing algo-

rithm, the MSIDX scheme supports insertions of new images,
according to the algorithm depicted in Figure 3. In line 1, the
optional value ex of the new image onew is calculated and in
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Function Compare-MSIDX(image oa, image ob)
Input: oa, ob: D-dimensional descriptor vectors
Output: 1 (if oa > ob), -1 (if oa < ob), 0 (if oa = ob)

01. vi = value of oa in dimension i = 1, ..., D.
02. yi = value of ob in dimension i = 1, ..., D.
03. for i = 1 to D
04. if vi > yi then return 1
05. if vi < yi then return -1
06. end-for
07. return 0

Fig. 2. The compare function for the multiple sort.

line 2 the storage position posnew is allocated for inserting
the new image onew to S′, by using the compare function of
Figure 2. In line 3, the new image onew is inserted into the
allocated position posnew, while the respective interconnection
(posnew−1, posnew+1) is updated in the doubly linked list L,
and in line 4, the updated dataset S′′ is returned.

Algorithm Insert-MSIDX(image onew)
Input: onew the new image in the form
of D-dimensional descriptor vector
Output: the updated dataset S′′

01a. [optional] compute the value ex of the optional extra
01b. dimension for image onew.
02a. allocate the storage position posnew using the same
02b. compare function in Figure 2.
03a. insert the image onew into the allocated position posnew
03b. and update the positions in L
04. return the updated dataset S′′.

Fig. 3. MSIDX insertion algorithm.

Implementation Details and Complexity Analysis
The optional value ex of the new image onew is computed

instantly from its descriptor vector values in O(1). Therefore,
the complexity of the insertion algorithm solely depends on the
allocation method for detecting the storage position posnew
for inserting the new image onew to the organized dataset
S′. There are two possible options for implementing the
allocation method: (a) using an insertion-sort method with
O(N) complexity, which is not suitable for a large scale S′ or
(b) running the multiple quick sort algorithm in S′, by adding
the new image onew to the last storage position of S′. The latter
method outperforms the former, since S′ is already multiple
sorted based on the value cardinalities ci of the dimensions
and thus, few swaps are required to allocate the new image’s
final storage position posnew. In particular, the complexity of
the insertion algorithm depends on the distribution type that
the values vij (with i = 1, ..., D and j = 1, ..., N ) follow
within the dimensions. If the values vij follow a near uniform

distribution, then an average complexity of O(D · logN) is
required for the insertion algorithm. On the contrary, if the
values vij follow skewed distributions, then the worst case
complexity can reach O(D · N logN). To avoid the latter,
a binary search approach over the values vij is performed,
before the insertion algorithm starts, by searching in each
dimension i according to the priority index pi. Therefore, the
insertion position posnew of the new image is allocated in
O(D · logN) whether the values vij follow a uniform or a
skewed distribution, resulting in real-time complexity of the
insertion algorithm.

C. Query Processing Algorithm

Algorithm Description
The query processing algorithm of MSIDX is presented in

Figure 4. It is divided into the following parts: (a) in lines 1-3,
the query image oq is inserted into the dataset S and its storage
position posq is allocated; (b) in lines 4-15, the distances
between the images that lie within W next and W previous
storage positions from the allocated storage position posq are
calculated and consequently, the IDs of these images denoted
by tn (with n = 1, ..., 2W ) and their corresponding distances
from oq are inserted into a minimum-heap structure H; (c) in
lines 16-20, the top-k images are retrieved and removed from
the top of the heap H, constituting the results set R.

More specifically, line 1 checks if the query image oq is
already stored in the dataset S and in line 3, the storage
position posq is allocated. Otherwise, the insertion algorithm
of Figure 3 starts to index the query image oq to the dataset S
and the respective storage position posq is allocated. In line 2,
the set R and the minimum-heap H are initialized. The set R
returns the IDs of the top-k similar images to the posed query
image oq , while the minimum-heap H is a structure prioritized
by the computed distances d between the inserted images tn
in H and the query image oq . Therefore, the image t1 located
on the top of the heap H, has always the minimum distance
from oq . In Line 4, the main loop starts, where the 2W closest
images’ positions are retrieved from the reorganized dataset S,
constrained to 2W > k. In lines 5-6, each image oa that lies in
a relative position posq−j > 0, j = 1, ...,W is detected and in
line 7 its distance from the query image oq is calculated, based
on the predefined distance measure d (e.g. L1, L2, squared-
L1, etc.). In line 8, the ID of the detected image oa and the
corresponding computed distance d(oq, oa) are inserted into
the heap H. Respectively, in lines 10-11, each image ob that
lies in a relative position posq + j ≤ N, j = 1, ...,W is
detected and in line 12 the distance from the query image
oq is calculated. In line 13, the ID of the detected image ob
and the corresponding computed distance d(oq, ob) are inserted
into the heap H. Finally, in line 16-20 the top-k images tn are
retrieved and removed from the top of the heap H, constituting
the results set R.
Implementation Details and Complexity Analysis

The complexity of the query processing algorithm is cal-
culated as the aggregation of its constituting parts (a) allo-
cating the storage position posq (lines 1-3), (b) building the
minimum-heap structure H (lines 4-15) and (c) generating the
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Algorithm MSIDX Query Processing Algorithm(oq , k, W )
Input: oq the query image in the form
of a D-dimensional descriptor vector,
k the number of top results,
W the search radius
Output: the top-k results set R

01a. if the image oq does not exist in the dataset S then
01b. run the insertion algorithm in Figure 3.
02. set R = ∅ , min-heap H = ∅ .
03. allocate the position posq of the query image oq in S.
04. for j = 1 to W
05. if posq − j > 0 then
06. oa = image in position posq − j.
07a. compute the distance d(oq, oa)
07b. using a predefined distance measure d.
08. insert the ID of oa into H with distance d(oq, oa).
09. end-if
10. if posq + j ≤ N then
11. ob = image in position posq + j.
12a. compute the distance d(oq, ob)
12b. using the distance measure d.
13. insert the ID of ob into H with distance d(oq, ob).
14. end-if
15. end-for
16. for n = 1 to k
17. retrieve and remove the image tn located in top of H.
18. R = R ∪ {tn}.
19. end-for
20. return the top-k results set R.

Fig. 4. MSIDX query processing algorithm.

result set R (lines 16-20). More precisely, in lines 1-3, the
complexity of allocating the position posq is O(D · logN),
based on the complexity analysis of the insertion algorithm in
Section III-B.

In lines 4-15, the 2W closest images’ positions are se-
quentially retrieved, which are located below and above the
query image positions posq in O(2W · D). Additionally,
since 2W image IDs are inserted into the heap H, each
image’s tn insertion into the heap is performed in O(log 2W ).
However, the complexity can be improved by maintaining into
the heap only the k most similar images to the query oq ,
while varying the parameter W . In particular, let oc be the
currently candidate image for being inserted into the heap H,
while tk is the image with the k largest distance from the
query oq , which is currently stored into the heap H. If the
condition d(oq, oc) < d(oq, tk) does hold, then oc is inserted
into the heap and tk is removed, otherwise oc is discarded.
Therefore, k images are maintained into the heap H and thus,
the complexity of each image tn insertion into the heap is
reduced from O(log 2W ) to O(log k). As a result, the total
complexity of the main loop (lines 4-15) is O(2W ·D · log k).

In lines 16-20, k images are retrieved and removed from the

top of the heap in O(k). Summarizing, the final complexity of
the MSIDX query processing for retrieving the top-k similar
images to a posed query image oq is:

O(D · logN) +O(2W ·D · log k) +O(k)

Thus, the value of the parameter W plays an important role
in the total complexity of the MSIDX query processing algo-
rithm. For this reason, deterministic and probabilistic analyses
are presented in Section IV to set the expected bounds of W ,
in order to ensure high retrieval accuracy and low complexity
of the MSIDX query processing algorithm.

D. Deletion Algorithm

According to the preprocessing and the insertion algorithms,
each image oj is stored into a specific position posj in the
form of a pointer, linked to a physical memory address. The
complexity of allocating the position posj is O(D · logN),
based on the complexity analysis of the insertion algorithm in
Section III-B. Thus, the deletion of oj is performed in O(D ·
logN), by retrieving the physical memory address posj and
clearing its content.

E. Space Requirements

In order to support the aforementioned functionalities, the
MSIDX framework has the following space requirements: (a)
O(D ·N) space for loading the dataset S, since it consists of
N images in the form of D-dimensional descriptor vectors,
(b) O(N) space for storing the N positions posj in the form
of address pointers, (c) O((D + 1) · N) space (in case of
calculating the optional value ex or O(D ·N), otherwise) for
computing the value cardinalities in the preprocessing algo-
rithm and (d) O(k) space for the query processing algorithm,
since a temporary space for constructing the heap structure H
is required, which stores the IDs and the computed distances
of the top-k retrieved images, while varying the parameter W .
Summarizing, the total space requirements are

O(D ·N) +O(N) +O((D + 1) ·N) +O(k)

However, in large scale datasets it does hold that N ≫ k and
therefore, the total space requirements are O(D ·N), equal to
the space requirements for storing the dataset S.

IV. MATHEMATICAL FORMULATION OF MSIDX

In this section a deterministic and probabilistic analysis is
presented to set the expected bounds of the W parameter.

A. Deterministic Analysis

Let S’ be the reordered D-dimensional dataset of N images
oj , with j = 1, ..., N , produced by the preprocessing and the
insertion algorithms. As already described in Section III-A,
the cardinalities have been sorted in a descending order,
since dimensions with high value cardinalities correspond
to dimensions with high discriminative power. Thus, let c′i,
with i = 1, ..., D, be the sorted value cardinalities where:
c′1 ≥ c′2 ≥ ... ≥ c′D.
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Let vij , with j = 1, ..., c′i, be the descriptor vector’s values
stored in each dimension. Let also g be the cardinality of
the equal-value groups, produced by performing multiple sort
in the dimensions. The cardinality of the group in the i-th
dimension is denoted by g(v1,h1 |v2,h2 |....|vi,hi), where vj,hj

are the corresponding values of the descriptor vectors of the
images in dimensions j = 1, ..., i (1 ≤ hj ≤ c′j).

A detailed example is presented in Figure 5, which depicts
N = 44 images oj , j = 1, ..., 44, of D dimensions. For the
sake of simplicity, let us examine only the first three dimen-
sions. The first, second and third dimensions have value car-
dinalities 4 (values v11, v12, v13, v14), 3 (values v21, v22, v23)
and 2 (values v31, v32), respectively. Based on the multiple
sort algorithm, the images are reorganized by following the
hierarchy of equal values, as depicted in Figure 5. Examples
of equal value group cardinalities g are: (i) g(v12) = 11
(positions from 16 to 26), (ii) g(v14|v21) = 4 (positions from
36 to 39), (iii) g(v13|v22|v32) = 3 (positions from 31 to 33),
(iv) g(v12|v23|v32) = 2 (positions 25 and 26).

In the sequel of the analysis, we will focus on the case of
the top-1 query (k = 1). However, the analysis can be easily
generalized for the case of top-k query (k > 1). Let oq be
the query image, where its descriptor vector has already been
indexed into the dataset S′, following the MSIDX insertion
algorithm. Let oa be the top-1 similar image to oq , where,
their minimum distance is:

d(oa, oq) = min
o∈S′

d(o, oq) (1)

Each distance d transposes the above minimization to a
system of possible minimizations over the absolute differences
in each dimension. For example, if d is calculated by using
the L2 distance, then:

d(oa, oq) = min
o∈S′

d(o, oq) =

= min
o∈S′

√√√√ D∑
i=1

(o.xi − oq.xi)2 ≤ min
o∈S′

D∑
i=1

|o.xi − oq.xi| (2)

To minimize the above sum, the absolute differences
|o.xi − oq.xi|, i = 1, ..., D, have to be minimized, respec-
tively. The best case scenario is when the differences are zero
in some dimensions i (oa.xi = oq.xi), and the remaining
differences |oa.xi − oq.xi| are as minimum as possible. Since
in the dimensions, there are relative low value cardinalities
(compared to the dataset size, i.e. c′i ≪ N,∀i = 1, ..., D), the
probability of having many zero differences is high. This fact
constitutes the motivation for performing multiple-sort in the
preprocessing algorithm, since the selection of the dimensions
priority is based on the descending order of their respective
value cardinalities. In particular, the descending order criterion
helps in minimizing the cardinalities of the groups g, since
the hashing of the equality groups g is as maximum as
possible and therefore, images with equal values in the first h
(2 ≤ h ≤ N ) groups have position-distances as minimum as
possible. More specifically, the total number of the groups g

that can be defined over the dimensions is:

c′1 + c′1 · c′2 + c′1 · c′2 · c′3 + . . . . . . =
D∑
i=1

i∏
j=1

c′j (3)

and since it does hold that c′1 ≥ c′2 ≥ . . . ≥ c′D the above sum
is maximized and consequently, the hashing of the groups g
is maximum.

Moreover, let h be the dimension (h ≤ D) in which the
top similar image oa has the first non-zero difference with the
query image oq , while the images oa, oq have equal values in
the first h−1 dimensions and different values in the dimension
h according to:

∀i = 1, ..., h− 1, ∃ji ∈ {1, ..., c′i} : oa.xi = oq.xi = viji

∧ oa.xh ̸= oq.xh (4)

In the rest of the dimensions (next to the h-th dimension), the
image oa may have more zero or smaller non-zero differences,
but due to the multiple-sort, based on the dimension priority,
oa position-distance from the query image oq is exclusively
dependent on the first h dimensions, according to groups g
over the data. More specifically, the position-distance between
oa and oq (denoted by dpos) satisfies the following inequality:

dpos(oa, oq) ≤ g(v1,j1 |v2,j2 | . . . |vh−1,jh−1
)− 1 (5)

To ensure that oa will be retrieved as the top similar image to
oq , the value of the parameter W is constrained according to:

dpos(oa, oq) ≤ g(v1,j1 |v2,j2 | . . . |vh−1,jh−1
)− 1 ≤ W (6)

In the example of Figure 5, the query image oq and the
top similar image oa have equal values in their first two
dimensions, while the values in their third dimension are
different (h = 3): oa.x1 = oq.x1 = v12, oa.x2 = oq.x2 = v23
and oa.x3 = v32 ̸= v31 = oq.x3. Therefore, according to (6),
the constraints of the W parameter are:

dpos(oa, oq) ≤ g(v12|v23)− 1 ≤ W ⇔

⇔ W ≥ g(v12|v23)− 1 = 5− 1 = 4 (7)

Consequently, the constraint of W ≥ 4 is necessary, in
order to ensure that oa will be retrieved as the top similar
image to oq . For example, in Figure 5, oq is allocated in
position 23 and oa in position 25 and their position-distance
is dpos(oa, oq) = 2 < 4. Since oq could be allocated only in
positions 22, 23, 24 and oa only in positions 25, 26 (to comply
with the ordering criterion of the multiple sort algorithm), their
maximum position-distance cannot exceed |26− 22| = 4.

Since it is infeasible to predefine in which group the top
similar image is located, a generalization of (6) follows. More
specifically, a general bound of W is calculated by computing
the maximum value between the equality group cardinalities
g over the dimension h− 1, according to:

W ≥ max
1≤j1≤c′1
1≤j2≤c′2......

1≤jh−1≤c′
h−1

{g(v1,j1 |v2,j2 | . . . |vh−1,jh−1
)} − 1 (8)

Therefore, the bound of W is more general and independent
from the specific group cardinalities and position allocations
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p 1 p 2 p 3 p D-1 p D

o 1 ………….. ………….. ………….. ………….. ………….. …………..

o 2 v 31

o 3 ………….. ………….. ………….. ………….. ………….. …………..

o 4 v 21

o 5 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 6

o 7 ………….. ………….. ………….. ………….. ………….. …………..

o 8 v 11 v 31

o 9 v 22 ………….. ………….. ………….. ………….. ………….. …………..

o 10 v 32

o 11 ………….. ………….. ………….. ………….. ………….. …………..

o 12

o 13 v 31 ………….. ………….. ………….. ………….. ………….. …………..

o 14 v 23

o 15 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 16 v 31

o 17 ………….. ………….. ………….. ………….. ………….. …………..

o 18 v 21 v 32

o 19 ………….. ………….. ………….. ………….. ………….. …………..

o 20 v 31

o 21 v 12 v 22 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 22

o q   o 23 v 31

o 24 v 23

o a   o 25 v 32

o 26

o 27 v 31 ………….. ………….. ………….. ………….. ………….. …………..

o 28 v 21 v 32

o 29 ………….. ………….. ………….. ………….. ………….. …………..

o 30 v 31

o 31 v 13 v 22 ………….. ………….. ………….. ………….. ………….. …………..

o 32 v 32

o 33 ………….. ………….. ………….. ………….. ………….. …………..

o 34 v 23 v 31

o 35 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 36

o 37 v 31 ………….. ………….. ………….. ………….. ………….. …………..

o 38 v 21

o 39 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 40 v 14 v 22 v 31

o 41 v 32 ………….. ………….. ………….. ………….. ………….. …………..

o 42

o 43 v 23 v 31 ………….. ………….. ………….. ………….. ………….. …………..

o 44 v 32

Fig. 5. MSIDX analysis example.

of images oa and oq . However, the unique constraint is the
condition (4), based on which the dimension h has to be
predefined.

Let gi be the aforementioned bound of W for each dimen-
sion i = 1, ..., D. In the example of Figure 5, the general
bound of W is calculated according to (8). By considering
that h = 3 and the equality group cardinalities g of the second
dimension are equal to {7, 4, 4, 4, 2, 5, 2, 5, 2, 4, 2, 3}, then:

g2 = max
1≤j1≤c′1
1≤j2≤c′2

{g(v1,j1 |v2,j2)} − 1 =

= max{7, 4, 4, 4, 2, 5, 2, 5, 2, 4, 2, 3} − 1 = 7− 1 = 6 (9)

Therefore, the constraint of W ≥ 6 must be satisfied in order
to ensure that oa will be retrieved as the top similar image to
oq .

Consequently, the D maximum group cardinality values gh
over the dimensions h = 1, ..., D are calculated according to
(9), constituting the available different lower bounds for the
W parameter. Therefore, in the preprocessing algorithm, the
calculation of the excepted bounds can be performed for the
reordered set S’ in O(D · N). Additionally, in the insertion
algorithm, any new insertion updates instantly the values of
gh. In the example of Figure 5, the bounds of the parameter

W for the first three dimensions according to (9) are: g1 =
14, g2 = 6, g3 = 4, respectively. Thus, all three selections
for the W parameter lead the MSIDX query processing to
successfully report the top similar image oa.

B. Probabilistic Analysis

According to the probabilistic analysis that follows, a further
generalization of the expected bound for the parameter W is
provided, by examining two different cases: (a) the dimensions
are statistically independent and the probability distributions of
the values in each dimension are predefined and (b) dependen-
cies between the dimensions do exist and the joint probability
distribution for all dimensions is predefined. For both cases,
the computations of the group cardinalities are not required,
since they can be estimated by the probability calculations.

Let Xi, i = 1, ..., D be random variables representing
the values of the descriptor vectors of the images in each
dimension. Following the more general case, in which depen-
dencies between the dimensions do exist, let f(x1, x2, ..., xD)
be the joint distribution function (joint PDF) of all Xi random
variables. Therefore, for a predefined query image oq , the
probability of finding a top similar image oa, while complying
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with the condition (4), is:

P (X1 = v1,j1 ∩X2 = v2,j2 ∩ . . . ∩Xh−1 =

= vh−1,jh−1
) = f(v1,j1 , v2,j2 , . . . , vh−1,jh−1

) (10)

where f(v1,j1 , v2,j2 , . . . , vh−1,jh−1
) is the corresponding value

of the marginal joint PDF (note that only h−1 ≤ D arguments
are considered), which can be derived from the joint PDF. If
the variables Xi are continuous, then :

f(x1, x2, . . . , xh−1) =

∫ ∞

−∞

∫ ∞

−∞
. . .

. . .

∫ ∞

−∞
f(x1, x2, . . . , xh−1, . . .) dxh dxh+1 . . . dxD (11)

If the variables Xi are discrete, then:

f(x1, x2, . . . , xh−1) =

=
∑
xh

∑
xh+1

. . .
∑
xD

f(x1, x2, . . . , xh−1, . . .) (12)

For example, CEDD [9] descriptors contain integers in the
range [0, 7], thus the variables Xi are discrete, whereas the
GIST [41] descriptors contain real numbers, thus the variables
Xi are continuous.

Therefore, the corresponding group cardinality g can be
efficiently approximated by the following expected value:

g(v1,j1 |v2,j2 | . . . |vh−1,jh−1
) ≈

≈ N · f(v1,j1 , v2,j2 , . . . , vh−1,jh−1
) (13)

Thus, the expected bound of the parameter W is calculated
according to (6), as:

W ≥ N · f(v1,j1 , v2,j2 , . . . , vh−1,jh−1
)− 1 (14)

According to (14), the expected bound of the parameter W
is completely independent from the group cardinalities g, since
it can be calculated immediately from the marginal joint PDF
distribution f and the first h−1 dimensions of the query image
oq . However, in real-world image datasets, despite the fact that
the joint PDF distribution is unknown, it can be efficiently
approximated following the methodology of [17], but such
analysis is out of the scope of this paper.

Moreover, an interesting special case is when the dimen-
sions are statistically independent and the probability distri-
butions of the values in each dimension are predefined. Let
f(xi) be the probability density function of the variable Xi

in dimension i, for i = 1, ..., D. For a predefined query image
oq , the probability of finding a top similar image oa, which
satisfies the condition of (4), is calculated by the statistical
independence between the variables Xi as follows:

P (X1 = v1,j1 ∩X2 = v2,j2 ∩ . . . ∩Xh−1 = vh−1,jh−1
) =

= P (X1 = v1,j1)·P (X2 = v2,j2)·. . .·P (Xh−1 = vh−1,jh−1
) =

= f(v1,j1) · f(v2,j2) · . . . · f(vh−1,jh−1
) =

h−1∏
i=1

f(vi,ji) (15)

Thus, similar to the previous general case, the expected bound
of the parameter W is derived as:

W ≥ N ·
h−1∏
i=1

f(vi,ji)− 1 (16)

Considering the case that all values are uniformly distributed
in each dimension, the expected bound of (16) is:

W ≥ N

c′1 · c′2 · . . . · c′h−1

− 1 (17)

This bound is an efficient estimator of the parameter W . In
the example of Figure 5 (h = 3, c′1 = 4, c′2 = 3, N = 44),
the W bound is calculated according to (17) as :

W ≥ 44

4 · 3
− 1 = 2.667 ⇔ W ≥ 3

The W parameter verifies in this case as well, that the MSIDX
query processing algorithm successfully reports the top similar
image.

V. EXPERIMENTAL EVALUATION

In this section, we present experimental results for the
proposed MSIDX method, against hashing methods, suitable
for approximate similarity search, in terms of search time,
retrieval accuracy and preprocessing requirements.

A. Datasets

The evaluation datasets in our experiments include a wide
selection of heterogeneous descriptors extracted from two dif-
ferent image collections, in order to demonstrate the generality
of the proposed methodology. All datasets are publicly avail-
able and are not subjected to any additional postprocessing,
such as quantization or normalization. The first collection is
the ImageClef Wikipedia Retrieval 2010 Collection featuring
237,434 (240K) images [61]. Global image descriptors are
publicly available for this collection, featuring CIME de-
scriptors [54] (64-dimensions), CEDD descriptors [9] (144-
dimensions) and SURF descriptors [3] (5000-dimensions). The
second image collection is a combination of the Flickr 1M
image collection and the Inria Holidays images [31]. Descrip-
tor datasets are publicly available by the TEXMEX project
team (IRISA) [1], [30] featuring two descriptor datasets of 1M
images, namely local descriptors SIFT [37] (128-dimensions)
and global descriptors GIST [41] (960-dimensions).

CIME [54] (integer value type) is a border/interior classifi-
cation algorithm which classifies pixels into interior or border
and then builds a 64 bins histogram for each pixel type. The
feature space is composed of 64 dimensions. The provided
descriptor vectors have integer values in the range of [0, 63].

SURF [3] (normalized real value type) is a widely used local
descriptor, best known for the combination of its extraction
speed and its expressive power. In the dataset of [61], the
extracted descriptors from each image are vector-quantized
using the bag-of-words methodology [52]. A codebook with a
size of 5,000 words is used to map the extracted descriptors to
a global histogram. The codebook is created using a random
sample of the collection and using K-means clustering to
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define the words. The descriptor vector is further normalized
using the term frequency - inverse document frequency (tf-
idf) methodology to enhance the descriptive ability of the
descriptor. The provided descriptor vectors have real values
due to the normalization but the descriptor dimensions have a
finite value cardinality due to the finite value cardinality of the
integer values before the normalization. The final value range
is [0, 1].

CEDD [9] (integer value type) incorporates color and tex-
ture information in a histogram. The image is split into image
blocks, which are classified to 6 different texture types. Each
texture type is assigned a 24-bin histogram, where the bins are
representing a predefined set of colors in the HSV space. Every
image block classified to the specific texture type, contributes
to its respective histogram. The image block contributes to the
respective dominant color bin of the texture type it belongs.
Therefore, a 6 x 24 = 144 bin histogram is produced. In order
to render the descriptor suitable for large scale image databases
and to keep the computational power low, the information is
normalized and quantized to limit CEDD’s size to 54 bytes per
image. Each bin is normalized to the [0, 1] decimal area and
quantized to 3bits/bin. The provided descriptor vectors have
integer values in the range of [0, 7].

SIFT [37] (integer value type) is among the most popular
descriptors. SIFT descriptors were extracted with the Mikola-
jczyk [39] implementation of Hessian-affine keypoint detector.
A histogram of dominant orientations is obtained by consider-
ing pixels around a radius of each keypoint. SIFT descriptors
are robust to local affine distortion. The extracted descriptors
have a dimension of 128 bins. The provided descriptor vectors
have integer values in the range of [0, 255].

GIST [41] (real value type) is a descriptor that tries to model
the structure of the scene using a set of perceptual dimensions
(naturalness, openness, roughness, expansion, ruggedness) that
represent the dominant spatial structure of a scene. These
dimensions may be reliably estimated using spectral and
coarsely localized information. The descriptor vectors have
real values, that are further normalized, divided by the local
luminance variance. The provided descriptor vectors have 960
dimensions of real values in the range of [0, 1.0929].

We denote the datasets from the ImageClef Wikipedia
Retrieval 2010 Collection as: CIME-64d, CEDD-144d, SURF-
5000d, and the datasets from the TEXMEX project as: SIFT-
128d, and GIST-960d. For each dimension of the datasets,
the observed value cardinalities are depicted in Figure 6. The
observed value cardinalities in the datasets with descriptor
vectors of integer values (CIME-64d, CEDD-144d, SIFT-
128d) are extremely low in comparison with the dataset size
(240K for CIME and CEDD, 1M for SIFT). For CEDD-
144d and CIME-64d the cardinality is bound to 8 and 64
respectively due to the extraction process of the descriptor.
For CIME-64d the maximum observed value cardinality is 57
and the mean is 46. For CEDD-144d the maximum observed
value cardinality is 8 and the mean is 7.2. For SIFT-128d
the maximum observed value cardinality is 210 and the mean
is 168.5. Moreover, the observed value cardinalities in the
datasets with descriptor vectors of real values (SURF-5000d,
GIST-960d) are also relative low in comparison with the

corresponding dataset size (240K for SURF and 1M for GIST).
More specifically, in SURF-5000d the maximum observed
value cardinality is 20,958 (since the second max value is
4,088, the respective figure is bounded to 5,000 for illustration
purposes) and the mean is 896.5. Finally, in GIST-960d the
maximum observed value cardinality is 5,664 and the mean is
3,599.1. Therefore, in all five evaluation datasets we observe
that there are few dimensions with high discriminative power
(i.e. those that have high value cardinalities), while the rest
of dimensions have low value cardinalities, compared to the
dataset size.

B. Experiments Organization and Protocols

Following the evaluation protocol of [25] and [33], in
all our experiments we performed 1,000 test queries, which
were randomly chosen and did not participate into the train-
ing/preprocessing phase. For each query, the retrieval accuracy
is measured according to the following ratio:

Accuracy =
|Rex ∩R|

k
· 100% (18)

where, Rex is the set of the top-k results (nearest neighbor
items) retrieved by the exhaustive search (ground truth), based
on the Euclidean distance (L2), and R is the set of the top-k
results retrieved by the tested method. The final performance
of each method is measured by the mean Average Precision
(mAP), which is defined as the average retrieval accuracy of
the 1,000 performed queries.

For the data-dependent hashing methods, we used as a
training set all images from the original dataset, except those
included in the test queries (following the methodology of
[21]). Moreover, for the data-dependent hashing methods that
support multiple hash tables, we also averaged over five
random training and test partitions.

The proposed method was implemented in C++ and it is
available at [62]. All experiments were conducted in a machine
of 3GHz CPU with 8GB main memory, running Windows 7
64-bit.

Since the proposed method significantly differs from all
hashing methods, an additional rule is used in the evaluation
protocol, that deals with the query response time. The addi-
tional rule is that: “if a parameter setup in a tested method
leads to query response time greater than the search time
of exhaustive search, then the parameter setup is considered
completely inefficient and thus, further tuning is avoided”.
The performance of each tested method is measured by the
search time, which is defined as the average query response
time of the 1,000 performed queries. In the case of the
hashing methods that support multiple hash tables, we varied
the number of hash tables, to achieve the maximum retrieval
accuracy, keeping the search time lower than the respective
search time of exhaustive search. For all hashing methods
we also varied the number of bits in the binary encodings,
preserving compliance with the aforementioned rule.

C. State-of-the-art Hashing Methods

We compare our proposed MSIDX method against the
following hashing methods:
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Fig. 6. Observed value cardinalities of the dimensions in the evaluation datasets.

• LSH: Locality Sensitive Hashing [19], which projects
items through a gaussian random distribution. We used
the same implementation of LSH and parameters setup
that were used in [25]. The source code is publicly
available at [26].

• SPH: Spherical Hashing [25], which is a recent hashing
method, and it is based on a hypersphere binary em-
bedding technique. Between the two proposed variants,
Hamming Distance (HD) based and Spherical Hamming
Distance (SHD) based, we used the SHD in SPH, be-
cause based on the experimental evaluation of [25], SHD
achieves high retrieval accuracy in terms of mAP. We
used the same implementation and parameters setup that
were used in [25]. The source code is provided by the
authors of [25] and is publicly available at [26].

We also compare the proposed MSIDX method to several
state-of-the-art hashing methods for the dataset GIST-960d,
using the same parameter setups as presented in the experi-
mental evaluation of [25]:

• LSH-ZC: A variant of Locality Sensitive Hashing with
Zero Centered data points [15].

• PCA-ITQ: Iterative Quantization [20].
• GSPICA-RBF: Generalized Similarity Preserving Inde-

pendent Component Analysis with the RBF kernel [24].
• RMMH: Random Maximum Margin Hashing [33].
• LSBC: Locality Sensitive Binary Codes [45].

• SpecH: Spectral Hashing [58].

D. Impact of the W Parameter

In MSIDX, the W parameter defines a search radius from
the query image over the indexed images. Therefore, the search
window has a maximum width of 2W . Moreover, if the W
parameter is close to 0.50 (50% of the dataset size N ), then
MSIDX performs similar to the exhaustive search algorithm,
achieving accuracy equal to 100%. Additionally, several ex-
periments were conducted to examine possible aggregation
measures and priority indices, corresponding to the optional
value ex in the extra dimension. Therefore, we concluded to
the norm square of the image based on the following formula:
ex = ||oj ||2 =

∑D
i=1 x

2
ij , in order to achieve an additional 4%

mAP increase in all datasets.
In Figure 7, we present the experimental results for evaluat-

ing the performance of MSIDX by varying the W parameter.
More specifically, we performed top-k nearest neighbor search
in the 5 different datasets for k = 100, and we observed
that mAP increases significantly with respect to W , almost
following a logarithmic aggression. Note that the x-axis of the
graphs in Figure 7 is in logarithmic scale, and the observed
points (after the second value of W ) are almost collinear. The
required exhaustive search time is depicted as a perpendicular
line for each dataset in the Figures. For W close to 0.05 (only
5% of N ), a mAP of over 30% is achieved in all datasets.
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Influence of W for 100-NN queries in 240K images
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Fig. 7. Influence of the W parameter for 100-NN queries.

This is an important result because with a significantly small
search time a relative high mAP is achieved. As we present
later, none of the state-of-the-art hashing methods have similar
performance. If W is located between 0.15 and 0.20, then a
high mAP (over 70%) is achieved in all datasets, except SURF-
5000d which returns mAP between 40% and 50%. Finally, for
all datasets (except SURF-5000d), if W equals 0.25, then the
achieved mAP is close to 90%, and thus a further increase of
W over 0.25 is not required.

E. Comparison against state-of-the-art Hashing Methods

In the first set of experiments we evaluate MSIDX against
(a) LSH (as a baseline method) and (b) SPH, which outper-
forms state-of-the-art hashing methods, as already described in
Section II-C, and shown in [25]. In Figure 8, we present the
experimental results by performing 100-NN queries for CIME-
64d, CEDD-144d, SIFT-128d, SURF-5000d. Since GIST-960d
is also used in the experimental evaluation of SPH, we
performed 1000-NN queries, following the parameter setup
of [25]. In LSH and SPH we vary the number of bits in the
binary codes, and the number of the hash tables to achieve
the maximum retrieval accuracy, while always preserving the
search time less than the respective search time of exhaustive
search.

In CIME-64d, CEDD-144d, and SIFT-128d, the maximum
allowed number of hash tables for LSH and SPH is one
(denoted as 1HT), because a second hash table leads to a
search time larger than that of the exhaustive search. Note
that the required exhaustive search time is depicted as a per-
pendicular red line for each dataset in the Figures. Moreover,
the maximum allowed number of bits in the binary codes of

LSH and SPH is 128 and 256, because a further increase leads
to search time larger than that of the exhaustive search. As
expected, SPH outperforms LSH in all cases, except for the
case of SIFT-128d with 64 and 128 bits code length, where
SPH appears to have similar performance with LSH. However,
in all cases MSIDX clearly outperforms both LSH and SPH
in terms of mAP and search time. More specifically, MSIDX
achieves a mAP close to 90% with significantly less search
time than that of LSH and SPH, even if 64 bits are used
in the binary encodings. Moreover, LSH and SPH achieve a
mAP less than 40%, 50%, 20% in CIME-64d, CEDD-144d,
and SIFT-128d respectively, for the maximum allowed number
of bits. Finally, an important result is that the limited retrieval
accuracy of LSH and SPH is overcomed by MSIDX, even for
low values of W .

In SURF-5000d the required search time for exhaustive
search is high due to the existence of high dimensionality.
Thus, the maximum allowed number of hash tables for LSH
and SPH are set to 14. In all cases, MSIDX outperforms SPH
and LSH. An interesting observation is that SPH achieves
almost the same maximum mAP as MSIDX (for 256 bits code
length and 11 hash tables or for 128 bits code length and 14
hash tables). However, SPH requires a search time over 3,900
msec (close to that of the exhaustive search), whereas MSIDX
for the same mAP requires only 1,800 msec. The maximum
mAP of LSH remains close to 30% (for 512 bits code length
and 8 hash tables). Finally, an important result is that in all
cases the retrieval accuracy of SPH is exceeded by MSIDX,
for significantly lower search times.

In GIST-960d the required search time for exhaustive search
is also high, due to the existence of high dimensionality. Thus,
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mAP vs. Time for 100-NN queries in CIME-64d
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Fig. 8. Retrieval accuracy versus search time for 100-NN queries in : (a) CIME-64d, (b) CEDD-144d, (c) SIFT-128d, and (d) SURF-5000d.

the maximum allowed number of hash tables for LSH and
SPH is 5. In all cases, MSIDX significantly outperforms SPH
and LSH. SPH achieves a maximum mAP close to 50% (for
1,024 bits code length and 1 hash table), while LSH achieves a
maximum mAP close to 20% for the same settings. Clearly, the
retrieval accuracy of LSH and SPH is overcomed by MSIDX,
for low values of W and lower search time.

In the next set of experiments we further compare MSIDX
against state-of-the-art hashing methods in the GIST-960d
dataset, following the presentation scheme of [25]. In Figure
9b we show the experimental results of 1,000-NN queries in
the same bit range for the binary encodings that are also used
in [25]. In this experiment, the number of bits varies (and not
the search time), thus for MSIDX we use the corresponding W
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mAP vs. Time for 1000-NN queries in GIST-960d
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Fig. 9. Retrieval accuracy for 1,000-NN queries in GIST-960d versus: (a) search time, and (b) number of bits as presented in [25].

values that produce similar search times with SPH in the se-
lected bit range. More specifically, for 32 bits code length SPH
requires 382.14 msec, whereas MSIDX requires 376.69 msec
for W = 0.050. For 64, 128, 256, 512 bits code length SPH
requires 543.31, 788.64, 1055.92, 1536.43 msec, respectively,
whereas for W = 0.050, 0.075, 0.100, 0.150, 0.225, MSIDX
requires 556.95, 734.81, 1072.14, 1542.37 msec, respectively.
We observe that MSIDX significantly outperforms the hashing
methods in all cases, by returning for the same search time, a
minimum mAP close to 30% and a maximum mAP over 80%.

F. Preprocessing Requirements

In the last set of experiments we report the preprocessing
time requirements for MSIDX, SPH and LSH. Note that in
the requirements we do not include any I/O cost for loading
or managing the images in the disk level, considering only the
required CPU time for preprocessing, after loading all images
in main memory. More specifically:

• For MSIDX we recorded the CPU time that is required
to perform the preprocessing algorithm, described in
Section III-A.

• For SPH we recorded the CPU time that is required for
learning the spherical hashing plus the CPU time for
computing the binary codes.

• For LSH we recorded the CPU time that is required for
computing the binary codes.

In Table I the respective results are depicted. We must
note that these results are in case of one hash table. In case
that more hash tables are used, each table requires a similar
preprocessing cost. We can observe that (a) SPH requires

significantly higher preprocessing time than LSH, because the
former has the additional time/cost for learning the spherical
hashing, (b) MSIDX requires significantly lower preprocessing
time than SPH and LSH in all cases, by performing the
preprocessing algorithm, described in Section III-A and thus
avoiding to compute the binary codes, as it happens in the
case of the hashing methods.

VI. CONCLUSION

MSIDX is a promising indexing scheme, which analyzes
the image content according to the value cardinalities that
appear on the dimensions of the respective descriptor vectors.
The proposed scheme supports the desired functionalities of
modern applications, since it is capable of performing accurate
content-based retrieval in low search time and handles the
dynamic operations of insertions and deletions in real-time.
Through extensive experimental evaluation of MSIDX in five
different collections of image descriptor vectors, we showed
the superiority of the proposed indexing scheme against other
state-of-the-art hashing methods, also suitable for approximate
similarity searh. In particular, we illustrated how MSIDX pre-
serves low search time, by also shattering the glass ceiling of
the hashing method’s limited accuracy. The proposed method
is affected by the W parameter, since a trade-off between
accuracy and search time does exist, where the increase of W
results in “paying” more search time in order to achieve higher
accuracy. Since the W parameter is crucial for the performance
of MSIDX, a detailed deterministic and probabilistic analysis
was provided to set the accepted bounds of W . Furthermore,
based on the experimental evaluation, we verified that high
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CIME-64d CEDD-144d SIFT-128d GIST-960d SURF-5000d
MSIDX 3.900 4.212 20.280 24.679 29.934
LSH (64 bits) 6.146 12.595 47.142 656.025 884.374
LSH (128 bits) 12.495 25.117 94.824 1256.359 1932.208
LSH (256 bits) 25.109 50.331 189.993 2803.398 4244.286
LSH (512 bits) 50.108 100.626 380.698 6824.068 11494.833
LSH (1024 bits) 100.817 201.461 765.005 17672.179 27554.423
SPH (64 bits) 75.499 104.712 114.371 1149.372 3263.955
SPH (128 bits) 164.129 257.684 243.735 2350.713 7041.005
SPH (256 bits) 371.336 534.758 510.681 4669.377 13759.609
SPH (512 bits) 837.145 1168.819 1103.283 9405.824 28129.575
SPH (1024 bits) 2020.495 2638.818 2402.607 19186.035 58079.639

TABLE I
PREPROCESSING TIME REQUIREMENTS (IN SEC).

accuracy is achieved, even for small values of W and a further
increase of W is not required.
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