
M
l
f

P
N
a

b

c

a

A
R
R
A
A

K
E
M
L
R

1

f

(
(

h
1

Biomedical Signal Processing and Control 52 (2019) 111–119

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

jo ur nal homepage: www.elsev ier .com/ locate /bspc

ulti-lead  ECG  signal  analysis  for  myocardial  infarction  detection  and
ocalization  through  the  mapping  of  Grassmannian  and  Euclidean
eatures  into  a  common  Hilbert  space

anagiotis  Barmpoutisa,  Kosmas  Dimitropoulosb,  Anestis  Apostolidisc,
ikos  Grammalidisb,∗

Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, SW7  2AZ, United Kingdom
Visual Computing Lab., Information Technologies Institute, Center for Research and Technology Hellas, 57001, Greece
Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University, Hellas, 54124, Greece

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 19 November 2018
eceived in revised form 19 March 2019
ccepted 6 April 2019
vailable online 15 April 2019

eywords:
lectrocardiograms
yocardial infraction

inear dynamical systems
eproducing Kernel Hilbert space

a  b  s  t  r  a  c  t

Background  and  objective:  Electrocardiogram  is commonly  used  as  a diagnostic  tool  for  the  monitoring
of  cardiac  health  and  the  detection  of  possible  heart  diseases.  However,  the  procedure  followed  for  the
diagnosis  of  heart  abnormalities  is  time  consuming  and  prone  to  human  errors.  Thus,  the  development  of
computer-aided  techniques  for  the  automatic  analysis  of electrocardiogram  signals  is  of vital  importance
for the  diagnosis  and  prevention  of heart  diseases.  The  most  serious  outcome  of coronary  heart  disease
is  the  myocardial  infarction,  i.e., the  rapid  and  irreversible  damage  of  cardiac  muscles,  which,  if  not
diagnosed  and  treated  in  time,  continues  to damage  further  the  myocardial  structure  and  function.  In this
paper  we  propose  a  novel  approach  for  the  automatic  detection  and  localization  of  myocardial  infarction
from  multi-lead  electrocardiogram  signals.
Methods:  The  proposed  method  initially  reshapes  the  multidimensional  signal  into  a  third-order  tensor
structure  and  subsequently  extracts  feature  representations  in both  Euclidean  and  Grassmannian  space.
In addition,  two different  methods  are  proposed  for the  mapping  of the two  different  feature  represen-
tations  into  a common  Hilbert  space  before  the final  classification  of  signals.  The  first  approach  is  based
on  the  mapping  of  both  Grassmannian  and  Euclidean  features  in  a Reproducing  Kernel  Hilbert  Space
(RKHS),  while  the  second  one  attempts  to  initially  apply  Vector  of Locally  Aggregated  Descriptors  (VLAD)
encoding  directly  to  Grassmann  manifold  and  then  concatenate  the  two VLAD  representations.
Results:  For  the evaluation  of  the  proposed  method,  we  have  conducted  extensive  tests  using  a publicly
available  dataset,  namely  PTB  Diagnostic  ECG  database,  containing  549  multi-lead  ECG  data  recordings
from  290  subjects  and  from different  diagnostic  classes.  The  method  provides  an  excellent  detection  rate
of  100%,  and  localization  rate, i.e.,  100% with  the  first  fusion  method  and  99.7%  with  the  second  one.

Conclusions:  The  Experimental  results  presented  in  this  paper  show  the  superiority  of  the proposed
methodology  against  a number  of state-of-the-art  approaches.  The  main  advantage  of  the  proposed
approach  is that  it exploits  better  the  intercorrelations  between  signals  of  different  ECG  leads,  by
extracting  feature  representations  that  lie in  different  geometrical  spaces  and  contain  complementary
information  with  regard  to  the dynamics  of signals.
. Introduction
Cardiovascular diseases (CVDs) are related to a number of
actors preventing the flow of blood to heart or brain and are con-
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sidered as the number one cause of death globally [1]. In severe
conditions, deaths are due to the occlusion of the coronary artery
caused by the rupturing of atherosclerotic plaques [2], something
that constitutes the main pathogenesis for the majority of Myocar-
dial Infarctions (MI). More specifically, the MI  is one of the five main
manifestations of coronary heart disease [1] and occurs when the

blood flow decreases or stops to a part of the heart, causing dam-
age to the heart muscle. Myocardial infarction can be recognized
by clinical symptoms and features, including elevated values of
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iochemical markers (biomarkers) of myocardial necrosis and by
maging [3].

Recent advances in digital diagnostic technology can contribute
ignificantly to the detection of even minor MI  events of car-
iac patients effectively. Towards this direction, electrocardiogram
ECG) is an important tool for doctors, providing vital information
ith regard to the function and rhythm of human heart [4]. ECG

ignals are used for the diagnosis of cardiac symptoms and the
etection of a variety of heart diseases like myocardial infarction
MI), cardiac dysrhythmias and pulmonary embolism. More specif-
cally, MI  produces changes in the ECG signal appearing T waves
bnormally high, longer than normal QT intervals and abnormal
levation of ST segment [5]. As the nature and amplitude of P, Q, R,
, T waves in the ECG signals changes depending on the lead, the
se of multiple ECG leads is required for an accurate analysis. Dif-
erent types of MI  can be observed in specific leads depending on
he location of infarction in the myocardium.

Nowadays, to overcome time and reliable limitations of man-
al analysis of ECGs, several computer-aided signal processing
ethods have been proposed in order to detect and localize
I from ECG signals [6]. As ECG signals can be corrupted by

nwanted interferences (e.g., power line interference, electrode
ontact noise, instrumentation noise, etc.), an important prepro-
essing step before their analysis is the signals denoising procedure.
or this reason, several approaches have been proposed aiming to
enoise ECG signals, facilitating their accurate interpretation. More
recisely, for this purpose, combinations of empirical mode decom-
osition and variational mode decomposition with discrete wavelet
ransform [7] and constrained least squares optimization have been
sed [8,9]. More recently, Padhy and Dandapat [10] employed a
igh-pass filter and a “Zero-phase forward and reverse digital fil-
er” in order to remove baseline-wander. Then, to accurately extract
eatures from biomedical and ECG signals, many researchers have
sed discrete wavelet transform (DWT) techniques [11–13], as
WT  has been proved an efficient tool for the analysis of this kind
f signals. More specifically, Zhao and Zhang [14] proposed the
se of wavelet transform and support vector machines, while for
he estimation of subtle changes of ECG signals, Jayachandran [15]
tilized the multiresolution properties of DWT  to identify char-
cteristic points in ECG signal and computed the entropy in the
avelet domain. On the other hand, other researchers [16] have
roposed the use of Fourier harmonic phases of the ECG data, which

s advantageous in terms of computational simplicity.
However, the majority of the aforementioned techniques is

ased on the analysis of single-lead ECGs instead of multi-lead
CG (MECG) signals. In [17], the authors presented an automatic
etection and localization approach of myocardial infarction (MI)
sing K-nearest neighbor (KNN) classifier. Specifically, time domain
eatures of each beat in the ECG signal, which are indicative of

I,  such as T wave amplitude, Q wave and ST level deviation are
xtracted from 12 leads ECG. In another research work, Sharma,
t al. introduced a novel technique based on a multiscale energy
nd eigenspace (MEES) approach for the detection and localiza-
ion of MI  [18]. Furthermore, Padhy and Dandapat proposed a

ethod for MI  detection and localization where higher-order sin-
ular value decomposition was applied to a third-order MECG
ensor for dimensionality reduction [19], while for the detection
nd localization of MI  a multi-class SVM classifier was used.

Recently, deep learning networks have been employed in the
utomated classification of ECG signals and detection of numer-
us heart diseases [20,21]. For MI  detection, Acharya et al. [5], used

 11-layer deep CNN algorithm for the detection of MI  using ECG

ulti-lead signals with and without noise. Furthermore, Liu et al.

22], used a deep convolution neural network (CNN) using elec-
rocardiogram (ECG) signal from the lead II and taking 3-s signal
egments as input. Although these methods do not rely on the
ssing and Control 52 (2019) 111–119

extraction of handcrafted features, the training of complex deep
learning networks requires the creation of large datasets for the
accurate definition of their parameters.

Inspired by the analysis of multidimensional evolving signals
through DWT  and Linear Dynamical Systems (LDS), in this paper,
we propose a novel approach for MI  detection and localization that
exploits better the inter-correlations between signals of different
ECG leads by extracting feature representations that lie in different
geometrical spaces and contain complementary information with
regard to the dynamics of signals. LDSs have been successfully used
in the past in a broad range of applications in engineering (e.g.,
dynamic texture analysis [23], human action recognition [24], and
grading of invasive breast carcinoma [25]), however to the best
of our knowledge this is the first time that higher-order LDSs are
used for the modeling of multi-lead ECG signals. In addition, we
propose two  different fusion approaches for mapping the extracted
feature representations into a common Hilbert space. The proposed
approaches can also be applied to other application fields, in which
the fusion of feature representations that belong to different geo-
metrical subspaces is required. More specifically, the contributions
of this work can be summarized in the following aspects:

• We introduce a novel methodology for automated myocardial
infarction detection and localization, aiming to improve classifi-
cation accuracy by fusing different feature representations with
complementary information into a common Hilbert space. The
proposed methodology has been benchmarked in a popular pub-
licly available dataset with favorable results.

• In order to exploit the hidden beat and lead correlations, we
propose the modeling of multi-lead ECG signals through a higher-
order LDS and the projection of LDS parameters to a Grassmann
manifold.

• Moreover, we extract feature representations in the Euclidean
space by encoding multi-lead ECG signals as VLAD representa-
tions after a dyadic discrete wavelet transform and a subsequent
multiscale higher-order SVD analysis on sub-band tensors.

• Finally, we propose two fusion approaches for mapping the
extracted feature representations in a common Hilbert space. The
first approach is based on the mapping of both Grassmannian and
Euclidean features in a Reproducing Kernel Hilbert Space (RKHS),
while the second one attempts to apply VLAD encoding directly to
Grassmann manifold and then concatenate the two  VLAD repre-
sentations. Both approaches are generic and can be easily applied
to various application fields.

The remainder of this paper is organized as follows: Section
2 presents the proposed methodology including data preprocess-
ing, ECG signals modeling, fusion of feature representations and
classification. Subsequently, the dataset and experimental results
are discussed in Section 3, while finally conclusions are drawn in
Section 4.

2. Methods

The overall structure of the proposed methodology for the clas-
sification and localization of MI  is shown in Fig. 1. More specifically,
multi-lead ECG signals are initially pre-processed and reshaped
into a third-order tensor structure. Subsequently, for the model-
ing of the third-order tensor representation of data, we  apply: i)
a higher-order LDS modelling in order to extract the dynamics of
the multi-lead signal and ii) a dyadic discrete wavelet transform

followed by a multiscale higher-order SVD analysis on sub-band
tensors to exploit the intra-beat, inter-beat and inter-lead correla-
tions. In the first case, LDS descriptors are mapped into a Grassmann
manifold, while in the second one VLAD encoding is applied. Finally,
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Fig. 1. The proposed methodology.

oth Euclidean (VLAD encodings) and Grassmannian feature rep-
esentations are mapped and fused in a common Hilbert space for
he detection and localization of MI.  We  have to note here that
lternatively, we can also model the sub-band tensors of wavelet
ransform using higher-order linear dynamical systems to create

ultiple Grassmannian subspaces. This issue is discussed in detail
n Section 2.4.2.

.1. Data preprocessing and tensor ECG formation

In this first preprocessing step, we attempt to bring the leads of
CG to their isoelectric levels by passing each ECG signal through

 digital Butterworth high-pass filter with a cut-off frequency of
.5 Hz, and a “Zero-phase forward and reverse digital filter”, as
roposed in [10]. Additionally, R-peak detection and period nor-
alization is performed, while subsequently each lead signal is

egmented and normalized to the number of beat periods. After
he preprocessing of the recorded signals, the multi-lead ECG data
s reshaped into a third-order tensor structure. More specifically,
his data is represented as Y ∈ R

l×b×s, where the dimensions l, b,
nd s are respectively the number of leads, heart beats, and con-
ecutive samples of normalized heartbeat. The horizontal slices of

 represent each ECG lead, and each vector of a horizontal slice
epresents consecutive beats of a lead [19].

.2. Mapping of ECGs signals into Grassmann manifold

The output of an ECG signal indicates the electrical activity gen-
rated by the heart as a function of time and it is a near-periodic
ignal for a specific time. In a multi-lead ECG the leads refer to imag-
nary lines between two ECG electrodes. To exploit this information,
n this paper we attempt to model the interdependent 12-lead sig-
als and beats of ECGs using LDSs. A linear dynamical system is
ssociated with a first order ARMA process with white zero mean

ID Gaussian input and for this reason LDSs are also known as lin-
ar Gaussian state-space models. In general, LDS models attempt to
ssociate the output of the system, i.e., the observation, with a linear
unction of a state variable, while in each time instant, the state vari-
ssing and Control 52 (2019) 111–119 113

able depends linearly on the state of the previous time instant. Both
state and output noise are zero-mean normally distributed random
variables and apart from the output of the system, all other vari-
ables (state and noise variables) are hidden. The adopted system is
described by the following equations:

x (t  + 1) = Ax (t) + Bv (t) (1)

y (t) = y + Cx (t) + w(t) (2)

where x ∈ Rn is the hidden state process, y ∈ R
d is the observed

data, A ∈ R
n×n is the transition matrix of the hidden state and C ∈

R
d×n is the mapping matrix of the hidden state to the output of the

system. The quantities w(t) and Bv(t) are the measurement and pro-
cess noise respectively, with w (t) Ñ (O, R) and Bv (t) Ñ (0, Q ), while
ȳ ∈ R

d is the mean value of the observation data. The extracted
tuple LDS descriptor, M = (A, C), models both the appearance and
dynamics of the observation data, represented by C and A, respec-
tively. The descriptor’s parameters, A and C, can be estimated
through a suboptimal method initially proposed by Doretto et. al
[26].

However, in our case the multi-lead ECG signal is represented
by the third-order tensor Y . To this end, we decompose the ECG
formation Y using a higher order singular value decomposition:

Y = S ×1 U(1) ×2 U(2) ×3 U(3) (3)

where S ∈ R
l×b×s is the core tensor, while U(1) ∈ R

l×l , U(2) ∈ R
b×b

and U(3) ∈ R
s×s are orthogonal matrices containing the orthonor-

mal  vectors spanning the column space of the matrix and ×j denotes
the j -mode product between a tensor and a matrix. Since the
columns of the mapping matrix C of the stochastic process need
to be orthonormal, we  can consider C = U(3) and

X = S ×1 U(1) ×2 U(2) (4)

Then, the transition matrix A can be estimated using least
squares [27] as follows:

A = X2XT
1 (X1XT

1 )
−1

(5)

where X1 = [x (2) ,  x (3) , . . .,  x(t)] and X2 = [x (1) , x (2) , . . .,
x(t − 1)].

Furthermore, to improve the stability of the dynamical system
(i.e., to estimate the stabilized transition matrix A), we  obtain an
approximate solution, based on a convex optimization technique
[28], by solving the following quadratic problem:

minimize aPa − 2qT a + r (6)

subject to gT a ≤ 1 (7)

where a = vec(A), q = vec(X1XT
2 ), r = tr(XT

2 X2) and P = I ⊗ (XT
1 X1), I

is the identity matrix, tr( · ) indicates the trace of a matrix and vec(  · )
operator converts a matrix to vector and ⊗ denotes the Kronecker
product. Also, g = vec(u1vT

1) where vectors u1 and vT
1 correspond to

the first eigenvalue of the transition matrix A.
Having modeled each ECG signal using a higher-order linear

dynamical system approach, our next step is to represent the
parameters of each dynamical system, M = (A, C), as a point on
the space of the extracted descriptors. Towards this end, we ini-
tially estimate the finite observability matrix of each dynamical

system, OT
m (M) =

[
CT , (CA)T ,

(
CA2

)T
, . . .,  ,

(
CAm−1

)T
]

and then,

we apply a Gram-Schmidt othonormalization [29] procedure, i.e.,

OT

m = GR, in order to represent each descriptor M as a point, G ∈
R

m×T×3, on the Grassmann manifold (in our experiments we  set the
size m of the observability matrix equal to 3, while T is the number
of samples).
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.3. Modelling of ECG signal using locally aggregated descriptors

In this section, we propose the representation of ECG signals, i.e.,
he third-order tensor Y , as a VLAD. The extracted VLAD descrip-
or can be considered intrinsically as Euclidean, as it encodes the
eatures’ distribution in their native vector space. More specifi-
ally, we initially apply a dyadic discrete Wavelet Transform (with
aubechies 9/7 Biorthogonal wavelet filters as mother wavelet) on
very vector Y (i, j, :) of the tensor Y ∈ R

l×b×s where i = 1, . . ., l and
 = 1, . . .,  b. This transformation results 2 × L sub-band tensors (L
s the number of levels and depends on the sampling frequency of
he signal) comprising of one approximation AL ∈ rl×b×sA , with sA =
/2L̂, and L number of details Dk (where k = 1, . . .,  L) sub-band ten-
ors with dimensions l × b × sk, with sk = s/2k̂ [19]. Subsequently,
ach sub-band tensor is decomposed according to Eq. (3) and a
eature vector is formed by the concatenation of mode- n singular
alues � (in our case n is equal to 3) of all extracted core tensors S.
n particular, for the 3 modes of each sub-band tensor AL and Dk,

e form the corresponding feature vectors:

A
L =

[
�(1)

1 , . . .,  �(1)
l

, �(2)
1 , . . .,  �(2)

b
, . . .,  �(3)

1 , . . .,  �(3)
sA

]
(8)

nd

D
k =

[
�̂(1)

1 , . . . �̂(1)
l , �̂(2)

1 , . . . �̂(2)
b . . .,  �̂(3)

1 , . . . �̂(3)
sk

]
(9)

nd then, we concatenate the individual features to form the final
eature vector as follows:

 = [xA
L , yD

L, , yD
L−1, . . .,  yD

1 ] (10)

In our experiments we extracted the singular values of sub-
and tensors A7, D7, D6, D5 and D4 and used the first three singular
alues of each unfolded submatrix for the construction of feature
ectors in Eqs. (8) and (9). These sub-bands contain ‘PQRST’ seg-
ented information, while the rest do not contain any meaningful

nformation [19].
Finally, for the modelling of each ECG signal, we  apply VLAD

ncoding, which is considered as a simplified coding scheme of the
arlier Fisher Vector (FV) representation and has shown to out-
erform histogram representations in bag of features approaches
30,31]. More specifically, we consider a codebook,

{
mi

}r

i=1
=

m1, m2, . . .,  mr},  with r visual words and local descriptors v, where
ach descriptor is associated to its nearest codeword mi = NN(vj).
he VLAD descriptor, V , is created by concatenating the r local dif-
erence vectors

{
ui

}r

i=1
corresponding to differences vj − m

i
, with

i = NN(vj), where vj are the descriptors associated with codeword
, with i = 1, . . .,  r.

 =
{

ui

}r

i=1
= {u1, . . .,  ur} (11)

r

¯
 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
vj such that

m1 = NN
(
vj

)
(
vj − m1

)
, . . .,

∑
vj such that

mr = NN
(
vj

)
(
vj − m

r

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(12)
while the final VLAD representation is determined by the L2-
ormalization of vector V̄ :

Euclidean = V/
∥∥V

∥∥
2

(13)
Fig. 2. Proposed-1 fusion approach using different kernel functions for mapping
Grassmannian and Euclidean data into a common Hilbert space.

2.4. Fusion of feature representations in a common space

2.4.1. Fusion through the mapping of data in a reproducing
Kernel Hilbert Space

To fuse the extracted feature representations, we propose in
this section their mapping into a common Hilbert space H (it is
defined as proposed-1). Our main problem here stems from the fact
that the two feature representations, i.e., Grassmannian points and
VLAD encodings, lie in different geometrical spaces. More specifi-
cally, in the first case we have points in the non-Euclidean space
of the dynamical model, known as Grassmann manifold, which
is a quotient of the special orthogonal group SO(n),  i.e., the sub-
set of all orthogonal matrices with determinant equal to +1 (this
simply means that we  can extend the notion of tangent spaces,
geodesics etc. from the base manifold SO(n) to the quotient space
of Grassmann manifold). On the other hand, the second feature
representation is a VLAD descriptor, which lies in Euclidean space
(Fig. 2).

To address the problem, we  attempt to transform the two fea-
ture representations into a common Hilbert space using two kernel
functions, ϕG : G→H for the Grassmann manifold and ϕE : R

r→H

for the Euclidean space. In the first case, the Grassmannian kernel
kG(g1, g2), which shows the similarity between two Grassmannian
points g1 and g2 is estimated using the inverse exponential map on
the Grassmann manifold:

kG (g1, g2) = dG (g1, g2) =
∥∥exp−1

g2
g1

∥∥
F

(14)

where ‖ · ‖F is the matrix Frobenius norm. For estimating the inverse
exponential map, we  first need to compute the orthogonal com-
pletion Or of g1 and then the thin CS decomposition of matrix OT

r g2
to find the direction matrix that specifies the direction and speed
of geodesic flow [24]. On the other hand, for the Euclidean space,
we can simply apply a Radial Basis Function (RBF) kernel for two
feature vectors x1 and x2:(

‖x1 − x2‖2
)

kE (x1, x2) = exp −
2�2

(15)

Using Eqs. (14) and (15) as similarity metrics in Grassmannian and
Euclidean space respectively, we can easily estimate the elements
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f kernel matrices KG and KE . To improve the robustness and the
iscriminative ability of the method, we create kernels of equal
ize, i.e., KG, KE ∈ R

MxM , with M = k ∗ c, where c is the number of
lasses, while k is the number of the most representative samples
n each class. For the Euclidean space, we apply a simple k-means
lgorithm, while for the Grassmannian manifold, we select the most
epresentative Grassmannian points, using as a distance between
wo points on the manifold, the similarity metric of Eq. (14). To this
nd, we apply a k-medoids classification approach considering as
edoid, the local minimizer of function F:

(mk) = 1
nG

nG∑
i=1

dG(mk, gi) (16)

here nG indicates the total number of Grassmannian points gi

n a medoid mk and dG( · ) denotes the distance between two
rassmannian points (see Eq. (14)). Having defined the M most

epresentative Grassmannian points among the existing ones, we
stimate the Grassmannian kernel matrix as KGi,j = kG

(
gi, gj

)
, with

, j = 1, 2, . . .M. Similarly, each element of the Euclidean kernel
atrix is defined as KEi,j = kE

(
xi, xj

)
for each i, j ∈ [1,  M]. Sub-

equently, we estimate the common kernel matrix for the two
ubspaces as KEG = K◦

EK
G

, where KEG ∈ R
MxM and 〈◦〉 is the Han-

amard product of kernel functions.
Finally, to classify the ECG signals we apply a sparse representa-

ion using the following equation according to [32], which enables
s to map  the input signal y to the Hilbert space of a sparse repre-
entation as:

in
a

∥∥y − asC
∥∥2

2
+ �‖as‖1 (17)

here y = ˙1/2UT KEG and C = ˙1/2UT , with U˙V  = KEG [33].
For the detection and localization of MI,  ECG signals correspond-

ng to myocardial infarction cases were initially discriminated from
hose of health controls and then they were classified in the follow-
ng categories: anterior (AMI), antero-lateral (ALMI), antero-septal
ASMI), inferior (IMI) and infero-lateral (ILMI). To this end, each
CG signal represented by a set of sparse coefficients is classi-
ed to a class i = 1. . .N, whose training samples provide the best
econstruction of it. Specifically, the classification is performed by
ssigning each multi-lead ECG signal x to the class minimizing the
ollowing residual:

lass(i) = argmin
i

∥∥x − ıi (as) C
∥∥ (18)

here ıi sets to zero the coefficients of as that do not correspond to
lass i. The estimation of the sparse representations of ECG signals
s achieved using the SPAMS toolbox of Matlab.

.4.2. Fusion in a Hilbert space through VLAD encoding
In this second fusion approach, we attempt to apply VLAD

ncoding on Grassmann manifold, as in the case of the Euclidean
pace, and then concatenate the two VLAD representations to form

 joint representation for the two spaces (it is defined as proposed-
). In other words, we use VLAD encoding as a means to map  our
eatures into a common space (Fig. 3).

In contrast with the previous approach, in this case, we  divide
ach signal into overlapping equally-sized elementary signals
using a sliding window of a constant size W)  that are modeled
y a linear dynamical system. In this way, each ECG signal is finally
epresented as a set of points on the Grassmann manifold instead
f a single point. Subsequently, we apply a Karcher mean algorithm

34] to estimate the codewords mi in Eq. (12). We  re-identify the

embers Gj of each class, i.e., mi = NN(Gj), using the dissimilarity
etric defined in Eq. (14). Hence, the VLAD encoding of an ECG sig-

al on the Grassmann manifold for a codebook of q representative
Fig. 3. Proposed-2 fusion approach in a Hilbert space through VLAD encoding.

words,
{

mi

}q

i=1
, can be defined as:

V̄Grassmannian = V̄∥∥V̄
∥∥

2

= 1∥∥V̄
∥∥

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
Gj such that

the Karcer mean

m1 = NN(Gj)

∥∥exp−1
m1

Gj

∥∥
F
, . . .,

∑
Gj such that

the Karcer mean

mq = NN(Gj)

∥∥exp−1
mq

Gj

∥∥
F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

For the final classification of an ECG signal to one of the
five classes (localization), i.e., anterior (AMI), antero-lateral
(ALMI), antero-septal (ASMI), inferior (IMI) and infero-lateral
(ILMI), we concatenate the two  VLAD encodings, i.e., V̄ECG =[
V̄Euclidean V̄Grassmannian

]
, to form a joint feature representation and

finally use a simple SVM classifier. We  have to note here that
when sub-band tensors of wavelet transform are modeled using
higher-order linear dynamical systems, the system creates mul-
tiple Grassmannian subspaces. In our experiments, we  used in
total five sub-bands, A7, D4, D5, D6 and D7 and therefore in this
case the final vector V̄ECG was produced by the concatenation of
one Euclidean with six Grassmannian feature representations, i.e.,
V̄ECG =

[
V̄E V̄G V̄A7

G V̄D4
G . . . V̄D7

G

]
.

3. Results

For the evaluation of the proposed method we  conducted exten-
sive tests using a publicly available dataset, namely PTB Diagnostic
ECG database [35], containing multi-lead ECG data. Each record
in the dataset includes 15 simultaneously measured signals, i.e.,
the conventional 12 leads as shown in Fig. 4 (i, ii, iii, avr, avl, avf,
v1, v2, v3, v4, v5, v6) together with the 3 Frank lead ECGs (vx,
vy, vz) (in our experiments the 3 Frank lead ECGs were not used,
Fig. 4). Fig. 5 shows a 3D representation of a beat period of an
ECG signal of the PTB Diagnostic database. Each signal is digitized

at 1000 samples per second. More specifically, the dataset con-
tains in total 549 records of 290 subjects from different diagnostic
classes: Myocardial infarction (148), Cardiomyopathy/Heart fail-
ure (18), Bundle branch block (15), Dysrhythmia (14), Myocardial
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Fig. 4. The 12 leads of an ECG signal of the PTB Diagnostic database.
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Fig. 6. Detection accuracy rates for proposed-1 fusion approach using different
kernel functions for mapping Euclidean data into a common Hilbert space.

to evaluate the contribution of different feature representations
Fig. 5. A beat period of an ECG signal of the PTB Diagnostic database.

ypertrophy (7), Valvular heart disease (6), Myocarditis (4), Mis-
ellaneous (4), Healthy controls (52). In the case of MI  patients, the
ocation of the infarction in the myocardium is classified in differ-
nt categories [36]. Nevertheless, in our experiments five groups of
hese have been considered (anterior (AMI), antero-lateral (ALMI),
ntero-septal (ASMI), inferior (IMI) and infero-lateral (ILMI)). The
ecords of these categories are 47 from AMI, 43 from ALMI, 77 from
SMI, 89 from IMI  and 56 from ILMI. The other 56 records from
I  subjects correspond to other groups of MI  location, but these

roups have a very limited number of ECG records to be used for
raining the classifier.

The goal of this experimental evaluation is three-fold. Firstly, we
im to define the optimal parameters for the two proposed fusion
pproaches. Secondly, a detailed experimental evaluation for the
ontribution of each extracted feature and fusion approach is per-
ormed estimating the MI  detection and localization rates. Finally,
n order to validate the efficiency of the proposed method, we com-
ared its detection and localization rates with those of various
tate-of-the-art approaches using the same dataset.

.1. Estimating the optimal parameters
The first evaluation phase concerns the selection of the opti-
al  parameters for both fusion approaches in order to achieve

he best detection rates. Initially, we carried out experiments in
Fig. 7. Detection rates of Grassmann VLAD encoding V̄G (proposed-2 approach) using
different window sizes W.

order to define the most appropriate kernel function for the map-
ping of Euclidean data into the Reproducing Kernel Hilbert Space
(proposed-1 approach). In particular, we  experimented using three
kernel functions, namely radial basis function (RBF), polynomial
and exponential chi-square distance. Fig. 6 presents the classifica-
tion rates for each kernel function when they are applied for the
mapping of Euclidean data into a common Hilbert Space. As we  can
easily see, the best classification rate (100%) is achieved by using the
RBF kernel function, while the polynomial and chi-square kernels
provide lower detection rates of 99.6% and 93.8%, respectively.

On the other hand, for the second fusion approach (proposed-2),
we attempt to find the most appropriate sliding window size W
for dividing the multi-dimensional signal into overlapping equally
sized elementary signals. This approach allows us to represent each
signal as a set of points on the Grassmann manifold instead of a
single point. Towards this end, we  carried out experiments using
five different window sizes (5, 10, 15, 20 and 25 length) for creat-
ing the elementary equally sized signals. As seen in Fig. 7, the best
classification rate is achieved by setting the window size equal to
20, yielding a detection rate of 95.83% (this detection rate refers to
the VLAD encoding V̄G and not to the concatenated V̄ECG vector).
It is worth mentioning that when small signal sizes are used, the
detection rates decrease, apparently due to the lack of sufficient
information in each sub-signal, while the detection rate for signal
sizes larger than 20 also seems to decrease.

3.2. Contribution of different feature representations to the
detection of myocardial infraction

In this subsection, we elaborate a more detailed analysis in order
to the MI  detection process. Specifically, we analyze the contribu-
tion of four different feature representations: a) The representation
of ECG signal as a single Grassmann point (proposed-1 approach).
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Fig. 8. MI  detection rates for the individual feature representations.

) The VLAD encoding representation V̄E of the ECG signal after
he dyadic discrete wavelet transform and the subsequent multi-
cale higher-order SVD analysis on sub-band tensors (proposed-1
nd proposed-2 approach). c) The VLAD encoding representation
n the Grassmann manifold (proposed-2 approach) using a single
rassmann subspace i.e., V̄G and d) The concatenated VLAD encod-

ng representation of the five sub-bands, A7, D4, D5, D6 and D7
proposed-2 approach).

For the classification of the ECG signals, in the first case, i.e.,
rassmannian subspace, we used as a similarity metric the distance
etween two Grassmannian points, as defined in Eq. (14), while in
he cases of VLAD encodings we used a standard SVM classifier. The
xperimental results in Fig. 8 show that VLAD encoding on Grass-
ann manifold, i.e., V̄G , achieves the best results, with a detection

ate of 95.8% against 94.6%, 92.3% and 91.3% for the VLAD encod-
ng representation V̄E , the Grassmann feature representation and
he concatenated VLAD vector, respectively. In the next section, we
how that by mapping these features to a common Hilbert space,
e can further improve the classification accuracy of individual

eatures.

.3. Comparison of fusion approaches
In this subsection, we aim to evaluate the effect of the two pro-
osed fusion approaches to the detection and localization of MI.

n the first approach (proposed-1), we use kernel functions to map
he Grassmann feature representation and VLAD encoding V̄E into a

Fig. 9. Detection and localization accuracy ra
ssing and Control 52 (2019) 111–119 117

common Hilbert space and then apply sparse coding, while for the
second approach (proposed-2) we  create two concatenated VLAD
vectors V̄ECG =

[
V̄E V̄G V̄A7

G V̄D4
G . . . V̄D7

G

]
and V̄ECG =

[
V̄E V̄G

]
and use

a standard SVM classifier.
As we  can see in Fig. 9, all approaches provide excellent detec-

tion rates and can easily distinguish MI  cases from those of
healthy controls. Additionally, considering the five types of MI,
namely AMI, ALMI, ASMI, IMI  and ILMI, the localization rates are
100%, 99.7% and 98.4% for proposed-1,  proposed-2 with V̄ECG =[
V̄E V̄G V̄A7

G V̄D4
G . . . V̄D7

G

]
and proposed-2 with V̄ECG =

[
V̄E V̄G

]
, respec-

tively. It is also worth mentioning that although the feature
representation of VLAD encoding V̄G on Grassmann manifold pro-
vides better results than a simple Grassmann feature, the fusion
through a Reproducing Kernel Hilbert Space achieves better results
in the case of localization. In addition, the accuracy rates of both
approaches in Fig. 9 make evident that the individual feature rep-
resentations contain complementary information and therefore the
detection accuracy after fusion is increased.

3.4. Comparison with state-of-the-art approaches

In this last section, we  present a comparative analysis of the
proposed method against a number of state-of-the-art approaches.
More specifically, we compare the Sensitivity, Specificity and Accu-
racy rates of the proposed method (Table I) against those of ten
state-of-the-art approaches that have been used in the past for the
detection and localization of MI  on PTB Diagnostic ECG database.

To ensure a fair comparison, we  adopted the same experimen-
tal protocol followed in [19]. The experimental results in Table I
show that the proposed method (both proposed-1 and proposed-2
approaches) outperform all other methods achieving improve-
ments up to 0.7% in detection accuracy from [22] and up to 1.9%,
1.3%, 0.4% and 1.2% in localization accuracies from [19,37,18,17],
respectively.

4. Discussion

The method of 12-lead simultaneous recording of electrocardio-
graphs allows the capturing of the ECG signal of the same cardiac
cycle on 12 leads at the same time. This approach can significantly
increase the accuracy of all measurements and reduce the variabil-
ity of ECG measurement [39]. In a multi-lead ECG, the leads refer to
imaginary lines between two  ECG electrodes. To exploit this infor-
mation and better model possible beat and lead correlations, we
use a third-order tensor structure and then we attempt to extract

different feature representations containing complementary infor-
mation with regard to the dynamics of ECG signals. This fact justifies
the superiority of the proposed method against all other state of
the art approaches in Table I. While discrete wavelet transform

tes using the proposed fusion schemes.
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Table  1
Detection and localization comparison results.

Detection Localization

Sen Spe Acc Acc

Proposed-1 100% 100% 100% 100%
Proposed-2 100% 100% 100% 99.7%
Liu  et al. [22] 99.8% 97.4% 99.3% NA
Acharya et al. [5] 95.5% 94.2% 95.2% NA
Padhy et al. [19] 94.6% 96% 95.3% 98.1%
Sadhukhan et al. [16] 98.2% 97.4% 97.4% NA
Acharya et al. [37] 99.5% 96.3% 98.8% 98.7%
Sharma et al. [18] 93% 99% 96% 99.6%
Arif  et al. [17] 99.97% 99.9% NA 98.8%
Sun  et al. [3] 92.6% 82.4% NA 76.6%
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[

Jayachandran et al. [15] NA NA 95.9% NA
Nugent et al. [38] 78% 97.3% NA NA

as been widely used in the past for modeling ECG signals, it is
he first time that linear dynamical systems, and their projection to
rassmann manifold, are used for the modeling of such data. Linear
ynamical systems have shown great ability to model dynamical

nformation in video sequences [40], while recently they have been
sed for the extension of residual networks, i.e., ResNets, and the

mprovement of Faster-CNN network’s accuracy in object detec-
ion applications [41]. The experimental results in Fig. 9 show that
he combination of LDS descriptors with those extracted from DWT
ncreases significantly the detection rates of individual feature rep-
esentations presented in Fig. 8.

While both fusion approaches outperform all other state of the
rt approaches in Table 1, we can notice that the first approach,
ased on the mapping of both Grassmannian and Euclidean features

n a Reproducing Kernel Hilbert Space, provides excellent results
n both cases, i.e., detection and localization. In other words, even

hen the number of classes increases in the case of localization, the
iscrimination ability of the method remains extremely high, i.e.,

ocalization accuracy 100% for proposed-1 against that of 99.7% for
roposed-2. This is mainly because in the case of VLAD encoding, we
ostly keep a statistical information associated with the spatial dis-

ribution of descriptors in the geometrical subspaces, while in the
ase of mapping of feature representations in a Reproducing Ker-
el Hilbert Space, we are able to better maintain the dynamics and
ppearance information of the signals encoded in the descriptors.
e have to notice that both approaches proposed in the paper are

eneric and can be easily applied to other application fields, where
he fusion of feature representations that belong to different geo-

etrical subspaces and are extracted from either shallow or deep
lassifiers is required.

In terms of computational efficiency, both proposed-1 and
roposed-2 approaches yield similar results. Specifically, the
roposed-1 approach achieves detection and localization of MI  in
.51 s, while the proposed-2 approach achieves classification of an
CG signal in 0.44 s. This difference that is observed between the
wo approaches is due to the procedure of mapping the data to

 Reproducing Kernel Hilbert Space in the proposed-1 approach.
inally, it is worth mentioning that further optimization of the
eveloped algorithms and their computational speed is possible.

. Conclusions

In this paper, we presented a novel methodology for assisting
octors in detection and localization of MI.  The main advantage of
he proposed approach is that it exploits better the intercorrela-
ions between signals of different ECG leads by extracting feature

epresentations that lie in different geometrical spaces and con-
ain complementary information with regard to the dynamics of
ignals. More specifically, we initially reshape the multidimen-
ional signal into a third-order tensor structure and subsequently

[

ssing and Control 52 (2019) 111–119

extract feature representations in both Euclidean and Grassman-
nian spaces. Moreover, two  different methods are proposed for
the mapping of two different feature representations into a com-
mon  Hilbert space before the final classification of signals. The
first approach is based on the mapping of both Grassmannian and
Euclidean features in a Reproducing Kernel Hilbert Space (RKHS),
while the second one attempts to apply VLAD encoding directly
to Grassmann manifold and then concatenate the two VLAD rep-
resentations. The experimental results showed that the proposed
method improved significantly the performance of the automated
computer-based detection and localization of MI. In the future,
more data will be collected in order to assess the effectiveness of
the proposed methodology. Finally, we  aim to extend and apply the
proposed methodology to other application fields, using different
types of signals e.g. EEG or EMG, in order to provide a generalized
automated electrodiagnostic tool.
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