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ABSTRACT

Real-world CCTV footage often poses increased chal-
lenges in object tracking due to Pan-Tilt-Zoom operations,
low camera quality and diverse working environments. Most
relevant challenges are moving background, motion blur and
severe scale changes. Convolutional neural networks, which
offer state-of-the-art performance in object detection, are in-
creasingly utilized to pursue a more efficient tracking scheme.
In this work, the use of heterogeneous training data and data
augmentation is explored to improve their detection rate in
challenging CCTV scenes. Moreover, it is proposed to use
the objects’ spatial transformation parameters to automat-
ically model and predict the evolution of intrinsic camera
parameters and accordingly tune the detector for better per-
formance. The proposed approaches are tested on publicly
available datasets and real-world CCTV videos.

Index Terms— CCTV, motion blur, PTZ, R-CNN, spatial
transformer, RNN

1. INTRODUCTION

Object tracking has attracted substantial attention in there-
search community due to its value in practical applications
and especially smart video surveillance solutions. Despite the
progress made in recent years, object tracking methods are not
robust enough for real-world content from CCTV cameras.
In addition to poor and changing illumination, occlusions and
cluttered scenes that pose tracking challenges, CCTV footage
also suffers from motion blur and large affine transformations
due to Pan-Tilt-Zoom (PTZ) operations [1].

Most of the existing detection methods are focused on
building a robust object appearance model, working on hand-
crafted feature representation and classifier construction.
However, most of these classifiers are limited by their shal-
low structures while object appearance variations are complex
and time-varying [2]. Recent advances in deep learning have
led to a new generation of object detection and localization
methodologies that outperform traditional methods. They
rely on automatically learning discriminative features via a
multi-layer convolutional neural network, thus, alleviating
the need for handcrafted features. Each layer is composed of

different types of neurons featuring convolutional operations,
non-linear filtering and spatial pooling. End-to-end training
is used to automatically learn hierarchical and object-specific
feature representations.

Object tracking with deep learning techniques, however,
has attracted considerably less attention in the past, partly due
to the lack of sufficient training data. Li et al. [3] incorporated
a convolutional neural network (CNN) to visual tracking with
multiple image cues as inputs. In [4] an ensemble of deep net-
works has been combined with an online boosting method. In
[5], a single-target online learning tracker is proposed toal-
leviate blurring. Another line of research exploits auxiliary
data to train offline a deep network, and then transfers knowl-
edge to object tracking. Fan et al. [6] proposed learning a
specific feature extractor with CNNs from an offline train-
ing set. In [7] a deep learning tracking method is proposed
that uses stacked denoising autoencoder to learn the generic
features from a large number of auxiliary images. Recently,
Wang et al. [8] employed a two-layer CNN to learn hierarchi-
cal features from auxiliary data, which models complicated
motion transformations and appearance variations. In [9],a
deep learning architecture learns the most discriminativefea-
tures via a CNN exploiting both the ground truth appearance
information and the image observations obtained online.

In this work, a multiple-object detection framework for
tracking by detection applications that confronts the chal-
lenges of real-world CCTV videos is proposed. It is based on
a state-of-the-art detection and localization object framework
[10] that is trained offline to facilitate a tracking-by-detection
paradigm. A number of techniques for the augmentation of
the training data are examined to streamline the performance
of the detector. Moreover, a methodology to dynamically
control the detector configuration using estimations of the
intrinsic parameters of the camera is proposed. A Recurrent
Neural Network (RNN) is employed to model the spatial
transformation [11] of the objects due to the camera per-
spective and PTZ operations of the camera. The RNN is
used to predict the affine transformation of the objects and
dynamically modify the parameters of the detector. Exper-
imental validation of the proposed concept is performed on
real CCTV videos. The proposed framework is applicable to
any type of objects but experiments will focus on pedestrians.



The rest of the paper is organized as follows. An ex-
ploration of training data augmentation for object detection
is given in Section 2. Section 3 introduces the procedure
to model and predict the object transformation for dynamic
parametrization of the detector. The experimental resultsare
given in Section 4 and conclusions are drawn in 5.

2. TRAINING DATA AUGMENTATION

CCTV videos often contain severely blurred objects due to
low video quality and fast PTZ operations. Especially motion
blur is a major challenge for object detection in CCTV con-
tent. In a single frame, motion blur is translated to degraded
appearance information and reduced ability to accurately lo-
calize the position of an object. While de-blurring methodolo-
gies show good results [12], they have a high computational
cost and they further degrade their appearance. Deep learning
systems have been recently shown to achieve impressive per-
formance in benchmark datasets for object detection. How-
ever, in challenging CCTV videos their performance deterio-
rates. In this section, the effect of training data selection in
the detector’s performance is explored.

Building on prior deep learning work, the object detection
and localization framework Faster R-CNN [10] is employed.
It combines the localization and detection tasks, while shar-
ing convolutional layers to speedup the process. A ZF net-
work model [13], pre-trained in ImageNet dataset [14], is se-
lected for object detection. The model is fine-tuned to op-
timize the discriminative power of the features learned and
therefore the detection accuracy. The strategy of fine-tuning
has been widely used in deep learning greatly improving the
performance of a CNN. It has been shown [15] that trans-
fer learning, namely the use of unsupervised pre-training in a
generic dataset, has significant value, offering a robust initial-
ization of the network parameters.

Two training data augmentation approaches are examined
to improve fine-tuning of the examined system: (a) the enrich-
ment with object instances from heterogeneous sources and
(b) the addition of blurred instances of the current object col-
lection. In the former approach, annotated datasets featuring
the examined object classes are utilized. An extended training
set is created that contains samples from multiple datasets.

Despite the existence of several annotated datasets, their
content is produced with quality measures that are superiorto
the conditions that a normal CCTV system will face. There-
fore, the features learned by a deep learning object detector
are often plagued by many missing detections, especially in
action scenes. Following the latter approach, the trainingset
is augmented with blurred instances to enhance the robust-
ness to motion blur. A set of Gaussian kernels incorporating
motion blur [16] has been created (Eq.1).

K = {kθ,l|θ ∈ Θ, l ∈ L} (1)

Fig. 1. Examples of motion blur effect on images [17][18].

As the kernel k is symmetric, the motion directionθ is ran-
domly sampled fromΘ = [0, π] and the magnitude is selected
from L = [0, lmax], wherelmax is a parameter. The original
imagesI that form the training set are convolved with the
motion-blur kernels.

I bl = I ⊗ k (2)

Fig. 1 shows examples of using kernels to generate blurred
images with different parameters. The effect of data augmen-
tation approaches is experimentally tested in Section 4.

3. DYNAMIC DETECTOR CONFIGURATION

CCTV cameras often have PTZ capabilities that are used by
their operators to track suspicious activities in a scene. These
camera operations constitute a serious challenge for object
detection and tracking due to the implicit scale assumptions
made. Object detection techniques have a predefined range of
scales that are supported, to minimize detection errors. Inthis
section it is proposed to dynamically adjust this scale range
based on predictions of the tracked objects’ size in the next
frame.

The first step towards this approach is to have an accurate
estimation of the detected object’s scale and pose. Recently,
a new module was proposed that applies a spatial transforma-
tion to a feature map during a single forward pass. The spatial
transformer network (SPN) [11] can be used as a new type of
layer in a feed-forward convolutional network. It learns an
affine transformation of the input and uses bilinear interpola-
tion to produce its output allowing it to zoom, rotate and skew
the input. The transformation parameters (Eq.3) can be also
exploited as a robust indication of the object’s scale and pose.

A =

[

θ11 θ12 θ13
θ21 θ22 θ23

]

(3)

An RNN is subsequently used to model and predict the
evolution of the transformation matrices in the next frame.
The transformation matrix of the detected objects is input to
the recurrent network such that:

At = SPN(fconv(I)) (4)



ht = f rnn
trans(At, ht−1) (5)

where A is the transformation matrix from the current object,
SPN is the spatial transformer module andht−1 is the hid-
den state of the RNN model in the previous step. An affine
transformation matrixAt+1 is produced at each time-stept
from the hidden state of the RNN. The affine transforma-
tions predicted are conditioned on the previous transforma-
tions through the time dependency of the RNN.

The producedAt+1 is utilized to dynamically adjust the
optimal scale range of the detector, in this work Faster R-
CNN. To achieve that, we modify the scaling parameters of
the Faster R-CNN that controls the scale of the processed im-
age, achieving better scale invariance.

4. EXPERIMENTAL RESULTS

4.1. Datasets

In this section, the experimental setup for the validation of the
above concepts is being described. Given that pedestrians is
the main object class of interest, the experiments will focus on
the pedestrian detection without losing its generality. For this
purpose a number of datasets have been selected to feature
the experiments. VOC2007 [17] is used as a generic dataset
for image classification with 20 annotated classes, including
the classperson. The ETH dataset [18] is also used to extend
the fine-tuning dataset. It contains annotated pedestrianson
a public road. Finally, a set of videos from the Metropolitan
Police of London (MET) from the riots of 2011 have been
also used for qualitative validation. Those videos have been
offered for research purposes in the framework of the LASIE
FP7 project and they are neither annotated nor publicly avail-
able.

4.2. Experiments

The first set of experiments refers to the exploration of train-
ing data augmentation strategies. The Faster R-CNN object
detection framework is fine-tuned with different training sets
to test their effectiveness. Training with VOC2007 (∼10000
object instances), labeled as [VOC], is used as a baseline for
performance. The training set is infused with sequences from
the ETH dataset, namely “Bahnhof” sequence (∼7500 object
instances) labeled as [BAH] and “Sunny Day” (∼1900 ob-
ject instances), labeled as [SUN]. The datasets are dividedin
training and testing set of equal size. 50% of the training set
is used for validation purposes. The evaluation of the trained
models is performed on separate testing sets that include VOC
testing set and an ensemble of the VOC and ETH testing sets,
respectively. The results are reported in Table 1. Experiments
show that the detection accuracy seems to benefit from extra
training samples, even on the original VOC testing set.

Subsequently, the effect of augmenting the data with mo-
tion blur is examined. Training with the VOC2007 dataset is

VOC VOC+BAH VOC+SUN
[VOC] 59,44% 57,67% 59,49

[VOC+BAH] 60,66% 62,03% 61,23
[VOC+SUN] 59,79% 57,68% 63,45

Table 1. Average precision of models trained with VOC2007
and with an ensemble of VOC2007 and the ETH dataset on
the respective testing sets.

again used as baseline. The dataset is then augmented with
blurred instances of the VOC2007 dataset, creating [VOC5]
for l = 5 pixels and [VOC10] forl = [5, 10] pixels motion
blur. The trained models are tested on all testing sets, named
NoBlur, Blur5px andBlur10px respectively. The results
are depicted in Table 2.

NoBlur Blur5px Blur10px
[VOC] 59,44% 31,71% 23,50%
[VOC5] 63,48% 62,63% 61,79%
[VOC10] 63,20% 62,31% 60,33%
[BAH] 70,70% 68,42% 59,08%
[BAH5] 70,66% 70,65% 69,23%
[BAH10] 72,52% 71,75% 71,34%

Table 2. Average precision of detection models fine-tuned
with VOC2007 utilizing different magnitude of data augmen-
tation on testing sets with increasing levels of blurring.

It is evident from the results that the performance of the
detector is quickly deteriorating when even small amounts of
motion blur are introduced. On the other hand, augmenting
the training data with blurred examples is making the detec-
tor more robust, even on non-blurred data. However, when
the dataset is dominated by blurred samples (VOC10) aver-
age precision declines slightly. Examples of the detectionca-
pabilities of each model on MET videos are depicted in Fig.2.

Another set of experiments is performed to validate the
proposed dynamic configuration of the detector. A spatial
transformer layer is added in the input of the ZF network and
it is applied in the region proposed by [10]. The allowed trans-
formations (Eq.3) are further constrained allowing only crop-
ping, rotation and isotropic scaling to reduce training com-
plexity by varyings, θ in Eq.6

Aθ =

[

s cos θ s sin θ 0
−s sin θ s cos θ 0

]

(6)

The transformation matrixAt is provided to an RNN. For
the RNN we use the configuration in [19]. The RNN is ini-
tially trained with artificial data created to simulate zooming
operations. The set includes 100 sequences of bounding box
evolution with a length of 100 frames. A linear layer is ap-
plied to convertht intoAt+1.



Fig. 2. Example detections on a MET CCTV video trained with ascending levels of blurrness. VOC, VOC5 and VOC10 are
depicted in rows 1, 2, 3, respectively. Red arrows depict newdetections with VOC5 and yellow new detections with VOC10.

Fig. 3. Example detections on a MET CCTV video. In the first row the default scaling parameter is used (s = 600), while in
the second the detector uses a dynamically modified scaling parameter. New detections are depicted with red arrows.

The transformation matrixAt+1 is used to predict pos-
sible severe scale changes of the objects in the next frame.
The predicted scale is used to modify the scaling parameter
of the detector. Initial experiments of the proposed method
have been performed on the MET dataset and are depicted
in Fig.3. The results show an improvement of the detection
performance in challenging zooming conditions.

5. CONCLUSIONS

In this paper, methodologies to improve the efficiency of deep
learning based multi-target detectors in challenging CCTV
footage are proposed. The use of heterogeneous data and data
augmentation with motion blur is explored for training detec-
tors. Experimental results have shown that the detector bene-
fits from both methodologies. Robust performance is reported
in both original and blurred content, as well as challenging

action scenes in CCTV videos. Moreover, a novel method-
ology to dynamically tune the detector parameters during in-
tense PTZ operations is proposed. The spatial transformation
of the objects, derived from a spatial transformer network,is
used to train an RNN to predict the intrinsic camera proper-
ties in the next frame. The predicted parameters are used to
tune the detector parameters, leading to more robust results.
Initial experiments have shown that dynamic scaling signifi-
cantly improves the performance of the detector compared to
fixed scale operations.

6. ACKNOWLEDGMENTS

This work was supported by the European Commission under
contract FP7-607480 LASIE. The authors would like to thank
the London Metropolitan Police for providing CCTV footage
for research purposes.



7. REFERENCES

[1] Anthony C Davies and Sergio A Velastin, “Progress in
computational intelligence to support cctv surveillance
systems,” International Journal of Computing, vol. 4,
no. 3, pp. 76–84, 2014.

[2] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara,
Simone Calderara, Afshin Dehghan, and Mubarak Shah,
“Visual tracking: An experimental survey,”Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, vol. 36, no. 7, pp. 1442–1468, 2014.

[3] Hanxi Li, Yi Li, and Fatih Porikli, Computer Vision –
ACCV 2014: 12th Asian Conference on Computer Vi-
sion, Singapore, November 1-5, 2014, Revised Selected
Papers, Part V, chapter Robust Online Visual Tracking
with a Single Convolutional Neural Network, pp. 194–
209, Springer International Publishing, Cham, 2015.

[4] Xiangzeng Zhou, Lei Xie, Peng Zhang, and Yanning
Zhang, “An ensemble of deep neural networks for ob-
ject tracking,” inImage Processing (ICIP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 843–847.

[5] J. Ding, Y. Huang, W. Liu, and K. Huang, “Severely
blurred object tracking by learning deep image repre-
sentations,”Circuits and Systems for Video Technology,
IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[6] Jialue Fan, Wei Xu, Ying Wu, and Yihong Gong,
“Human tracking using convolutional neural networks,”
Neural Networks, IEEE Transactions on, vol. 21, no. 10,
pp. 1610–1623, 2010.

[7] Naiyan Wang and Dit-Yan Yeung, “Learning a deep
compact image representation for visual tracking,” in
Advances in Neural Information Processing Systems,
2013, pp. 809–817.

[8] Li Wang, Ting Liu, Gang Wang, Kap Luk Chan, and
Qingxiong Yang, “Video tracking using learned hierar-
chical features,”Image Processing, IEEE Transactions
on, vol. 24, no. 4, pp. 1424–1435, 2015.

[9] Yan Chen, Xiangnan Yang, Bineng Zhong, Shengnan
Pan, Duansheng Chen, and Huizhen Zhang, “Cn-
ntracker: Online discriminative object tracking via deep
convolutional neural network,”Applied Soft Computing,
vol. 38, pp. 1088–1098, 2016.

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” inAdvances in Neural
Information Processing Systems, 2015, pp. 91–99.

[11] Max Jaderberg, Karen Simonyan, Andrew Zisserman,
and Koray Kavukcuoglu, “Spatial transformer net-
works,” CoRR, vol. abs/1506.02025, 2015.

[12] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen,
“Framelet-based blind motion deblurring from a single
image,” Image Processing, IEEE Transactions on, vol.
21, no. 2, pp. 562–572, 2012.

[13] Matthew D. Zeiler and Rob Fergus, “Visualizing and
understanding convolutional networks,”CoRR, vol.
abs/1311.2901, 2013.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei, “ImageNet Large Scale Vi-
sual Recognition Challenge,”International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[15] Sinno Jialin Pan and Qiang Yang, “A survey on trans-
fer learning,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 22, no. 10, pp. 1345–1359, 2010.

[16] Hailin Jin, P. Favaro, and R. Cipolla, “Visual track-
ing in the presence of motion blur,” inComputer Vi-
sion and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, June 2005, vol. 2, pp.
18–25 vol. 2.

[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes
(voc) challenge,”International Journal of Computer Vi-
sion, vol. 88, no. 2, pp. 303–338, June 2010.

[18] A. Ess, B. Leibe, K. Schindler, , and L. van Gool, “A
mobile vision system for robust multi-person tracking,”
in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’08). June 2008, IEEE Press.

[19] Søren Kaae Sønderby, Casper Kaae Sønderby, Lars
Maaløe, and Ole Winther, “Recurrent spatial trans-
former networks,”CoRR, vol. abs/1509.05329, 2015.


