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Abstract

During the last years, Convolutional Neural Networks
(CNNs) have achieved state-of-the-art performance in im-
age classification. Their architectures have largely drawn
inspiration by models of the primate visual system. How-
ever, while recent research results of neuroscience prove the
existence of non-linear operations in the response of com-
plex visual cells, little effort has been devoted to extend the
convolution technique to non-linear forms. Typical convo-
lutional layers are linear systems, hence their expressive-
ness is limited. To overcome this, various non-linearities
have been used as activation functions inside CNNs, while
also many pooling strategies have been applied. We ad-
dress the issue of developing a convolution method in the
context of a computational model of the visual cortex, ex-
ploring quadratic forms through the Volterra kernels. Such
forms, constituting a more rich function space, are used as
approximations of the response profile of visual cells. Our
proposed second-order convolution is tested on CIFAR-10
and CIFAR-100. We show that a network which combines
linear and non-linear filters in its convolutional layers, can
outperform networks that use standard linear filters with
the same architecture, yielding results competitive with the
state-of-the-art on these datasets.

1. Introduction

Convolutional neural networks (CNNs) have been shown
to achieve state-of-the-art results on various computer vi-
sion tasks, such as image classification. Their architectures
have largely drawn inspiration by models of the primate vi-
sual system, as the one described by Hubel and Wiesel [13].
The notion of convolution, used to mimic a functional as-
pect of neurons in the visual cortex, is critical to understand
their success.

Typical convolutional layers are linear systems, as their
outputs are affine transformations of their inputs. Due to

their linear nature, they lack the ability of expressing possi-
ble non-linearities that may actually appear in the response
of complex cells in the primary visual cortex [25]. Hence,
we claim that their expressiveness is limited. To overcome
this, various non-linearities have been used as activation
functions inside CNNs, while also many pooling strategies
have been applied. Little effort has been devoted to explore
new computational models that extend the convolution tech-
nique to non-linear forms, taking advantage of the research
results of neuroscience, that prove the existence of non-
linear operations in the response of visual cells [31][24].
The complexity of human visual cortex demonstrates gaps
that need to be bridged by CNNs, regarding the way con-
volution operations are applied. One of these gaps, is the
exploration of higher-order models.

In this work, we study the possibility of adopting an al-
ternative convolution scheme to increase the learning capac-
ity of CNNs by applying Volterra’s theory [32], which has
been used to study non-linear physiological systems, adapt-
ing it to the spatial domain. Considering the convolution
operation, instead of summing only linear terms to compute
a filter’s response on a data patch, we propose to also sum
the non-linear terms produced by multiplicative interactions
between all the pairs of elements of the input data patch.
Transforming the inputs through a second-order form, we
aim at making them more separable. In this way, convolu-
tion filters with more rich properties in terms of selectivity
and invariance are created.

The novelties of the proposed work are:

• The incorporation of a biologically plausible non-
linear convolution scheme in the functionality of
CNNs

• The derivation of the equations that describe the for-
ward and backward pass during the training process of
this filter type

• A CUDA-based implementation of our method as a



non-linear convolutional layer’s module in Torch71[5]

The rest of the paper is organized as follows: in Sec-
tion 2, related work is outlined. In Section 3, the proposed
method is described, theoretically grounded to Volterra’s
computational method, and the concept of training is math-
ematically explained, while a description of our scheme’s
practical implementation is given in Section 4. In Section 5
experimental results on CIFAR-10 and CIFAR-100 datasets
are drawn and finally in Section 6 the paper is concluded.

2. Related Work

One of the first biologically-inspired neural networks,
was Fukushima’s Neocognitron [8], which was the prede-
cessor of CNN, as it was introduced by LeCun et al. in [6].
Convolutional layer is the core building block of a CNN.
Early implementations of CNNs have used predefined Ga-
bor filters in their convolutional layers. This category of
filters can model quite accurately the properties of simple
cells found in the primary visual cortex (V1) [21].

This type of visual cell has a response profile which
is characterized by spatial summation within the receptive
field. Finding the optimal spatial stimuli [7] for simple cells
is a process based on the spatial arrangement of their exci-
tatory and inhibitory regions [23]. However, this does not
hold true for complex visual cells. Also, we cannot obtain
an accurate description of their properties, by finding their
optimal stimulus.

This fact has been ignored by most of the CNN imple-
mentations so far, as they have settled to the linear type of
convolution filters, trying to apply quantitative rather than
qualitative changes in their functionalities. He et al. [10]
proposed Residual Networks (ResNets), which have short-
cut connections parallel to their normal convolutional lay-
ers, as a solution to the problems of vanishing/exploding
gradient and hard optimization when increasing the model’s
parameters (i.e. adding more layers). Zagoruyko & Ko-
modakis [34] showed that wide ResNets can outperform
ResNets with hundrends of layers, shifting the interest to
increasing the number of each layer’s filters. Alternatively
to works that focus on creating networks with more con-
volutional layers or more filters, we evaluate the impact of
using both non-linear and linear terms as approximations of
convolution kernels to boost the performance of CNNs.

Apart from ResNets, very low error rates have also been
achieved in the ImageNet Challenge [27] by methods that
used their convolutional layers in new ways, enhancing their
representation ability. Lin et al. [20] proposed “Network
in Network (NIN)”, as a remedy to the low level of ab-
straction that typical filters present. Instead of the con-
ventional convolution filter, which is a generalized linear

1http://torch.ch/

model, they build micro neural networks with more com-
plex structures to abstract the data within the receptive field.
To map the input data to the output, they use multilayer
perceptrons as a non-linear function approximator, which
they call “mlpconv” layer. The output feature maps are
obtained by sliding the micro networks over the input in
a similar manner as CNN. Szegedy et al. [30] introduced
a new level of organization in the form of the “Inception
module”, which uses filters of variable sizes to capture dif-
ferent visual patterns of different sizes, and approximates
the optimal sparse structure. Xie et al. [33] proposed a way
to exploit the split-transform-merge strategy of “Inception”
models, performing a set of transformations, each on a low-
dimensional embedding, whose outputs are aggregated by
summation.

The authors of [19], based on the abundancy of recur-
rent synapses in the brain, proposed the use of a recurrent
neural network for image classification. They proved that
inserting recurrent connections within convolutional layers,
gives boosted results, compared to a feed-forward architec-
ture. Their work is a biologically plausible incorporation of
mechanisms originating from neuroscience into CNNs.

In [28], a Boltzmann learning algorithm is proposed,
where feature interactions are used to turn hidden units into
higher-order feature detectors. In [22], an efficient method
to apply such learning algorithms on higher-order Boltz-
mann Machines was proposed, making them computation-
ally tractable for real problems.

In [1], Bergstra et al. created a model for neural activa-
tion which showed improved generalization on datasets, by
incorporating second-order interactions and using an alter-
native non-linearity as activation function.

In [2], an attempt is made to analyze and interpret
quadratic forms as receptive fields. In their study, it was
found that quadratic forms can be used to model non-linear
receptive fields due to the fact that they follow some of
the properties of complex cells in the primary visual cor-
tex. These properties include response to edges, phase-shift
invariance, direction selectivity, non-orthogonal inhibition,
end-inhibition and side-inhibition. In constrast to the stan-
dard linear forms, in quadratic and other non-linear forms
the optimal stimuli do not provide a complete description
of their properties. It is shown that no invariances occure
for an optimal stimulus while for other general sub-optimal
stimuli there may exist many invariances which could be
of a large number but lack easy interpretation. Although
the optimal stimulus is not related to a filter’s invariance,
its neighborhood is studied under a more loose sense of
transformation invariance. It is shown that proper quadratic
forms can demonstrate invariances in phase-shift and orien-
tation change. From the previous discussion we conclude
that using non-linear forms to convolutional layers may be
a reasonable future direction in computer vision.



3. Proposed Method

The proposed method, as earlier stated, makes use of the
Volterra kernel theory to provide means of exploiting the
non-linear operations that take place in a receptive field. Up
to now, and to the best of our knowledge, non-linearities
were exploited mainly through the activation functions and
pooling operations between different layers of CNNs. Nev-
ertheless, such non-linearities may be an approach to code
inner processes of the visual system, but not the ones that
exist in a receptive field’s area.

Our method follows the typical workflow of a CNN, by
lining up layers of different purposes (convolution, pooling,
activation function, batch normalization, dropout, fully-
connected etc.), while a non-linear convolutional layer can
be plugged in practically in all existing architectures. Nev-
ertheless, due to its augmentation of trainable parameters
involved, care should be taken for the complexity of the
overall process. To that end, a CUDA implementation in
Section 4 is also provided.

3.1. Volterra-based convolution

The Volterra series model is a sequence of approxima-
tions for continuous functions, developed to represent the
input-output relationship of non-linear dynamical systems,
using a polynomial functional expansion. Their equations
can be composed by terms of infinite orders, but practical
implementations based on them use truncated versions, re-
taining the terms up to some order r.

In a similar way to linear convolution, Volterra-based
convolution uses kernels to filter the input data. The first-
order Volterra kernel, contains the coefficients of the filter’s
linear part. The second-order kernel represents the coeffi-
cients of quadratic interactions between two input elements.
In general, the r-th order’s kernel represents the weights
that non-linear interactions between r input elements have
on the response. In the field of computer vision, Volterra
kernels have been previously used in [17] for face recog-
nition, serving effectively as approximations of non-linear
functionals.

3.2. Forward pass

For our proposed convolution, we adopted a second-
order Volterra series. Given an input patch I ∈ IRkh×kw

with n elements (n = kh·kw), reshaped as a vector x ∈ IRn:

x =
[
x1 x2 · · · xn

]T
(1)

the input-output function of a linear filter is:

y(x) =

n∑
i=1

(
wi

1xi
)
+ b (2)

where wi
1 are the weights of the convolution’s linear

terms, contained in a vector w1, and b is the bias. In our ap-
proach, this function is expanded in the following quadratic
form:

y(x) =

n∑
i=1

(
wi

1xi
)
+

n∑
i=1

n∑
j=i

(
wi,j

2 xixj
)
+ b (3)

where wi,j
2 are the weights of the filter’s second-order

terms. To avoid considering twice the interaction terms for
each pair of input elements (xi, xj), we adopt an upper-
triangular form for the matrix w2 containing their weights,
so that the number of trainable parameters for a second-
order kernel is n(n + 1)/2. The generic type to compute
the total number of parameters, nV , for a Volterra-based fil-
ter of order r is:

nV =
(n+ r)!

n!r!
(4)

In a more compact form, (3) is written as:

y(x) = xTw2x︸ ︷︷ ︸
quadratic term

+ w1
Tx︸ ︷︷ ︸

linear term

+b (5)

while for the Volterra kernels we have:

w2 =


w1,1

2 w1,2
2 · · · w1,n

2

0 w2,2
2 · · · w2,n

2
...

...
. . .

...
0 0 · · · wn,n

2

 (6)

containing the coefficients wi,j
2 of the quadratic term,

and:

w1
T =

[
w1

1 w2
1 · · · wn

1

]
(7)

containing the coefficients wi
1 of the linear term. The

proposed convolution’s output can thus be rewritten as:

y(x) =



w1,1
2

w1,2
2

w1,3
2
...

wn,n
2



T 

x1x1

x1x2

x1x3
...

xnxn

+



w1
1

w2
1

w3
1

...
wn

1



T 

x1

x2

x3
...
xn

+ b (8)

Note that superscripts (i, j) to weights wi,j
2 denote cor-

respondence to the spatial positions of the input elements xi
and xj that interact.



3.3. Backward pass

The derivation of the equations for the backward pass of
the Volterra-based convolution, is done by adapting the clas-
sic backpropagation scheme to the aforementioned input-
output function of (3). To train the weights of the Volterra
kernels, we need to compute the gradients of the layer’s
output y(x), with respect to the weights wi

1 and wi,j
2 . To

propagate the error, we have to compute the gradients of the
layer’s output y(x), with respect to the inputs xi. Hence,
∂y
∂wi

1
, ∂y

∂wi,j
2

and ∂y
∂xi

are the terms that will be used to opti-
mize the weight parameters of our Volterra-based convolu-
tional layer and minimize the network loss. The mathemat-
ical equations of backpropagation, are as follows:

∂y

∂wi
1

= xi
∂y

∂wi,j
2

= xixj (9)

∂y

∂xi
= wi

1 +

i∑
k=1

(
wk,i

2 xk
)
+

n∑
k=i

(
wi,k

2 xk
)

(10)

4. Quadratic convolution filter implementation
In order to experiment with the non-linear convolution

filters, we used the Torch7 scientific framework. Volterra-
based convolution was implemented as a module integrated
with the CUDA backend for the Neural Network (cunn)
Package of Torch7. Writing a module in Torch7 mainly
consists of implementing the module’s forward pass (3) as
well as the computation of the module’s gradients ( ∂E∂w and
∂E
∂x ), that are used in back-propagation. We denote byE the
error defined by the network’s criterion function and refer to
∂E
∂w as the layer’s weight gradient and ∂E

∂x as the layer’s in-
put gradient. To implement the forward pass in CUDA, we
used the standard im2col [3] pattern to unfold data patches
into columns, followed by a matrix multiplication with the
Volterra-based filter weights. The im2col operation is con-
ducted in parallel by a CUDA kernel, while for the matrix
multiplication we used the well established CUDA BLAS
functions. Subsequently, computing the weight gradients
is, to some extent, similar to computing the forward pass.
Once again, the im2col operation is executed on the input
image as a CUDA kernel and its output matrix is multiplied
with the previous layer’s input gradient resulting into ∂E

∂w .
The most expensive operation in a Volterra-based convolu-
tional layer is the computation of the input gradients. As
already mentioned before, in contrast to linear convolution,
where the input gradient is independent of the provided in-
put, our layer’s input gradient is input-dependent. Thus, to
compute the matrix of input gradients, firstly we compute
an unfolded matrix containing the gradients of the output
with respect to the input. This matrix is then multiplied
with the previous layer’s input gradient using CUDA BLAS

functions. Finally, an appropriate inverse col2im CUDA
kernel aggregate operation results in the final matrix of the
Volterra-based layer’s input gradients ∂E

∂x .
A major difference between the proposed convolution

scheme and linear convolution, is the fact that in our case
∂y
∂xi

is a function dependent on xi. This means that, in con-
trast to standard filters, this term is different for every single
patch of a feature map, resulting in an extra computational
cost, when the error must be propagated to preceding train-
able layers in the network. This cost is proportionate to
Ho · Wo, where Ho and Wo are the height and the width
of the layer’s output feature map, respectively. Our layer’s
code is available at http://vcl.iti.gr/volterra.

5. Experiments
We measure the performance of our proposed Volterra-

based convolution on two benchmark datasets: CIFAR-10
and CIFAR-100 [15], running our experiments on a PC
equipped with Intel i7-5820K CPU, 64GB RAM and Nvidia
Titan X GPU. The Volterra-based convolutional layer was
implemented in Torch7. We first describe the experimental
setup, then we show a quantitative analysis, in terms of pa-
rameters, classification error and train loss, for the proposed
method.

5.1. CNN architecture selection

As explained in Section 4, using the proposed convolu-
tion in multiple layers of a CNN, an extra computational
overhead is introduced during backpropagation. For this
reason, we restrain ourselves to testing such filters only in
the first convolutional layer of a CNN model. We choose
the modern architecture of Wide ResNet [34], which mainly
consists of a convolutional layer, followed by 3 convolu-
tional groups and a classifier. If d is such a network’s depth,
then each convolutional group containsN = (d−4)/6 con-
volutional blocks. In a group, the number of each convo-
lutional layer’s filters, is controlled by the widening factor
k. In our architecture, we follow the above rules, making
three changes: a) we insert a Batch Normalization layer in
the start of the network b) we change the number of the
first convolutional layer’s output channels, from 16 to 16 · k
(i.e., equal to the number of the first group’s output chan-
nels) and c) we change the shortcut of the first block in the
first group, into an identity mapping, as a consequence of
our second change. The first change is crucial to prevent
the output of the Volterra-based convolution from explod-
ing, due to the multiplicative interaction terms xixj . In
our experiments, parameter γ of the affine transformation
y = γx̂ + β that is applied in this layer, settles to values
0 < γ < 1. The second change was chosen so that, when
the Volterra-based convolution is applied in the first con-
volutional layer, there are enough non-linear filters to be
learnt, producing a feature-rich signal. The third change is

http://vcl.iti.gr/volterra


Network stage Output size Model (d=28, N=4, k=10)

Initial convolution 32× 32
Batch Normalization

Conv 3× 3, 16 ·k

Group 1 32× 32 Conv

[
3× 3, 16 · k
3× 3, 16 · k

]
×N blocks

Group 2 16× 16 Conv

[
3× 3, 32 · k
3× 3, 32 · k

]
×N blocks

Group 3 8× 8 Conv

[
3× 3, 64 · k
3× 3, 64 · k

]
×N blocks

Pooling
8× 8 Batch Normalization

8× 8 ReLU

1× 1 Average Pooling, 8× 8

Classifier
Fully-Connected 10(100)

SoftMax 10(100)

Table 1: Network architecture used in our experiments.

done because when a block’s input and output channels are
equal, then its shortcut is an identity mapping, so that its
input is added to its output, without the need to adjust the
feature channels in the shortcut by using a convolutional
layer. In this case, the signal of the first convolutional layer
flows intact through the shortcuts of the first group’s blocks.

The model used in our experiments is described in Ta-
ble 1. To evaluate the impact of applying the Volterra-based
convolution on each dataset, we tested two versions of the
general CNN model. The first version, which serves as the
baseline model, does not use any non-linear convolution fil-
ter. The other version contains non-linear filters in the first
convolutional layer and linear filters in all the convolutional
groups of the network.

5.2. Experimental setup

In all our experiments we use Stochastic Gradient De-
scent (SGD) with momentum set to 0.9 and cross-entropy
loss, with a batch size of 128, training our network for 220

Epoch Learning rate Weight decay
1− 59 0.1 0.0005

60− 119 0.02 0.0005

120− 159 0.004 0.0005

160− 199 0.0008 0.0005

200− 220 0.0008 0

Table 2: Learning rate and weight decay strategy used in
our experiments.

epochs. Dropout is set to 0.3 and weight initialization is
done as in [10]. The learning rate and weight decay strategy
used in the experiments is shown in Table 2. For CIFAR-10
and CIFAR-100, the data-preprocessing operation applied

Batch Normalization

ReLU

Convolution

Batch Normalization

ReLU

Dropout

Convolution

Identity

Input

Output

Batch Normalization

Convolution

Group 1

Group 2

Group 3

Batch Normalization

ReLU

Avg Pooling

Fully-Connected

SoftMax

Input

Output

Figure 1: Structure of the proposed CNN model (left) and a
typical convolutional block (right).



Network Depth #Parameters CIFAR-10 CIFAR-100

NIN [20] - - 8.81 -

DSN [18] 3 - 7.97 34.57

All-CNN [29] 9 1.3M 7.25 -

ResNet with Stochastic Depth [12] 110 1.7M 5.23 24.58

1202 10.2M 4.91 -

pre-act Resnet [11] 1001 10.2M 4.62 22.71

Wide ResNet [34] 40 55.8M 3.80 18.30

PyramidNet [9] 110 28.3M 3.77 18.29

Wide-DelugeNet [16] 146 20.2M 3.76 19.02

OrthoReg on Wide ResNet [26] 28 - 3.69 18.56

Steerable CNNs [4] 14 9.1M 3.65 18.82

ResNeXt [33] 29 68.1M 3.58 17.31

Wide ResNet with Singular Value Bounding [14] 28 36.5M 3.52 18.32

Oriented Response Net [35] 28 18.4M 3.52 19.22

Baseline Wide ResNet 28 36.6M 3.62 18.29

Volterra-based Wide ResNet 28 36.7M 3.51 18.24

Table 3: Test set classification error results on CIFAR-10 and CIFAR-100, using moderate data augmentation (horizontal
flipping, padding and 32× 32 cropping).

to both train and test set’s data, is subtracting the channel
means and then dividing by the channel standard deviations,
computed on the train set. We apply moderate data augmen-
tation, using horizontal flipping with a probability of 50%
and reflection-padding by 4 pixels on each image side, tak-
ing a random crop of size 32× 32.

Epoch
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Volterra-based WRN

Baseline WRN

Figure 2: Train loss on CIFAR-100.

5.3. CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 datasets contain 60.000 32×
32 RGB images of commonly seen object categories (e.g.,
animals, vehicles, etc.), where the train set has 50.000 and
the test set has 10.000 images. CIFAR-10 has 10 classes and
CIFAR-100 has 100 classes. All classes have equal num-
ber of train and test samples. In CIFAR-10, our Volterra-
based Wide ResNet yields a test error of 3.51%, which
shows an improvement over the 3.62% error that we got
using the baseline model, setting the state-of-the-art on this
dataset. In CIFAR-100, our Volterra-based Wide ResNet
yields a test error of 18.24%, which shows an improve-
ment over the 18.29% error that we got using the baseline
model. Our results on CIFAR-100 are outperformed only
by [33], due to the huge number of parameters their model
makes use of. The features fed to the convolutional groups,
when extracted by the non-linear convolution filters, make
the network avoid overfitting. This can be inferred by the
loss plot of our models on CIFAR-100, which is shown
in Figure 2. The Baseline Wide ResNet, although having
constantly lower loss than the Volterra-based Wide ResNet,
yields higher test error. Our Volterra-based Wide ResNets
have only 0.05% more parameters than the Baseline coun-
terparts. A summary of the best methods on these datasets
is provided in Table 3.

5.4. Weight visualization

To get an insight on what features do non-linear filters
learn, we visualize their weights in a simple but efficient
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Figure 3: Weight values of linear convolution filter weights (left), Volterra-based convolution first-order weights (middle)
and Volterra-based convolution second-order weights (right).

manner. For the linear term, the process is straightfor-
ward. For the second-order term, considering the weights
w2 of each filter, we can create n weight vectors qi, qi =
[wi1

2 , w
i2
2 , ..., w

in
2 ]. Reshaping each one of these vectors qi

into a kh × kw matrix, we can see the weights that corre-
spond to the interactions between xi and all of the recep-
tive field’s elements. Figure 4 shows the weights of the
linear term and the interactions captured by a second-order
3 × 3 filter, allowing us to explore their contribution to the
response. Another issue, is the values that the weights of
the non-linear terms settle to. We investigate these values,
given the filters of the first convolutional layer of our Wide
ResNet model, trained on CIFAR-100. The histograms of

Figure 4: Linear term and second-order multiplicative inter-
action weights of a Volterra-based 3× 3 filter.

the weight values are shown in Figure 3. The value distri-
bution of the linear convolution filters’ weights is similar to
that of the quadratic filters’ first-order weights. Also, the
values of the quadratic filters’ second-order weights have
reasonably smaller standard deviation.

5.5. Response profiles

Following the methodology of [2], we use a set of
Volterra-based filters of a Wide ResNet trained on CIFAR-
100, to partly characterize their response profiles. Given
the weights w1, w2 of a filter, we compute its optimal stim-
ulus, xo, and the optimal stimulus of its linear term, xl,
under the constraint that their norms are equal. Then, we
compute four responses, as described in Table 4, and plot
them in Figure 5. Comparing the various responses, we
can infer that the properties of a linear filter with weights
w1, can greatly change when it’s extended to a second-order
Volterra form by adding a weight set w2 with quadratic con-
tributions. The response of a Volterra-based filter is quite
different from the response of its first-order terms, proving
that the second-order interactions contribute significantly to
the functionality of a quadratic filter.

Given the weight subset w1 of a Volterra-based filter,
their optimal stimulus xl has a standard pattern. As the
norm of xl takes values inside a bounded space, the way
xl varies is just a linear increase in all its intensity values,
without altering its general pattern (i.e., all vectors xl are
parallel). However, this does not hold true for quadratic fil-
ters. As the norm of a Volterra-based second-order filter’s
optimal stimulus xo, takes values inside a bounded space, a
rich variety of alterations can be observed in the elements
of xo.

6. Conclusion
The exploration of CNN architectures that are optimized

for using non-linear convolution filters, is an open problem



Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

-0.02

0

0.02

0.04

0.06

0.08

Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

-0.05

0

0.05

0.1

Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

-0.2

-0.1

0

0.1

0.2

0.3

Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

0

0.2

0.4

0.6

0.8

Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

0

0.1

0.2

0.3

0.4

0.5

Patch norm

0.5 1 1.5 2

R
e

s
p

o
n

s
e

0

0.02

0.04

0.06

0.08

0.1

0.12

y
1

y
2

y
3

y
4

Figure 5: Various cases of responses. Red line denotes the response y1 of a Volterra-based convolution filter to its optimal
stimulus xo. Dashed red line denotes the response y2 of the linear subset of a Volterra-based filter’s weights, to xo. Blue line
denotes the response y3 of the linear subset of a Volterra-based filter’s weights, to xl. Dashed blue line denotes the response
y4 of a Volterra-based convolution filter, to xl.

Stimulus Filter Response
xo Quadratic (w1, w2) y1

xo Linear (w1) y2

xl Linear (w1) y3

xl Quadratic (w1, w2) y4

Table 4: Stimuli, filter weight sets and filter responses.

for biologically-inspired computer vision. Questions like
“which is the ideal ratio between linear and non-linear filters
in each convolutional layer?” and “which properties prevail
in the response profiles of each layer’s non-linear filters?”
are of great importance, to shed light in this hitherto unex-
plored category of filters. Any inference about the proper-
ties that are present to this group of quadratic filters, has
the risk of being biased by the dataset used to obtain and
observe them. This happens because the visual response
profiles of the non-linear filters trained in the experiments,
are constrained by the natural statistics of each dataset, as
happens with the sensory system of primates, which adapts
to its environment.

Based on the research results of neuroscience that prove
the existence of non-linearities in the response profiles of
complex visual cells, we have proposed a non-linear convo-
lution scheme that can be used in CNN architectures. Our
experiments showed that a network which combines linear
and non-linear filters in its convolutional layers, can outper-
form networks that use standard linear filters with the same
architecture. Our reported error rates set the state-of-the-
art on CIFAR-10, while being competitive to state-of-the-
art results on CIFAR-100. We didn’t apply our Volterra-
based convolution to more layers, because our target was
to demonstrate a proof of concept for the proposed method.
Our claim was confirmed, as replacing only the first con-
volutional layer’s linear filters with non-linear ones, we
achieved lower error rates. Further testing quadratic convo-
lution filters, is certainly an interesting direction for future
work, to build better computer vision systems.
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2009.

[2] P. Berkes and L. Wiskott. On the analysis and interpretation
of inhomogeneous quadratic forms as receptive fields. Neu-
ral computation, 18(8):1868–1895, 2006.

[3] K. Chellapilla, S. Puri, and P. Simard. High Performance
Convolutional Neural Networks for Document Processing.
In Tenth International Workshop on Frontiers in Handwrit-
ing Recognition, La Baule (France), Oct. 2006. Université de
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