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Abstract: AI-based software applications for personalized nutrition have recently gained increasing
attention to help users follow a healthy lifestyle. In this paper, we present a knowledge-based
recommendation framework that exploits an explicit dataset of expert-validated meals to offer highly
accurate diet plans spanning across ten user groups of both healthy subjects and participants with
health conditions. The proposed advisor is built on a novel architecture that includes (a) a qualitative
layer for verifying ingredient appropriateness, and (b) a quantitative layer for synthesizing meal plans.
The first layer is implemented as an expert system for fuzzy inference relying on an ontology of rules
acquired by experts in Nutrition, while the second layer as an optimization method for generating
daily meal plans based on target nutrient values and ranges. The system’s effectiveness is evaluated
through extensive experiments for establishing meal and meal plan appropriateness, meal variety, as
well as system capacity for recommending meal plans. Evaluations involved synthetic data, including
the generation of 3000 virtual user profiles and their weekly meal plans. Results reveal a high precision
and recall for recommending appropriate ingredients in most user categories, while the meal plan
generator achieved a total recommendation accuracy of 92% for all nutrient recommendations.

Keywords: personalized nutrition; meal plan recommendations; artificial intelligence; ontology

1. Introduction

Food is of utmost importance to human physical and mental health as it not only
provides the necessary energy for the functioning of the human body, but is also a vehicle
that promotes joy, friendship, and social intercourse. However, not all types of food are
equally beneficial to overall health, as their component nutrients are processed differently by
the human body. According to the World Health Organization (WHO), non-communicable
diseases, such as cardiovascular diseases and diabetes, are responsible for 71% of all deaths
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worldwide yet are preventable through effective interventions that tackle shared risk factors,
such as unhealthy diets [1].

As a result, maintaining a well-balanced and nutritious diet is crucial for human
health. However, food globalization, lifestyle changes, economic, and socio-cultural factors
significantly challenge people’s ability to adhere to healthy diets [2]. Therefore, food
intake monitoring systems can provide substantial benefits to users by suggesting ways
to adapt to and maintain a healthy diet. However, to keep users engaged with a healthy
diet and to achieve optimal results and benefits, more personalized approaches to nutrition
support may be required. Personalized nutrition has been formally defined as nutritional
advice, tailored to suit an individual based on their personal health status, lifestyle, nutrient
intake or alternatively on genetic and phenotypic data [3]. To this end, several authors
have highlighted the necessity to design and develop food intake monitoring systems
that can work in tandem with nutritional experts to provide optimized personalized
healthy diets that are adapted to user-specific parameters. Such parameters might include
physical characteristics, dietary choices, health conditions, and preferences, as well as user
behaviours (e.g., consider potential deviations from the prescribed diet) and measurements
(e.g., glucose levels from IoT devices) in real-time [4–6].

This work, which has been carried out within the framework of an ongoing EU-
funded project, namely “PROTEIN- PeRsOnalized nutriTion for hEalthy living” [7,8], aims
to provide a novel artificially intelligent (AI) personalized nutritional advisor that can
generate daily and weekly meal plans after taking into consideration: (a) user profiles (e.g.,
physical characteristics, dietary choices, health conditions, preferences, etc.), (b) nutrition
experts’ recommendations regarding macro- and micronutrients intake, and c) a database
of meal plans developed by nutrition experts for varying population groups. Through
a series of fuzzy rules and filtering mechanisms, the proposed nutritional AI advisor
selects suitable meals from a pool of available meals defined by experts. To achieve this,
meals are filtered based on explicit user preferences (i.e., user-defined favorites) and health
conditions (e.g., gluten-free products for users with allergies, low-fat meals for users with
excess weight/obesity, etc.). Afterwards, the suitable meals are combined to form 24-h
meal plans, effectively leveraging AI to achieve personalized nutrition tailored to users’
preferences and needs.

The main contributions of this work are summarized as follows:

• We propose a knowledge-based recommendation framework adopting a novel 2-
layered architecture that includes (a) a qualitative layer for verifying ingredient appro-
priateness, implemented as an ontology-based decision support system acting on the
meal level, and (b) a quantitative layer acting as a diet plan generator that optimizes
meal plans within expert-defined ranges and thresholds regarding users’ daily con-
sumption. The proposed architecture disentangles the appropriateness of meals from
that of meal plans and allows the independent evaluation of each subsystem.

• We introduce a dataset of expert-validated meals along with their respective meal
plans, i.e., meal plans created and reviewed by experts in Nutrition. We argue that
such a dataset ensures appropriateness in recommendations, which is essential for
any health-related recommender system. We make our dataset available at https:
//doi.org/10.5281/zenodo.7143234 (accessed on 20 October 2022).

• We present thorough evaluations of the proposed framework, combining four key
elements that an ideal meal plan recommender should abide to, namely, meal and meal
plan appropriateness, meal variety, and finally, system capacity for recommending
meal plans. We present results from three types of experiments: (a) a small-scale
experiment (200 meals) for verifying the appropriateness of the recommended meals,
(b) a large-scale experiment (3000 virtual users and 21,000 meal plans) for evaluating
the advisor’s meal plan accuracy and variability, and (c) a medium-scale experiment
(300 virtual users) for examining the system’s recommendation capacity as affected by
user profile complexity.

https://doi.org/10.5281/zenodo.7143234
https://doi.org/10.5281/zenodo.7143234
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The remainder of the paper is organized as follows. Section 2 provides a background
of recommender systems and previous works in food recommendation. Section 3 presents
an overview of the proposed AI-based nutritional advisor, along with a detailed description
of its main components, while Section 4 describes the experiments and presents the results
that validate the subsystems of the proposed framework. Finally, Section 5 concludes the
paper by discussing the benefits of the proposed nutritional advisor for users that want to
maintain a well-balanced and healthy diet.

2. Related Work

With the significant impact of nutrition on non-communicable diseases, there is a
great need for food recommendation systems capable of shifting users towards healthy
and sustainable diets. Generally, recommender systems are the ones producing individ-
ualized recommendations or guiding users in a personalized way towards interesting or
useful choices from a large pool of possible options [9]. The interested reader may find
comparative evaluations and reviews of health recommendation systems and food recom-
mendation systems in the works of De Croon et al., Theodoridis et al., and Trattner and
Elsweiler [10–12]. Food recommender systems are often categorized based on the method
used to recommend healthy diets, namely content-based (CB), collaborative filtering-based
(CF) and hybrid approaches. Moreover, recommendations can take the form of individual
foods [13] or meals [14], but also more complex items like recipes [15], or even 24-h meal
plans [16,17]. A detailed analysis concerning the types of food recommender systems can
be found in [18].

Content-based approaches rely on users’ individual tastes, activities and profile to
tailor recommendations. In [15,19], recipe recommendations were made based on the
collection of scores on a 5-point Likert scale from users who rated their preferences for
specific foods or recipes. In a later work, Harvey et al. proposed a food recommendation
system to accurately estimate the preference of a user for a specific recipe based on the
analysis of the user’s ratings for a set of recipes and their contents (e.g., ingredients,
healthiness, etc.) [20]. On the other hand, Teng et al. proposed two networks to generate
recipe recommendations by utilizing ingredient complements and substitutes based on
regional user preferences [21]. Complement networks of ingredients are constructed via
co-occurrence of the same ingredients in the same recipes, while substitute networks are
derived from user-generated suggestions for modifications. Experiments show that such
an approach significantly outperforms methods that rely on features, such as ingredient
list, cooking method, style, etc. Finally, an Augmented Reality (AR) system was proposed
in [22] to read the barcode of products at a grocery shop and offer recommendations on
healthier alternative products based on user preferences, as well as a prediction for the
impact of these products on users’ health. A disadvantage of content-based approaches is
the cold-start problem, meaning that they cannot offer appropriate food recommendations
to new users that have not yet declared their preferences. Finally, the evaluation of such
systems is based on explicit user feedback which, in most cases, is hard to collect [23].

Collaborative filtering-based approaches attempt to find similarities between user
profiles and, as a result, make recommendations that would be appropriate for similar
users. In [19], the authors tested a nearest neighbour approach using Pearson correlation
on the ratings matrix and found out that it offered poorer performance than their proposed
content-based approach. On the other hand, the authors in [20] showed that Singular Value
Decomposition (SVD) outperformed both the content and collaborative filtering approaches
suggested by Freyne et al. [19]. The authors in [24] developed a mobile application with a
food recommendation system that relies on matrix factorization to fuse ratings and users’
supplied tags and managed to achieve significantly better prediction accuracy than content-
based and standard matrix factorization baselines. In [25], the authors tested various
collaborative filtering-based approaches using a large dataset crawled from the online recipe
portal allrecipes.com [26] and found that the highest performing CF approaches were Latent
Dirichlet Allocation (LDA) [27] and Weighted matrix factorization (WRMF) [28]. Recently,
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an efficient recommendation system that utilizes a medical dataset to automatically detect
which food product should be given to which patient, was proposed [29]. Detection
was based on patient’s disease states and other features, such as age, gender, weight,
calories, protein, fat, sodium, fibre, and cholesterol. Similarly, the authors in [30] proposed
a recommendation system to identify what kind of food product a patient with special
needs should consume. Their system was based on patients’ disease and other factors
such as weight, gender and age using Blockchain technologies for enhanced privacy and
security of the sensitive personal data. A huge disadvantage of the CF approaches is the
fact that they rely only on healthy recommendations without considering users’ preferences,
and thus can be ineffective as users can easily lose their motivation to adapt and maintain
the recommended diet.

Hybrid approaches combine CB and CF to leverage the advantages of each tech-
nique and avoid their drawbacks. Such a hybrid approach was initially proposed by
Trang et al. [31], deducing that developing food recommendation systems that balance user
preferences and nutritional needs is the optimal strategy to follow. Although healthy food
and ‘tasty food’ are not mutually exclusive, there is often an optimization trade-off between
nutrient intake and user preferences [32]. To achieve this, most hybrid approaches rely
on either pre-filtering or post-filtering, depending on whether nutritional needs or user
preferences are filtered first [33].

Pre-filtering approaches usually involve constraint-based recommender systems,
which are relatively rare in the food domain [32]. Yang et al. proposed a food recom-
mendation system that allows a user to disclose dietary constraints (e.g., halal, vegetarian,
or vegan), as well as the user’s nutritional expectations concerning calories, protein, and fat
(increase, decrease or maintain), leading to an initial selection of meals [14]. Then, user
preferences were employed to re-rank the set of meals and recommend the optimal one.
The authors finally recruited users to evaluate their system and provide qualitative feed-
back. Ribeiro et al. proposed a meal recommender that first estimates the nutritional
requirements of the user from user-provided information, such as age, sex, weight, height,
and activity level (using a Fitbit activity tracker) and then recommends food items based
on criteria, such as a user’s dietary choices, avoidance of recipe repetition within the same
week and promotion of meat for lunch and fish for dinner [34]. The proposed meal recom-
mender could produce daily meal plans and was validated through user questionnaires.
In a similar fashion, a multi-criteria decision analysis to filter out foods that do not meet
a user’s health requirements, before considering the user’s overall preferences, was pro-
posed in [35]. In this work, the proposed recommender produces personalized daily meal
plans that were evaluated through the optimization of a traditional diet planning scheme
proposed by Anderson and Earle [36].

On the other hand, post-filtering approaches retrieve a relevant set of meals based
on user preferences, after which a nutrient-based re-ranking of meals is conducted. El-
sweiler et al. developed a food recommendation system that retrieves all recipes with a
score above a certain user preference threshold and re-ranks them based on one or more
health indicators [17]. Then, the food recommendation system uses the top recipes to
propose daily meal plans. Similarly, a post-filtering approach was proposed in [12] that gen-
erates balanced daily meal plans by initially filtering meals based on user ratings and then
evaluating the healthiness of the meals based on an aggregate health indicator. This indica-
tor takes into consideration the WHO and the Food Standards Agency (FSA) nutritional
recommendations for the specific user. Wayman and Madhvanath provide automated,
personalized, and goal-driven dietary guidance to users based on grocery receipt data [37].
User preferences were initially identified by the grocery receipts, and then the proposed
approach provided recommendations so that the users achieve the recommended dietary
reference intake values found in nutrition databases.

Contrary to the previous works, Starke et al. studied how the ranking of optimal
meals affects users’ selection of a meal option and how users can be motivated to select
healthy meal options by re-ranking the optimal meals based on personalized goals [38].
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The evaluation of the proposed approach was performed by employing 17 users that
selected a single meal from a choice of 4 meals. In another work [39], the same authors
studied how the inclusion of food images (i.e., visual attractiveness) alongside meals
can shift users towards healthier meal options, evaluating their approach by employing
239 users who stated their preferred meal out of a set of options. Finally, in [40], the authors
proposed a food recommendation system that takes into consideration users’ ratings
of ingredients to predict preferred meals in a set of meal options. Afterwards, meal
options were re-ranked based on a Cholesterol Factor and the top meals were retrieved.
The Cholesterol Factor tracks down recipes’ nutrient content and penalizes those with
high levels of cholesterol, while rewarding those with relatively low levels of fat, saturated
fat, and sugar. Different meal selection algorithms were evaluated with relevance to user
preferences and the score of the Cholesterol Factor of the retrieved meals.

In this work, an AI-based nutritional advisor is proposed that can be categorized as a
knowledge-based recommender system for meal plans. The proposed nutritional advisor
initially takes into consideration user information such as age, sex, weight, height, dietary
choices, health conditions and preferences and identifies a list of appropriate meals that
satisfy the personalized nutritional needs of the specific user through a powerful ontology
of nutritional rules [41]. This was defined by experts in nutrition and physiology and
is in accordance with the European Food Safety Authority (EFSA) recommendations on
nutrition. Then, daily meal plans are generated through an optimization process and are
provided as recommendations to the user. As a result, the proposed AI-based nutritional
advisor overcomes the drawbacks of CB and CF approaches by considering both nutritional
needs and user preferences, while it employs an ontology of rules to impose nutritional
constraints on the users, thus guiding them towards healthy diets.

3. Methodology

The proposed nutritional advisor can provide daily nutritional plans (NPs) to its
users through the interpretation of their respective profiles. More specifically, the advisor
consists of two components, the Reasoning-based Decision Support System (RDSS) and
the NP generation component. The RDSS generates the set of appropriate meals for a user
based on user profile information, the set of available meals, and an ontology of qualitative
rules acquired from Nutrition experts [41]. The NP generation component combines the
appropriate meals to form daily meal plans for recommendation. By adopting such a
decoupled architecture, we can reason better about the system’s recommendation accuracy
since we can evaluate the recommended meal plans in terms of both meal and meal plan
appropriateness, as well as meal variety among meal plans, all independently of each
other. These components, along with their interconnections, are presented in Figure 1 and
described in detail below.

Figure 1. Architecture of the AI-based nutritional advisor.
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3.1. Supported User Groups and User Profile Modelling

Our system targets 10 user groups including healthy adolescents, seniors and adults,
as well as adults with various health conditions and athletes (Table 1). These user groups
can be further grouped into three main categories:

A. Healthy people that would not be expected to require any specialist supervision.
B. People that would be expected to require nutrition specialist supervision.
C. People with health conditions that would be expected to require nutrition and medical

specialist supervision.

Table 1. Supported user groups.

ID User Group Description

A1 Healthy Adolescents Healthy persons between the age of
15 year(s) and 18 year(s).

A2 Healthy Adults Healthy persons between the age of
18 year(s) and 65 year(s).

A3 Healthy Older Adults Healthy persons over the age of
65 year(s).

B1 Adults with excess weight
Persons between the age of 18 year(s)

and 65 y with a BMI between 25 kg/m2

and 30 kg/m2.

B2 Athletes
Persons between the age of 18 year(s)
and 65 year(s) with a physical activity

level (PAL) of 1.745 and over.

C1 Adults with obesity
Persons between the age of 18 y and
65 year(s) with a BMI of 30 kg/m2

and over.

C2 Adults with CVD

Persons between the age of 18 year(s)
and 65 year(s) with a cardiovascular

disease, i.e., a documented disease of the
heart and/or blood vessels [42].

C3 Adults with T2D

Persons between the age of 18 year(s)
and 65 year(s) with a diagnosis of Type-2
Diabetes from their general practitioner

(GP) or hospital consultant. Additionally,
adults with a fasting plasma glucose of

≥7 mmol/L (126 mg/dL) or a 2-h
plasma glucose of 11 mmol/L

(200 mg/dL) during a 75 g oral glucose
tolerance test or an HbA1c of

≥48 mmol/mol (≥6.5%). These
definitions were created in line with the
International Diabetes Federation (IDF)

clinical practice guidelines [43].

C4 Adults with Iron Deficiency

Persons between the age of 18 year(s)
and 65 year(s) with a diagnosis of iron

deficiency anaemia
(Haemoglobin < 120 g/L).

C5 Adults with a diet low in fruit
and vegetables

Persons between the age of 18 year(s)
and 65 year(s) that are consuming less

than three portions of fruit and
vegetables per day on average.

Within the PROTEIN project, nutritional and medical experts modelled these groups,
producing distinct user profile models for the three supergroups (A, B, and C). The profile
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models consist of a list of profile variables that capture key physical characteristics, dietary
choices, health conditions, and preferences of the user, as well as accompanying reference
ranges, priority, and other attributes of these variables. For simplicity reasons in the present
experimental study, we use a unified profile model for all user groups. The unified user
profile model captures key physical characteristics of the user (e.g., sex, age, etc.), that are
needed for dietary calculations, as well as the dietary preferences (e.g., vegan, halal etc.)
and health conditions (i.e., intolerances, deficiencies, allergies, and medical conditions) of
the user. A detailed view of the profile model variables is provided in Table 2.

Table 2. A detailed list of all user profile model variables.

User Profile Model Variable Group Variables of the User Profile Model

Physical characteristics
Age, Sex, Height, Weight, Physical Activity Level (PAL),
Body Mass Index (BMI, calculated), Basal metabolic rate

(BMR, calculated)

Dietary choices
Pescatarian, Red meat avoider, Vegan, Vegetarian,

Lactovegetarian, Lacto-ovo-vegetarian, Ovo-vegetarian,
Halal, Kosher, None (i.e., no specific food choice)

H
ea

lt
h

co
nd

it
io

ns

Food intolerances Amines, Caffeine, FODMAPs, Fructose, Gluten, Lactose,
Salicylates, Sulfites, None (i.e., no food intolerance)

Food deficiencies
Calcium, Electrolytes, Folic acid, Iron, Magnesium,

Potassium, Sodium, Vitamin A, Vitamin B12, Vitamin C,
Vitamin D, Fluid, None (i.e., no food deficiency)

Allergies

Anise, Avocado, Banana, Celery, Chamomile, Egg, Fish,
Garlic, Kiwi, Linseed, Lupin, Milk, Mustard, Passion fruit,
Peach, Peanut, Pollen, Sesame, Soy, Strawberry, Sulfite,

Sulfur dioxide, Tree nut, Wheat, Gluten, Crustacean,
Mollusc, None (i.e., no allergy)

Medical conditions

Cardiovascular Diseases (CVDs) (Angina, Dyslipidemia,
Hypertension, Peripheral artery disease, Previous,

Myocardial Infarction, Heart disease), Anemia, Celiac
disease, Hypertrophy, Inflammatory Bowel Disease,
Kidney disease, Musculoskeletal problem, Obesity,

Previous stroke, Type 2 Diabetes, None (i.e., no medical
condition)

3.2. NAct Ontology

One of PROTEIN project’s objectives was to develop an ontology, modelling evidence-
based expert knowledge. Previously developed AI expert systems suggested the alteration
of one variable of an individual’s lifestyle, per each consideration of any meal plan adjust-
ment. Whereas, the PROTEIN knowledge-based expert system methodology, the back-
ground basis of which is the ontology, adopts a holistic approach, involving semantic
entities and rules. Through this, we were able to connect (all) user’s implicit and explicit
nutritional and well-being goals, and these goals with the situational condition of the
subject and standardized European nutritional and well-being directives.

Therefore, the Nutrition and Activity (NAct) ontology [41] was developed as an
integral part of the PROTEIN project, serving as the reference knowledge base of the
Reasoning-based Decision Support System (RDSS) component of the AI advisor. Previous
research yielded several key European and International food and nutrient databases
complete with few pre-existing nutritional ontologies, which do not account for rules or
relationships between foods/nutrients and user circumstances (diets and/or conditions).
Of the few ontologies that were identified within the literature, most lacked rich semantic
correlations, presented naive information or lacked the key components that were required
for PROTEIN’s AI advisor.

The two most relevant ontologies found are the Food Ontology (FOKB) [44] and the
HeLiS ontology by Dragoni et al. [45]. Both model food types and nutritional information
about them, with the FOKB delving into details about properties of food products, including
additives and governing agents (e.g., anticaking, antifoaming) and HeLiS modelling foods
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and nutrients as well as physical activities. Both these ontologies manifest the shortcomings
identified above, therefore verifying the need to create a new expert-consolidated ontology
that covers all the requirements and knowledge of the PROTEIN project.

NAct ontology was constructed based on the Methontology methodology [46], follow-
ing the methodology’s seven stages of development: specification, knowledge acquisition,
conceptualisation, integration, implementation, evaluation, and documentation. Apart
from specification, which was meticulously defined early in the ontology’s lifecycle, all
other stages followed several iterations of close collaboration and co-creation sessions
among health and nutrition experts and the technical team (ontology engineers). Several
experts-engineers workshops, trials, and evaluation sessions of the implemented versions
of the ontological model, as well as a piloting cycle with user feedback, were conducted
in this process, that has led to the current version v1.9.5 of NAct ontology (Available on
GitHub at: https://github.com/nutritionactivityontology/nact) (accessed on 20 October
2022). A birds-eye view of the over 750 ontology classes and their interconnections can be
seen in Figure 2.

Figure 2. Birds-eye view of the NAct Ontology, v1.9.5, with over 750 interconnected classes.

The major axes of the NAct ontology consist of (but are not restricted to) what is
presented in Table 3.

https://github.com/nutritionactivityontology/nact


Nutrients 2022, 14, 4435 9 of 28

Table 3. Main NAct ontology axes (superclasses/categories).

NAct Axis Description

Diet

Consists of lifestyle-specific choice of diets (e.g., vegan, halal, etc.).
Preference-related diets (e.g., Atkins, Mediterranean, etc.) were opted not to

be included in the ontology by the experts, since the preference-related
options should be learned by the system and not be constricted by such diets.

Only critically restrictive lifestyle choice diets were thus included.

Condition
Allergies, intolerances, deficiencies and particular medical conditions that
may pertain to a patient or the general population, as defined by the user

profile model (see previous section) are included in this categorisation.

Food

Simple foods (e.g., tomato, pork, orange, etc.) as well as some basic
compound foods (e.g., bread, pasta, etc.) that may be used as constituents
(ingredients) of meals are included in this category. The most important

relations of these foods with conditions and diets are encoded in
corresponding rules within the ontology (e.g., a user with banana allergy

cannot eat bananas). Also, the breakdown of compound foods to their simple
ingredients (based on the basic recipe of each compound food) is encoded in

semantic rules (e.g., a biscuit consists of butter, egg, flour, and sugar).

Nutrient

All major macronutrients and micronutrients are described in this category.
The most important relations of each food to one or more nutrients are

encoded in semantic rules within the ontology (e.g., flour is high in gluten,
dark leafy greens are high in B9, carotenoids and fibre).

Property (Goals)

Several properties of other classes in the ontology are encoded here (e.g., food
attributes such as low-fat, wholegrain, etc.), but the most important ones are

the goals which a patient (user) wants to explicitly reach with their use of
PROTEIN (e.g., increase fibre intake), or that are implicitly mandated by one
or more of their medical conditions (e.g. patients with CVD need to reduce

salt and fat intake).

3.3. Reasoning-Based Decision Support System

The RDSS is a knowledge-based expert system that performs complex decision-making
and inferencing through logical reasoning over experts’ knowledge, user profiles and the
available meal options stored in a database to achieve a first-level filtering of meals and
provide a list of candidate meal options to the NP generation component. Therefore, in its
core, the RDSS comprises a powerful fuzzy inference engine, namely the Lightweight Fuzzy
Description Logic Reasoner (LiFR) [47].

The RDSS allows for semantic matchmaking of candidate meal options against user
information, all under the prism of a particular semantic vocabulary and background
knowledge. To this end, the RDSS considers:

• NAct ontology. Comprises an amalgamation of European guidelines relevant to
nutrition and well-being. It also includes experts’ knowledge, pertaining to foods and
their relation to nutrients and their well-being consequences, restrictions and specific
nutritional needs relevant to user conditions, as described in the previous section.

• User profile. Each user profile consists of pre-declared, explicit information (user
conditions, diet, goals).

• Available meals. A database of over 2000 consolidated meals, created by nutritional
experts and used by the RDSS to reason upon and subsequently filter in terms of
suitability to the user.

The RDSS is responsible for the pre-filtering of meals to:

a. Reject meals which contain foods that are incompatible with a patient’s profile (e.g.,
would trigger one or more of their allergies or are restricted by doctors due to their
medical condition).

b. Promote meals and/or restaurant menu items which contain foods that in turn contain
nutrients that the user needs to consume more of based on their profile. For instance,
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this might be due to an explicit goal, or a medical condition induced goal, to increase
the intake of a certain nutrient.

The advantages of the RDSS are that it excludes or promotes certain meal constituents
that are unwanted or even potentially hazardous to the user. It can also boost constituents as
per the user’s health needs and thus alleviates the cold-start problem that occurs whenever
new meals or new users are introduced to the proposed nutritional advisor. The latter is
achieved by leveraging the nutritional information of each meal and its suitability according
to the user group and the explicit preferences declared by the user. The output of the RDSS
is a list of acceptable meal options that are then fed to the NP generation component for the
formation of nutritional plans.

3.4. Nutritional Plans Generation

The NP generation component is responsible for creating daily nutritional plans based
on the quantitative rules for nutrients created by a group of experts, such as medical experts,
nutritionists, as well as, physical activity experts. The generation of each plan also depends
upon the list of appropriate meals recommended by the RDSS. More specifically, the NP
generation component receives as input:

a. Expert validated nutritional rules: These are quantitative nutritional rules validated
by the group of experts, that define the target energy intake (calories per day), as well
as appropriate ranges of macronutrients (i.e., carbohydrates (CHO), fat, saturated
fatty acids (SFA) and protein) and other dietary components (i.e., fibre and fruits and
vegetables). A meal plan should abide by those rules, based on the user’s profile and
the personalized goals selected by the user (i.e., increase or lose weight). The experts
classified these ranges as essential (i.e., the NP must abide by them), desirable (i.e.,
the NP should abide by them) and non-essential (i.e., the NP can disregard them).

b. User profile: Information about gender, user groups and medical conditions are
important to define which nutritional rules should be applied to the users.

c. Candidate meals: A list of appropriate-for-the-user meals recommended by the RDSS.

3.4.1. Expert Validated Nutritional Rules

Experts in the fields of nutrition and dietetics worked towards proposing specific
recommendations on macronutrient and micronutrient reference intakes and intakes of
other important dietary components. To this end, the experts utilized the most up-to-
date evidence published by EFSA and WHO to shape their recommendations [48–50]
as illustrated in Tables 4 and 5 below (EI, Energy Intake; BW, body weight; 1 portion is
equivalent to 80 g. Dark background denotes that the corresponding reference intake
values are essential for this user group, an intermediate background denotes that the
corresponding reference intake values are desirable, while a white background denotes
that the corresponding reference intake values are non-essential.) for two example user
groups, adults with obesity and with Type 2 diabetes respectively.

Table 4. Rules for Adults with Obesity category.

Adults with
Obesity

CHO [48]
%EI

Protein [50]
g/kg (BW) Fat [49] %EI Saturated

Fat [49] %EI
Fibre [48]
g/day(s)

Fruit [51]
Portion

Vegetable [51]
Portion

Male 45 ± 10% 0.8–1.2 25–30 5–10 30–35 2–5 3–5
Female 45 ± 10% 0.8–1.2 25–30 5–10 20–25 2–5 3–5

Table 5. Rules for Adults with Type 2 Diabetes category.

Adults with
Obesity

CHO [48]
%EI

Protein [50]
g/kg (BW) Fat [49] %EI Saturated

Fat [49] %EI
Fibre [48]
g/day(s)

Fruit [51]
Portion

Vegetable [51]
Portion

Male 45 ± 10% 0.8–1.4 30 ± 10% 5–10 30–45 2–5 3–5
Female 45 ± 10% 0.8–1.4 30 ± 10% 5–10 30–45 2–5 3–5
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The rules are used by the NP generation component that utilizes the list of candidate
meals to fill daily meal plans by randomly placing and combining meal options for the
different meals of the day (i.e., breakfast, morning snack, lunch, afternoon snack, dinner,
and supper). To evaluate the appropriateness of each generated NP for a given user profile,
a fitness function is defined that evaluates how much a NP fits the specific user profile.
In this work, the fitness function is defined as follows:

NPf itness = Scalories × Smacronutrients × Smicronutrients, (1)

In the above equation, Scalories is the absolute difference between the energy intake of
the recommended NP (i.e., sum of the calories of all meals in a day) and the target energy
intake defined by the nutritional experts for this type of user. Moreover, Smacronutrients and
Smicronutrients are defined in a similar way using the following equation:

S∗ =
N∗

∏
i=1

wi pi, (2)

where ∗ stands for either macronutrients or micronutrients, N is the number of macronu-
trients or micronutrients, wi is a weight factor that is equal to 1 if the specified nutrient is
classified by experts as essential or desirable, otherwise wi is equal to 0 and pi is a penalty,
defined as follows:

pi =


‘PenaltyValue’, if nutrient falls out of KT range
‘AwardValue’, if nutrient falls within KT range
‘EssentialAwardValue’, if nutrient falls within KT range and is essential

Similar to [34], our modelling scheme involves scores which are defined either as
distances from thresholds or award/punishment values for ranges defined in KT. Extra
awards are given to NPs that fall into the red-highlighted ranges of KT, e.g., iron for ‘Adults
with Iron Deficiency’ or CHO for ‘Adults with Type 2 Diabetes’. In this context, we have
also defined a fixed value of 10, 10−1, and 10−2 for penalty, award, and essential award
values, respectively. These values have been determined through a trial-and-error process.

Meal variety is also a central aspect of our recommendation framework. Establishing
variety in the results of a recommender system poses a challenge since it is directly related to
the attractiveness of the system but also has a negative effect on performance, as described
in [23]. To address these shortcomings, we have defined several variety filters, described in
the following.

Filtering out repeating foods. A NP is composed of meals, and each meal may contain
any number of foods (i.e., ingredients). We aim to reduce the number of repeating foods
within each NP, and specifically to limit each food to one appearance per NP, to exclude
repeating recommendations that might be frustrating to users. For example, users do
not want to see ‘bananas’ being recommended as part of both morning snack and dinner.
Regarding the technical details of implementing this type of filter, our logic awards an
extra value to the NP if it does not contain the same food twice. Otherwise, the number
of repeating foods is used as a weight in the calculation of the overall NP fitness (i.e.,
the greater it is, the larger the final distance and the less optimal the NP is).

Filtering out repeating meals. We also consider the case in which different NPs might
contain the same meals. In such cases, we want to reduce the number of repeating meals
recommended every week. Therefore, we defined a threshold with which a certain meal
can be contained in up to three different NPs. Technically, the filtering of repeating meals
takes place after all NPs have received a fitness score, so that we can start iterating from the
fittest solution and proceed in decreasing order.
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Filtering out repeating meal sequences. Apart from individual meal repetitions,
there is also a chance that the same sequence of meals might be repeating in different
NPs within each week. For that reason, we have defined a threshold with which a certain
sequence of meals cannot be contained in any two NPs. Like the previous filter, repeating
meal sequences are filtered after fitness evaluation is completed.

3.4.2. PROTEIN Meal Database

A total number of 381 24-h meal plans accounting for all user groups were created.
As shown in Table 6, the 24-h meal plans consist of 3 separate meals (breakfast, lunch,
and dinner) and 3 snacks (mid-morning, mid-afternoon, and evening), as shown in Table 6.
The plans were devised utilising healthy eating principles such as incorporating the rec-
ommended number of fruit and vegetable portions in accordance with EFSA [52] and
WHO recommendations [53]. Furthermore, for specific user groups such as adults with
cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), wholegrains have also
been identified as an important component of the diet and were incorporated within the
3 separate meals created. Meal plans developed for other specific user groups, such as
adults with iron deficiency anaemia, were similarly tailored, in this case with an emphasis
on including varied iron sources as well as optimising vitamin C, which has been shown to
enhance the absorption of iron [54]. As the PROTEIN Project is an EU trial, cultural dietary
choices were also carefully considered. An example was the incorporation of common foods
found within the Mediterranean diet to provide meal plans for participants from Greek and
Portuguese institutions. It was also important to ensure that there were foods provided on
these meal plans that were accessible to individuals from different countries. An example
is cereal brands and different cheese types (feta for Greek participants/ cheddar for the UK
and Edam for Germany/ Belgium), to optimise user engagement and satisfaction.

To create the required meal plans, we first created a meal plan name according to
the naming convention of ‘partner name–group code–calories–index–gender–diet’. As an
example, a meal plan devised for a female, vegetarian user with iron deficiency, created by
the University of Surrey experts, would be entered into the system as: UoS-C1a-1500-001-F-
Vegetarian. Gender was presented as either M, F or A (male, female, or all) while diet was
specified as NA (not applicable), Vegetarian, VegetarianL (lacto), VegetarianO (ovo), Vegan,
Pescatarian, RMA (red meat avoider), Halal or Kosher.

Following this, we used the Nutrium dashboard [55] and its food composition data
and ingredient lists to ‘build’ the proposed meals and snacks. Moreover, country-specific
databases were used where available, for example, the UK meal plans were populated
exclusively using the McCance and Widdowson food tables [56]. Furthermore, experts
chose in their raw state or the most simplified cooked option, e.g., chicken would be listed
as the raw cut that the partner wants the user to specifically utilise (such as the chicken
breast/thigh/wing) for the meal. Following this, the cooking method was also specified,
and the food quantity was amended, as required, and listed as g/portion. Where specific
foods could not be found within the Nutrium database of foods, we added custom foods.

Following initial meal plan creation, it was agreed that these templates should be
supplemented with recipes/instructions on how to combine and cook the foods listed,
especially for some of the lunches and dinners where more than basic preparation was
required. The list of different cooking methods and serving suggestions currently available
for use in the recipes are shown below in Table 7. Table 8 illustrates the creation of a recipe
by selecting appropriate instructions for each ingredient.
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Table 6. Examples of a generic meal plan template and suggested meal titles (suitable for all users).

Meal Plan # Meal Type Meal Meal Title

1

Breakfast

Honey, Yogurt, Milk,
Raspberries,

Strawberries, Bananas,
Cereals

Yogurt with oats, fruit &
honey

Morning snack Bananas Banana

Lunch
Beetroot, Carrots,

Cheese, Olive oil, Burger,
Quinoa

Beef with quinoa, cheese
& fresh vegetables

Afternoon snack Strawberries Strawberries

Dinner

Turkey slices, Cheese,
Pepper, Tortillas, Rocket,

Tomatoes, Avocado,
Cucumber

Turkey & cheese tortilla
with vegetables

2

Breakfast
Mini whole meal toast,

Jam and preserves, UHT
skimmed milk, Apple

Toast with jam, glass of
milk & apple

Morning snack Wheat and rye brown
bread, eggs, Banana

Brown bread with eggs
& banana

Lunch

Carrot Soup, Wheat and
rye bread, Rice, Chicken,
Vegetables, Oil, Apple,

Orange juice

Carrot soup & chicken
and rice with vegetables

Afternoon snack Yogurt, muesli, Banana Muesli & yogurt with
banana

Dinner

Vegetable Soup, Wheat
and rye bread, Sweet
potato, Roasted pork
loin, Vegetables, Oil,

Apple

Vegetable soup &
roasted pork with sweet

potatoes

Supper Yogurt, Jam, Nuts Yogurt with jam & nuts

3

Breakfast Breakfast cereal, Milk,
Smoothies

Breakfast cereal, Milk,
Smoothies

Morning snack Bananas Bananas

Lunch Sandwich, Potato crisps,
Lettuce, Tomatoes

Sandwich, Crisps,
Lettuce, Tomatoes

Afternoon snack Strawberries Strawberries

Dinner
Turkey, Sauce, Spinach,

Pepper, Courgette,
Creme caramel

Turkey, Spinach, Pepper,
Courgette, Dessert

4

Breakfast Eggs, Bread, Spinach,
Peppers

Eggs, Bread, Spinach,
Peppers

Morning snack Bananas Bananas

Lunch Vegetable stir fry mix,
Rice, Chicken, Yogurt

Vegetable stir fry, Rice,
Chicken, Yogurt

Afternoon snack
Salmon, Broccoli,

Potatoes, Dressing,
Butter

Salmon, Broccoli &
Potato

Dinner Drinking chocolate
powder Drinking chocolate

5

Breakfast Muesli, Yogurt Muesli, Yogurt
Morning snack Peaches Peaches

Lunch
Rye bread, Radish,

Cucumber, Vinegar, Oil,
Munster cheese, Yogurt

Open-faced sandwich &
salad

Afternoon snack Strawberries, Crackers Strawberries, crackers

Dinner
Salmon, Potatoes, Soup,
Broccoli, Garden peas

and carrots

Soup, potato, fish &
salmon
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Table 7. Examples of the meal cooking and preparation options for recipe development within the
meal plans.

Amount Cut Cook Until Cut

Weighed (as above) Whole Cook through Simmer in pan

One handful Cut into cubes Cook until golden Stew in saucepan
with lid

One cup Cut into slices Cook until charred Casserole in pot with
lid

1 tablespoon Dice finely Cook until soft Oven roast
1 teaspoon Cut in half Cook al dente Grill

1 pack Grate Cook to preference Heat through
1/2 pack Peel into ribbons Season/ Mix Stir fry

Whole Cut into wedges Season with pinch of
salt Cooking duration

Halved Cut into pieces Season with grind of
salt & pepper 5 mins

Quarters How to cook Season with drizzle of
olive oil 15 mins

Initial Prep Follow instructions
on packaging Drain 25 mins

Remove from
packaging Grill (no oil) Chop & add herbs 35 mins

Remove skin Grill (lightly oiled) Sprinkle on herbs 45 mins

Peel Skin Boiled in unsalted
water Mix in herbs 1 hour

Skin on Boiled in salted water Add sauce 1 hour 0 mins
Wash in cold water Steam Spread on top 2 hours +

Drain Poach Butter or low-fat
spread N/A

Cut stem Oven roast (lightly
oiled) Add dressing Serve

Rub with oil &
seasoning Fry (no oil) Drain & mash with

butter or seasoning On a single plate

Cut Fry (lightly oiled pan) Mix in blender In a bowl
Whole Pan cook in butter Method Eat with hands

Cut into cubes Bake Drain Garnish
Cut into slices Raw Boil in unsalted water Add herbs

Dice finely Mix Wash & chop Drizzle on olive oil
Cut in half Add to pan Wash & slice Add croutons

Grate Stir fry Drain & add or heat Add herbs & oil
Peel into ribbons Toast Steam Add dressing
Cut into wedges Warm through Add to pan Pinch of salt
Cut into pieces Heat-up Pour over Pinch of salt & pepper

Last Step Combine Heat & pour over Add gherkins

Drain pasta Mix Grate on top Add gherkins &
mayo

Drain rice Pour on top Peel & slice N/A

Wash salad Serve separately Stir fry Serve with sour
cream

Grate cheese Stack Served with Garnish with mustard
Mix in herbs Wrap Fry & add Side dish

Mix salad & dressing Create sandwich Bake Bread & butter
Add water & stir Chop Glass of milk

Green salad Potato salad
Garlic Bread
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Table 8. Example of the meal cooking and preparation required for a single meal.

Existing meal title Bass, Rice, Pak Choi, Soy Sauce, Cabbage, Carrots, Onions
New meal title Sea Bass & Rice Stir Fry

(descriptive & user friendly)
Food #1 Bass, sea, fresh only, baked
Food #2 Rice, brown, basmati
Food #3 Pak Choi, steamed, whole
Food #4 Cabbage, red, raw
Food #5 Carrots, old, raw
Food #6 Soy Sauce, light & dark varieties

Method generated Bass, sea, fresh only, baked, cook through
Rice, brown, basmati, boiled in unsalted water, cook until soft
Pak choi, steamed, whole, stir fry cook al dente
Cabbage, red, raw, stir fry
Carrots, old, raw, stir fry
Soy sauce, light & dark varieties, stir fry
Combine: mix
Serve: in a bowl

4. Experimental Results

For the evaluation of the proposed recommendation framework, we considered four
main aspects that a real-time nutritional advisor should retain: (a) meal appropriateness,
(b) system capacity for generating meal plans (c) meal plan appropriateness, (d) meal variety.
The 2-layered, decoupled architecture that was adopted for our suggested knowledge-
based recommendation framework allows the evaluation of each of these conditions in
isolation, that is, in different experiments. That way, we can get a much more detailed
view regarding the recommendation accuracy and capabilities of the system. For each
experiment, a number of virtual users were created, and their respective meal plans were
generated according to their profile characteristics and user category. Finally, for measur-
ing the performance of the system we employed different evaluation metrics, specific to
each experiment.

4.1. Recommended Meals’ Appropriateness

Meal rejections due to critical patient conditions consist the most critical aspect of
the RDSS. It is the only point in PROTEIN where we make sure to avoid foods and/or
nutrients that may pose a health threat to the users. It was thus critical to make sure that
no such user-hazardous foods were allowed to pass to the meal plan generation, i.e., that
the precision of the RDSS was at 100%. In addition to precision, recall was estimated, to see
whether the RDSS was too strict in this process, i.e., rejecting meals that may have been
not harmful to the user. Since this is a delicate and critical evaluation, all assessments were
done manually, very carefully examining each food in the experiment’s candidate pool.
To facilitate this cumbersome process, the candidate pool was reduced to a manageable
number of candidates, i.e., 200 meals (out of the total 2266 in the system), randomly selected
from all meal categories (breakfasts, snacks, dinners, etc.). The results can be seen in Table 9.

Values depicted are in the [0, 1] interval, effectively corresponding to a 0–100% success
rate. The profiles used were also carefully selected to represent simple food restrictions
(banana, avocado), direct food restrictions (kosher, banana and avocado, vegan, salicylates,
FODMAPs, tree nuts), nutrient restrictions (lactose, gluten, T2D, fructose) and a combi-
nation of restrictions (all). In addition, selection sought to cover all kinds of restrictions,
i.e., allergies, intolerances, medical conditions, and dietary choices and lastly to cover from
less restrictive user profiles (e.g., banana and avocado) to, increasingly, the most restrictive
types of user profiles observed in the system (e.g., vegan). The latter (more restrictive user
attributes) is directly correlated with the availability of suitable meals in the system that
may accommodate such a range of restrictions.
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Table 9. Evaluation (precision/recall/f-measure) of meal rejections by the RDSS.

Condition/Diet Precision Recall F-Measure

Banana + Avocado allergy 1.000 1.000 1.000
Tree nuts allergy 1.000 1.000 1.000

Salicylates intolerance 1.000 1.000 1.000
Lactose intolerance 1.000 0.995 0.997

FODMAPs intolerance 1.000 0.995 0.997
Gluten intolerance/allergy 1.000 0.990 0.995

Fructose intolerance 1.000 0.960 0.979
T2 Diabetes 1.000 0.990 0.995

Vegan 1.000 1.000 1.000
Kosher 1.000 0.966 0.983

Average 1.000 0.989 0.995

Evidently, the main objective of achieving 100% precision is achieved. In addition,
recall is very high, and in some cases 100% accurate, for all different categories, thus proving
that the RDSS is not unnecessarily restrictive and accurately takes advantage of the pool of
meal candidates in PROTEIN. All recall errors were examined to be due to unnecessary
additions in food descriptions that do not affect precision but pose extra restrictions in
some cases. e.g., turkey ham was correctly annotated as such, but also as plain ham, which
in the ontology is subsumed by pork, thus producing all recall errors for the kosher user.

The RDSS also promotes meals containing ingredients which are high in a particular
nutrient, that the user explicitly or implicitly (due to a condition) should increase their
intake of. It does not consider the absolute concentration of said nutrient, but rather, based
on relevant NAct axioms, it assesses whether foods rich in this nutrient are included in
the meal, e.g., promote spinach meals for iron deficiency since spinach is rich in iron.
The absolute concentration is afterwards considered in NAP generation component to
produce the meal plans. The goal of RDSS at this level is to sort out meals so as to provide
an appropriate initial selection for NAP generation component.

It was thus important to assess whether the meals that were promoted were in fact a
part of the top-n meals in which the examined nutrient’s concentration is highest. The as-
sessment was made for 4 different values of n and the results can be seen in Table 10.
Again, the nutrients-to-increase intake of selection was carefully selected to represent an
indicative range of micronutrients and macronutrients, and the pool of candidates is the
same randomly selected 200 meals from all categories, as before.

Table 10. Evaluation (top-n accuracy) of meal promotions by the RDSS.

Accuracy
Deficiency/Goal to Increase Top-20 Top-10 Top-5 Top-3

Protein 1.000 1.000 1.000 1.000
Fat 0.800 0.800 1.000 1.000

Carbohydrates 0.750 0.800 0.800 1.000
Iron 1.000 1.000 1.000 1.000

Average 0.8875 0.900 0.9500 1.000

An interesting observation regarding meal promotion by the RDSS is that the results
are not improving the more the proposed meals are (i.e., in the top-20), but rather the
higher the quality/concentration of the nutrient is in a meal (i.e., being in the top-3). This is
most probably because the RDSS promotes meals with foods that are especially rich in the
said nutrient, instead of meals that may contain small amounts of different foods that may
cumulatively result in the meal being somewhat rich in the said nutrient.
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4.2. Meal Plan Generation Capacity

Starting from a large but also finite number of validated meals (2266 meals in total) and
proceeding with consecutive filtering of the appropriate ones (for each user) by the RDSS
and NP generation processes, a valid concern is if the AI Advisor can reliably generate meal
plans and to what extent, especially for challenging user profiles. To gain insight into these
questions, we created up to 300 virtual user profiles and conducted several experiments.

As was detailed in Section 3.1, the user profile contains a multitude of variables to
capture the possible dietary choices or health conditions of a user: 9 dietary choices, 8 food
intolerances, 12 food deficiencies, 27 allergies, and 16 medical conditions, totalling to
72 conditions. For each variable group the user profile accepts none, or as many as all
possible conditions, which leads to a very high number of possible combinations and, thus,
possible user profiles (although not all are realistic profiles). To limit the number of possible
combinations to a manageable set of virtual user profiles, we set up some rules for profile
creation aiming at the creation of both realistic and relatively challenging profiles. Non-
realistic profiles are not the focus in the context of this paper, while the obvious assumption
is that less challenging profiles would lead to better results.

The rules that have been applied for the creation of realistic virtual user profiles were
that: (a) the profile could have up to one condition per group, excluding the medical
conditions group, and (b) the profile could have each condition in a group with a proba-
bility corresponding roughly to what applies in real life (details are provided below per
experiment). The rules that have been applied for the creation of challenging virtual user
profiles were that: (c) the profile should have at least one medical condition (and up to
two, along with ‘Obesity’), and (d) certain, indicative, most challenging conditions were
selected. The latter were identified as the ones that, according to the NAct ontology, rule
out the highest number of foods and, thus, meals.

Two experiments were conducted, where up to 300 virtual user profiles were created
following the rules and the RDSS and NP generator processes were run with a time limit
of 2:45 min for the RDSS and 3:15 min for the total processing to simulate near real-time
conditions. Two iterations were conducted for each experiment as we consider that, in real
life conditions, a second attempt from the side of the real user to create a plan would be
probable, in case of a failed first attempt. In the second iteration we processed only those
profiles for which the AI Advisor was not able to create a NP during the first iteration.

The results of the first experiment are shown in Figure 3 below. The overall NP creation
rate was 70% in the first iteration and 75% in the second iteration of this experiment. This
experiment has been conducted with 219 virtual user profiles that had:

• None (51%) or one of the following specific food choices: Pescatarian (13%), Red meat
avoider (11%), Vegan (15%), Vegetarian (10%)

• None (47%) or one of the following food intolerances: Fructose (21%), Lactose (18.7%),
Salicylates (8.7%), Sulphites (4.6%)

• None (70%) or one of the following food deficiencies: Iron (30%)
• None (54%) or one of the following allergies: Banana (8%), Egg (8%), Peanut (11%),

Tree nut (11%), Crustacean (8%)
• Heart disease (54%) or Type 2 Diabetes (46%), and Obesity (63%) or not (37%)

The results of the second experiment are shown in Figure 4 below. The overall NP
creation rate was 76% in the first iteration and 83% in the second iteration of this experiment.
This experiment has been conducted with 300 virtual user profiles that had:

• None (49%) or one of the following specific food choices: Pescatarian (12%), Red meat
avoider (12%), Vegan (16%), Vegetarian (12%)

• None (45%) or one of the following food intolerances: FODMAPs (23%), Gluten (19%),
Lactose (6%), Salicylates (7%)

• None (79%) or one of the following food deficiencies: Iron (21%)
• None (53%) or one of the following allergies: Banana (8%), Egg (9%), Peanut (8%),

Tree nut (13%), Crustacean (10%)
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• Heart disease (53%) or Type 2 Diabetes (47%), and Obesity (65%) or not (35%)

Figure 3. NP creation rate for virtual user profiles with (a) at least the condition(s) mentioned,
and (b) exactly the condition(s) mentioned (first experiment).

A first observation is that the overall rate in all experiments is ranging from 70% to
83%. From the (b) parts of the figures above we can clearly observe that the NP creation
rate drops as the number of conditions in the profiles increases. This is expected since an
increased number of conditions introduce a progressively increasing number of restrictions
on what meals can be included in the suggested dietary plan. In the (a) parts of the figures
above we observe that, in most cases, the rate follows approximately the overall rate,
ranging from 60% to 100%. There are, however, a few exceptions where the rate drops
significantly: when the user profile includes a salicylate (as low as 37%) or fructose (as
low as 54%) intolerance or when it indicates a preference for a vegan diet. The low NP
creation rate in these specific categories of user profiles can be attributed to the relatively
small number of appropriate validated meals for such profiles that have been created to
date by the PROTEIN project experts.
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Figure 4. NP creation rate for virtual user profiles with (a) at least the condition(s) mentioned,
and (b) exactly the condition(s) mentioned (second experiment).

4.3. Meal Plan Accuracy
4.3.1. Experiment Description

The proposed AI-based nutritional advisor is validated through an experiment includ-
ing 3000 virtual users. The gender, age, height, weight, and health conditions of users were
selected based on either normal or uniform distributions to represent a typical population
of users for the proposed nutritional advisor. More specifically, the age of users was in the
range of 20–65 years old, the gender of users was equally distributed among males and
females, the height and weight of males were in the ranges of 1.60–2.00 m and 60–180 kg
respectively, while the height and weight of females were in the ranges of 1.50–1.90 m and
40–150 kg, respectively. Based on their profiles, the users were distributed across the 10 user
groups presented in Table 11, with more significance given to the CVD, Type-2 Diabetes
and Adults with Obesity categories.
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Table 11. Virtual users’ distribution in PROTEIN’s user categories.

User Group Number of Users

Healthy adults 85
Healthy adolescents 158
Healthy older adults 131
Overweight adults 92

Athletes 103
Adults with obesity 635
Adults with CVD 706
Adults with T2D 766

Adults with iron deficiency 231
Adults with low fruits & vegs 93

4.3.2. Meal Plan Composition

The experiment ran for all 3000 virtual users for a period of 7 days; thus the proposed
AI-based nutritional advisor created a weekly meal plan for each user. Each daily meal
plan is formulated based on 6 meal types consumed during a day, namely, breakfast,
morning snack, lunch, afternoon snack, dinner, and supper. The experiment shows that,
for the 21,000 generated daily meal plans (i.e., 3000 users multiplied by 7 days), there
are respectively 269 breakfasts, 246 morning snacks, 236 lunches, 231 afternoon snacks,
220 dinners and 48 suppers which are unique, as shown in Table 12. These meal options
are selected based on the user profiles (i.e., preferences, user groups, medical conditions,
etc.) and the transcoded knowledge of the nutritional experts.

Table 12. Unique meal options for the various meals in a daily plan.

Meal Type Unique Meal Options

Breakfast 269
Lunch 236
Dinner 220
Supper 48

Morning snack 246
Afternoon snack 231

Examples of meal options available in the database of meals for various meal categories
are presented in Figure 5.

4.3.3. Results

Table 13 presents the accuracy of the daily meal plans generated by the proposed
AI-based nutritional advisor in terms of macronutrients and other dietary components
for the different user groups. A missing value (i.e., “N/A”) is attributed to the fact that
the nutritional experts did not provide essential or desirable rules for adults with obesity
as far as other dietary components were considered and thus the proposed nutritional
advisor is unconstrained to choose the values it sees fit, making the comparison with
target values not applicable in this case. The results show that the average macronutrients
and other dietary component accuracy between the generated daily meal plans and the
target values is 92.65% and 85.86%, respectively, for all user groups. This means that the
proposed AI-based nutritional advisor manages to generate appropriate meal plans, whose
macronutrients and other dietary components are on average more than 85% probable to
be inside the target ranges of the nutritional experts no matter the medical condition of
the user. The proposed nutritional advisor achieves the lowest accuracy for the Athletes’
group, which is mainly attributed to the small number of available meal options which
meet the recommendations to this specific user group.
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Figure 5. Examples of meal options for breakfast, lunch, afternoon snack and dinner, available in the
database of meals.

As far as energy intake is concerned, a comparison is performed between the values
accrued by the generated meal plans of the proposed AI-based nutritional advisor and
the personalised daily requirements calculated for each profile. Table 14 presents: the
absolute difference in percentage between the recommended and target energy intake
values, the Pearson correlation that defines how close the two distributions of the proposed
and target energy intake values are, and the results of a t-test analysis (p-value).

It can therefore be concluded that the overall mean difference between the proposed
and target energy intake is +7.32%, indicating the accuracy of the generated daily meal
plans. The largest difference in the energy intake is noticed for Athletes, and it is attributed
to the very high energy intake goals (>3000 kcal daily) set for this group, which cannot be
easily supported by the existing meal options in the database, thus leading the predicted
energy intake values to be usually lower than the required energy intake values.

Table 13. Recommendation accuracy of the generated daily meal plans in terms of macronutrients
and other dietary components.

User Group Macronutrients Accuracy (%) Other Dietary Components
Accuracy (%)

Healthy adolescents 99.32 89.24
Healthy adults 99.75 97.65

Healthy older adults 99.78 95.09
Adults with excess weight 93.84 94.10

Athletes 82.11 31.07
Adults with obesity 98.66 N/A
Adults with CVD 81.36 N/A
Adults with T2D 97.58 97.24

Adults with iron deficiency 95.55 75.53
Adults with a diet low in

fruits and vegetables 99.62 99.66

Overall accuracy 92.65 85.86

On the other hand, the metric of Pearson correlation is employed to study the possi-
bility of the proposed energy intake values being close to the target energy intake values
by chance. This metric is computed by considering the two sets of energy intake values as
distributions and studying their characteristics. From the results, it is shown that for each
user group and for all users, the Pearson correlation is above 0.98, meaning that the two
distributions are in fact highly correlated with each other. For the overweight adults and
especially adults with Type 2 diabetes, the Pearson correlation reaches values above 0.95,
which shows an almost perfect correlation. In the same fashion, from the t-test results, it
can be deduced that the hypothesis that the two distributions of the proposed and target
energy intake values are similar is statistically significant, as shown from the low p-values
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(<0.001). These results demonstrate the ability of the proposed AI-based nutritional advisor
to generate daily and weekly meal plans compatible with the plans nutritional experts
would recommend for the tested user groups, as far as energy intake is concerned.

Table 14. Comparison of energy intake between generated daily meal plans and experts’ recommen-
dations.

User Group
Energy Intake

Difference (Mean ±
Std)

Pearson Correlation (r) p-Value

Healthy adults 1.18% ± 2.70% 0.999 <0.001
Healthy adolescents 6.84% ± 17.48% 0.985 <0.001
Healthy older adults 4.29% ± 11.28% 0.993 <0.001
Overweight adults 4.49% ± 7.98% 0.995 <0.001

Athletes 18.35% ± 17.57% 0.981 <.001
Adults with obesity 5.40% ± 14.13% 0.990 <0.001
Adults with CVD 14.26% ± 24.48% 0.969 <0.001
Adults with T2D 6.88% ± 16.47% 0.987 <0.001
Adults with iron

deficiency 10.15% ± 15.56% 0.984 <0.001

Adults with low fruits &
vegs 1.38% ± 3.13% 0.999 <0.001

Overall 7.32% ± 13.08% 0.983 <0.001

In Figure 6, we analyze the energy intake differences between the ground truth and the
recommended values using Bland-Altman diagrams. Each diagram shows the dispersion
of the generated meal plans around the mean value, with samples within the red lines
(i.e., 1.96 standard deviations from the mean value) considered valid. The results reveal
that the percentage of samples falling within the accepted limits surpasses 92% for all user
groups, thus revealing the ability of the proposed AI recommendation system to achieve
accurate performance.

In addition, the distribution of the energy intake differences between the recommended
and the target values is presented in Figure 7. This figure illustrates that most differences
reside in the [0–5%], meaning that most energy intake differences are smaller than 5%.
Moreover, the energy intake differences follow a distribution that approximates the normal
distribution, with the occurrences of high differences diminishing and only a handful
of occurrences of high energy intake differences (>60%). This would be an expected
distribution pattern for accurate prediction system.

Finally, we performed an extra experiment regarding meal variety for the different
meal types of a daily plan, presented in Figure 8. We define meal variability as the number
of unique meals proposed for a weekly meal plan generated by the AI-based nutritional
advisor. As a result, the meal variety, per meal type, e.g., breakfast, ranges from 1 (i.e.,
a single meal is repeatedly proposed for each day of a week) to 7 (i.e., a different meal is
recommended for each day of a week). A large meal variety is important so that a real user
finds the generated weekly meal plan more interesting and appealing.

From Figure 8, it can be deduced that the median meal variety for each meal is above
3.5, meaning that on average the generated weekly meal plans contain 3 or 4 different
meals. There are also a few weekly meal plans having every meal different (meal variety
equals 7), while the minimum observed meal variety in a plan is 2, as shown in Figure 9.
This number is significantly affected by the number of unique meals available in the dataset
and the medical condition of a user that eliminates certain meal options. We can also see
the differences by meal type, with snacks tended to be the most varied type while dinner
being the least varied one. We believe that the average meal variety of 3.5 achieved by the
proposed AI-based nutritional advisor is attributed to the filtering techniques aiming to
boost variability and allows the generation of weekly meal plans with significant diversity,
thus enabling users to better adopt and retain healthy and nutritious diets.
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Figure 6. Bland-Altman plots depicting energy intake differences for each user group.
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Figure 7. Distribution of energy intake differences between recommended and target values.

Figure 8. Average meal variety for each meal type in a generated weekly meal plan.

Figure 9. Distribution of meal variety across users.

5. Discussion and Conclusions

In this paper, we presented a recommendation framework, which adopts a two-stage
architecture for modelling diets to provide a safe and appropriate meal plan recommender
system. In this context, the PROTEIN AI Advisor utilises evidence-based science from
experts in Nutrition and international governing bodies to provide advice for: (i) qualitative
rules to avoid potentially harmful ingredients, (ii) quantitative rules to generate daily
meal plans for different population groups, and (iii) a database of expert-validated meals.
Within this paper we explore the two distinctive parts of the recommendation process
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and provide an evaluation of the results for meal recommendations from a user-specific
perspective, meal plans provided, as well as, the capability of the system to handle and
respond to ‘complex’ user profiles.

Our results show that the system was highly accurate at generating appropriate
recommendations for macronutrients and other key dietary components within the daily
meal plans for all user groups (92.65% and 85.86%, respectively). However, a limiting factor
to this accuracy was the number of meals available within the database for the recommender
system to draw from. This was shown within the athletes’ group, which had a considerably
smaller subset of meals to draw from, contributing to reduced accuracy for the other dietary
component recommendations (31.07%). On average, meal variety was predicted to equate
to 3–4 meals suggested per meal type over the week, which was considerably lower
than anticipated. This could contribute towards lowered user engagement because of the
lack of variety. Therefore, in the future it would be expected that the nutritional experts
devise further meal plans to be integrated within the system to avoid a lack of meal variety,
particularly targeting those user groups with more complex needs.

In addition, the resiliency of the system was verified by exploring the relation between
meal plan generation and ‘complex’ user profiles. All restrictions were considered as part
of the NP, including allergies, intolerances, medical conditions, and dietary choices. We
developed a system that should consider an individual from the least (i.e., no allergies/
dietary choices) to the most complex profiles (such as gluten-free, vegan and nut-free). Due
to a smaller meal database, the meal variety for complex user profiles was considerably
affected. Therefore, the authors acknowledge that the system would benefit from a larger
meal database accounting for more complex cases, such as vegans, in the future. However,
it was observed that the overall NP creation rate was high (between 76–83%) for users
with various health conditions, allergies, nutritional deficiencies, and dietary choices,
when testing the system on two different occasions. Overall, our study shows a high
precision and recall for recommending appropriate ingredients for most user profiles,
while the meal plan generator achieved a total recommendation accuracy of 92% for all
nutrition recommendations.

Future perspectives for the current framework of the system include the expansion of
the architecture with the addition of a third layer of personalization, which requires the
evaluation of the system directly from real users in real-time. For instance, the introduction
of a star-rating system would be an essential addition that can enable the NP to understand
an individual’s personal preferences for certain foods and meals. The integration of this
third level of personalisation would also pose challenges, since it brings up the need to be
evaluated by the research community to verify whether the system has properly interpreted
the user preferences in accordance with their nutritional goals and recommendations.
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